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Domain-wall renormalization-group study of the two-dimensional random Ising model
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The distribution of domain-wall free energies is calculated with the use of a transfer-matrix ap-
proach for finite lattices. A renormalization-group transformation is set up which preserves the
domain-wall free-energy distribution as well as the susceptibility when the lattice parameter is

changed. The fixed points, critical exponents, and phase diagram are determined for the two-

dimensional random Ising model with a Gaussian distribution of nearest-neighbor interactions.

I. INTRODUCTION

The two-dimensional random Ising model has been
studied by Monte Carlo, ' transfer-matrix, and cluster-
quench simulation techniques. A phenomenological scal-
ing theory has been presented by the author.

In this paper a macroscopic renormalization-group
(RG) method is set up in which one calculates macroscop-
ic physical quantities as a function of lattice parameter.
The Hamiltonian parameters are then renormalized to
preserve the physical quantities as the lattice parameter is
varied. This approach is in contrast to the usual micro-
scopic RG methods, such as the block-spin method, in
which one specifies a transformation of the microscopic
spin variables. The physical quantities which we choose
to preserve are the distribution of domain-wall free ener-
gies (actually, the mean and variance) and the mean sus-
ceptibility. For the two-dimensional random Ising model
these quantities can be calculated numerically using a
transfer-matrix technique. Once the RG transformation
has been set up, we use the standard RG methodology to
find the fixed points, the critical exponents, and the phase
diagram. Near the fixed points this approach is related to
finite-size scaling on the same physical quantities.

II. DOMAIN-WALL RG

Consider an n Xn lattice of Ising spins with lattice
spacing a and lattice size J =an. In the x direction the
lattice is replicated periodically to form a long strip suit-
able for the transfer-matrix method. In the y direction we
choose either periodic or antiperiodic boundary condi-
tions. The Hamiltonian is

8= —$J(JS;SJ—hgpS;,

with nearest-neighbor interactions J,J chosen from a
Gaussian distribution with mean J and variance J. The
partition function

Z = g exp( H/T)—
fs,.=+i[

can be found from the largest eigenvalue of the transfer
matrix.

%'e can set up a domain wall by using antiperiodic
boundary conditions in the y direction; this forces a spin
reversal over length scale L,. Within a block-spin picture,
the domain-wall free energy is proportional to the interac-
tion free energy of block spins of length scale L. Clearly,
the domain-wall free energy is a relevant physical quantity
that one wants to preserve under the RG transformation.
The free energy of a domain wall in zero field is

W„(E,E)—:—T ln(Z, /Zy ),
where subscripts p or a indicate periodic or antiperiodic
boundary conditions and the dimensionless Hamiltonian
parameters are E=J/T and E=J/T. The susceptibility
1s

(4)

For the pure Ising model (J=0) these physical quantities
are unique. However, for the random Ising model (J & 0)
on a finite lattice, the physical quantities depend on the
interactions JJ and the quantities are distributed. We find
the mean W and variance W of the domain-wall free-
energy distribution and the mean susceptibility 7 by calcu-
lating the physical quantities for several thousand config-
urations of interactions and taking the appropriate aver-
ages.

We now set up the RG transformation in a small field.
Consider two lattices, the first an n )&n lattice with lattice
spacing a and length L =an with Hamiltonian parameters
E, E, and ph /T, and the second an n'&& n' lattice with lat-
tice spacing a'=ha (b ~ 1) and the same length L =a' n'

with Hamiltonian parameters E ', E ', and p'h/T. We re-
quire that the two lattices represent the same physical
problem with different microscopic length scales a and a'.
We therefore deinand that the Hamiltonian parameters of
the second lattice be chosen so that the physical properties
are preserved,

W„(E ',E ') = W„(E,E),

8'„(E ',E ') = W„(E,E),

g„(E',E',p')=X„(E,E,p) .
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Equations (5)—(7) define implicitly the RG transforma-
tion from Hamiltonian parameters K, K, and p at length
scale a to Hamiltonian parameters, K', K', and p' at
length scale a'. Note that since the tempexature appears
explicitly in the expressions for domain-wall free energy
and susceptibility, the temperature is held fixed and the
Hamiltonian parameters J, J, and p are renormalized.

III. RESULTS

(10)

The thermal eigenvalue A, i is the inverse of the
correlation-length exponent v. Table I gives the transition
temperature and exponents for several values of (n, n').
For large n and n', T, and the exponents approach the
Onsager values; however, the contributions from ir-
relevant eigenvalues (corrections to scaling) are not negli-
gible. We can obtain more accurate exponents by includ-
ing corrections to scaling. We first fit 8'„(K,O) for a
range of n to

8'„(K,O)=HO+Bin '+Min ',
where A, ~ is the leading eigenvalue. At the critical tern-

perature 3
&

vanishes. Linearizing about the critical tern-

perature

d W'„
=Bo+Bin '+Bi( —1)"n ' .

dE
(12)

The alternating term in {12)is necessary in order to obtain
a reasonably accurate fit; a period-4 contribution is also
present in the data. The alternating term is not present at
T, . The susceptibility versus n is fitted by

We first test the domain-wall RG (DWRG) method by
applying it to the pure Ising model (J=0) and comparing
the results with the exact Onsager solution. We first find
the fixed point K" such that

W„(K',0)= 8'„{K',0) .

I.inearizing about the fixed point K„=K*+5K„we find

ing model. However, in order to obtain accurate ex-
ponents, one must include corrections to scaling; the pres-
ence of alternating terms limits the accuracy of the
thermal eigenvalue of 0.2%.

IV. RANDOM ISING MODEL

8'„(ce ) =A i n (15)

with A, , =0.281+0.005. There is a "phase transition at
zero temperature" with the spin-glass correlation length
diverging as T at low temperature with
v= I/A, i

——3.56+0.06. This exponent is somewhat larger
than the value v=2. 96+0.22 found from the transfer-
matrix method. The present value is believed to be more
reliable. The susceptibility is not affected by the interac-
tions and the mean-square magnetic moment of a block
spin is equal to the sum of the squares of the spin mo-
ments. One can rewrite the Taylor-series expansion

W„(K)=D„K (1 E„/E + )—.

We first examine the pure spin-glass model with J=0.
The average domain-wall free energy vanishes and we
have a one-parameter RG transformation given implicitly
by

W„{K') = W„(K) .

We calculate W„(K) for a range of temperatures and fit
in[ W'„(K)] to a Taylor series in T . The Taylor series
provides an extrapolation to zero temperature; round-off
errors prevent numerical work at very low temperatures.
For n =3 and 4 we average over N =90000 configura-
tions for six temperatures in the range 0.2J & T &0.7J; for
n =6, X =45000 and 0.25J & T &0.7SJ; for n =8,
X =20000 and 0.3J & T &0.8J. These data establish the
temperature dependence. The lowest-temperature data
points are then repeated with 6 times the number of con-
figurations to establish a more accurate absolute magni-
tude for the low-temperature domain-wall free energy.
The extrapolation to zero temperature is insensitive to the
order of the polynomial and does not appear to introduce
any significant error. The zero-temperature data can be
fitted within statistical accuracy to the simple scaling
orm

+„=C)n +C2n
At

$ Af2
(13) In the strong coupling regime the RG transformation is

then

TABLE I. Properties of the ferromagnet-paramagnet critical
point of the pure Ising model.

2.21916
2.250 81
2.263 44
2.267 27
2.26902
2.269 19

0.8902
0.9678
0.9840
0.9901
0.9981
1.0000

fl

0.0286
0.1371
0.2007
0.2272
0.2500
0.2500

where A, i ——4—rt. Fitting (11)—(13) for 5 & n & 12 we find
the exponents listed in Table I. The 0%RG method
works well to calculate the critical behavior of the pure Is-

K'2=(D„ /D„)K [I (E„E„D„/D„—)/E —] . (17)

This result confirms the form assumed in the author*s
phenomenological scaling theory. The coefficient of the
K correction in (17) is approximately 0.55 for
(n', n)=(4, 8).

We next study the critical surface for ferromagnetism.
We defined reduced variables, r =J/J =K/K and
t =K, /K= TK, /J, where K, =1/2. 269185 is the critical
coupling constant for the pure Ising model. With these
variables the phase diagram and the RG flows can be
represented on the same graph. We first find the func-
tions 8'4, W&, Ws, and Ws on a grid of points in (r, t)
space. We then fit each function with a third- or fourth-
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order polynomial in r and I (or r and t near the
ferromagnet —spin-glass transition). The RG equations
are then solved for the RG flows using the polynomial ex-
pressions. We typically use X=20000 configurations for
n =4 and 2000 configurations for n =8. The critical sur-
face and typical flows are shown in Fig. 1.

There are three fixed points. (1) The ferromagnet-
paramagnet fixed point is at (r, t) =(0,0.995). The eigen-
values and exponents are A, 1

——1.023, v =0.997,
X2———0.004, and g=0. 16. The second eigenvalue is ap-
proximately zero. %e could argue that the model has no
small parameters and that the exact eigenvalue is either of
order unity or precisely zero; we would then conclude that
the random interaction is a marginal operator. It is mar-
ginally irrelevant since the RG flow is toward the fixed
point. It is already known, however, that this is the
case. ' (2) The ferromagnet —spin-glass fixed point is at
zero temperature (r, t)=(0.967,0). The eigenvalues and
exponents are X~

——0.694, v=1.44, and A,2 ———0.356. The
low-temperature susceptibility of the strip is strongly tem-
perature dependent and does not provide a usable estimate
for I). The spin-glass phase exists only at zero tempera-
ture. (3) There is a bicritical point at (r, t)=(0.97,0.47).
The eigenvalues and exponents are A,

&

——0.633 and
A,2=0.258. Since relatively few configurations are used
for n =8, these results are not highly accurate. In order
to assess the error, the computations were repeated with
an independent set of configurations. The critical surface
shifted by as much as Ar =0.025 at low temperature. The
bicritical point occurred at (r, t) =(0.93,0.51) with eigen-
values A,

&

——0.703 and A,I——0.251. The critical surface was
reentrant by an amount hr =0.0050 in the first case and
by Dr=0.0013 in the second. %e conclude that the
model is on the borderline between reentrant and nonreen-
trant behavior. Surprisingly, the Migdal approximation

0
0

FIG. 1. Phase diagram of the two-dimensional random Ising
model. The variables are reduced temperature t = T/T„where
T, is the transition temperature of the pure Ising model, and

r =J/J, the ratio of variance to mean of the interaction distribu-
tion function. The fixed points are shown as open circles and

typical RG flows are shown. The ferromagnetic (F), paramag-
netic (P), and spin-glass (SG) phases are indicated.

produces the right topology of the critical surface, includ-
ing the bicritical point. ' For temperatures less than the
bicritical temperature the RG flow is toward the
ferromagnet —spin-glass fixed point and the critical
behavior of that part of the critical surface is governed by
that fixed point. For temperatures greater than the bicrit:-
ical temperature the flow is toward the ferromagnet-
paramagnet fixed point and the critical behavior of that
part of the critical surface is governed by that fixed point.
This is not strictly true since the flow near the fixed point
1s marginal.

Finally, we reexamine the ferromagnet —spin-glass fixed
point with better statistical accuracy. %e are interested in
the ratio

R„(r,t) = W„(r,t)/W„(v, t) . (18)

We calculate this ratio for t =0.2 and 0.3, and r =0.96
and 0.98 using E =120000, 120000, 64000, and 24000
configurations for n =3, 4, 6, and 8, respectively. From
the earlier but more extensive data, the ratio is found to be
weakly and approximately linearly dependent upon tem-
perature; we extrapolate the present data to zero tempera-
ture linearly. The data can be fitted to the simple scaling
form

R„(r,0)=R, +HI(r r, )n '—A1

within statistical accuracy, yielding v, =0.961+0.010,
k) ——0.713+0.042, and v= 1.42+0.08.

V. CONCLUSIONS

We have studied the critical behavior of the two-
dimensional random Ising model using a macroscopic RG
method. The macroscopic physical variables were chosen
to be the distribution function of the domain-wall free en-
cl'gy Rnd tlic IllcRII sUsccptlblllty. T11csc qualltltlcs wclc
calculated numerically with use of transfer-matrix tech-
niques. There were no uncontrolled approximations.
There were systematic errors introduced in using finite
lattice sizes and in extrapolating to zero temperature;
there were statistical errors introduced in estimating the
means and variances using finite samples. The overall
quality of the calculation is good and the critical ex-
ponents are believed to be accurate to a few percent. The
equilibrium behavior of the two-dimensional random Ising
model is now well understood. Quantitative thermo-
dynamic properties can be obtained from the RG method
lf desired.

The physical properties of the model are as follows.
Fol J+0.96J there ls a sp1Q-glass phase at zero tempera-
ture, but no spin-glass —paramagnet phase transition at
finite temperature. At zero temperature there is a con-
tinuous spin-glass —ferromagnet phase transition at
J=0.96J. There is a bicritical point on the ferromagnet-
paramagnet critical surface which splits the critical sur-
face into two portions. The phase transition is continuous
on both portions with the critical behavior controlled by
the ferromagnet —spin-glass fixed point on the low-
tclllpclatulc portloll, Rlld by 'tllc pUI'c Islllg fixed polllt oil
the high-temperature portion.
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