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Critical amplitude of the Potts model: Zeroes and divergences
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The critical amplitude of the q-state Potts-model free energy is studied as a function of q in two
dimensions and on the diamond hierarchical lattice. The amplitude diverges at an infinite number
of q values, q„,introducing logarithmic terms in the free energy. We expect that in each interval

(q„,q„+&} there is a value q„where the amplitude vaniShe, affecting the singularity of the free ener-

gy as a function of temperature. Possible consequences for gelation and vulcanization of polymers
are discussed,

I. INTRODUCTION

The q-state Potts model has been extensively studied in
view of its connection to a variety of experimental systems
undergoing phase transitions, ranging from percolation to
adsorption of noble gases on various substrates. The na-

ture of the transition between the low- and high-
temperature phases changes from continuous for low

values of q, q (q„to discontinuous for high values of q,

q ~q„thus enhancing the interest in this model. In two
dimensions, Baxter has shown that q, =4, and den Nijs
proposed a formula which gives the thermal exponent as a
function of q for q &4. However, not much attention has
been paid to the critical amplitude. It is the purpose of
this paper to present a study of the q dependence of the
critical amplitude of the Potts free energy.

A sequence of values of q, Iq„I,starting with qi ——2
(the Ising model) and converging towards zero, where the
critical amplitude diverges, is calculated in Sec. II. For
these values the power law is replaced by a logarithmic
singularity. %C present evidence which shows that be-

tween any two consecutive values q„and q„+~
the ampli-

tude varies monotonically between —oo and + ao. Hence
there is a value q„in any mterval (q»qn+ I ) where the crit-
ical amplitude ls zero Scc. III and thus thc expected lead-
ing singularity does not occur. %C also obtain estimates
for the q„values by using an expression for the q depen-
dence of the critical amplitude which interpolates between
known lcsults.

In Sec. IV numerical estimates of the critical ampli-
tudes of the two-dimensional q-state Potts and bond-
percolation models are obtained by using Migdal-
Kadanoff renormalization group. These computations
are, of course, approximations for the square lattice.
However, they are exact when the models are defined on
the diamond hierarchical lattice. 8'9 This is significant in
view of the minimal amount of exact and detailed analysis
of nontrivial models of phase transitions available.

These theolctlcal prcdlctlons may have cxpcrimcntal
consequences, Scc. V, for polymer mixtures undergoing
gelation and vulcanization processes which belong to the
university class of the Potts model with q between zero
and one. ' In this connection we analyze the critical

behavior of a bond-percolation process in the presence of a
fugacity which controls the number of clusters.

II. DIVERGENCE OF CRITICAL AMPLITUDE
AND LOGARITHMIC SINGULARITIES

In this section we discuss the divergence of the critical
amplitude of the Potts-model free energy at certain values
of q, the number of states. The Potts Hamiltonian is

where 5 is the Kronecker delta function, s; =1,2, . . ., q is
a spin variable located at site i of the lattice, and the sum
ls over ncalcst-nclghbor sltcs. Throughout this paper q ls
a real variable. " The free energy per site f, close to the
critical point, is the sum of a regular contribution f„gand
of a singular contribution f„„g,

f =freg+fsing ~

fsing —~+
I
I

I

where A~ is the critical amplitude, t =(T T, )/T, is the-
reduced temperature, d is the dimension, and y is the
thermal exponent.

Logarithmic modifications of the power-law singulari-
ties can occur' when one of the scaling fields is marginal,
e.g. , at the upper critical dimension, ' or when the critical
exponents satisfy certain relationships. ' We will elaborate
on a particular example of the latter case which is impor-
tant for the Potts model. When the ratio d/y is equal to
aIl lIltcgci' nio, d/y =rno, tllc lcadlIlg siIlglllarlty of thc
free energy is not, in general, f„.„g- ~

t
~

', but

f„„g-t ln
~

t
~

. The changeover from power law to log-
arithmic singularity can be traced back to a breakdown in
the power (Taylor) expansion of the regular part of the
free energy when d/y =mo. Indeed, within a typical
renormahzation-group scheme, the free energy satisfies
the functional equation
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where g is an analytic function of the scaling field t, and b
is the rescaling factor. The regular part of the free energy

frog RIld g call bc expanded 111 powcls'of t,
and

a =0 if d/y is an odd integer .
den Nijs has conjectured that the thermal exponent y

of the q-state Potts model in two dimensions varies with q

By using Eq. (4), the coefficients f can be expressed as

However, if d/y =mo the expansion of f„gis not valid
because f,, from Eq. (6), diverges as (mo —d/y) '. In

this case, the free-energy singularity is determined by the
combined contributions of f,t ' and the usual singular

part 2+
~

t
~

~~" in thc limit d /y ~m0,

where 0&u =(2/Ir)cos '(Vq/2)&1 and 0&q&4. Ac-
cording to this conjecture which has been verified numeri-
cally ' and analytically, ' and agrees with all exact
known results, d/y decreases monotonically from + 00 at

4
q =0 to —, at q =4, thus spanning all integers larger than
unity. The values of q for which d/y =2m, m =1,2, . . .,
and where logarithmic singularities occur, Eq. (9), can be
obtained from Eq. (13),

g~ =4sln, ' pg = $~2, 3,
6m —2 '

lim If t +A+ t (sgnt)
g/y~mo

X [1+(d/y —mo)ln
i
t

i ]I,

a = lim A+(sgnt) '(d/y —mo),
g/y'-+Pl 0

This scquencc starts %'ith g1 ——2, corresponding to tlM Is-
ing model which exhibits a logarithmically divergent
specific heat, ' and the next following values are in the
internal (0,1): qg

——0.3820, qI ——0.1218, q4 ——0.0810, etc.
For large m, Eq. (14) is approximated by q~ =It /9m2
and the accumulation point of this sequence is 0.

When d/y =2m+1, m =1,2, 3,. . ., corresponding to
the following q values,

c+ —— Ijm [3++f„,(sgnt) 'j,
d/y ~&0

and assuming the existence of these limits, we can rewrite

fsing Rs

there is no logarithmic contribution because the amplitude
a is zero, Eq. (12). In this case

fsillg —c+
~

I
( t m la 2&3y ~ ~

f'.g
=« '»

I
I

I
+c+

I
t

I

'
~

Equatjon (8) Rnd the assumption that c~ is finite imply

(9) and thus thc (2m + 1)th derivative of the free energy wjth
I'cspcct to t 1s discontinuous at thc critlcR1 poln't t =0, 1.c.,
tllc tl RIlsltloll 18 of ( 2m + 1 )tll order 111 Elll'cilfcst, 8 scuse.

a = — lim f,(d/y —mo),
d/y~mo

whjch shows that the amplitude a is the same above (t & 0)
and below (t &()) thc critical temperature. ' lt also fol-
lows, Eq. (8), tllat A+ diverges as

A+ -(d/y —mo) for d/y~mo .

These results, Eqs. (8)—(11), though discussed here in
the context of the Pofts model are more general. Illdeed,
they are confirmed by the exact sollltiolls of t11c clgllt-
vcrtcx model Rnd of thc Ising IIlodcl on a Caylcy tI'cc.
For both models a symmetry, duality in the former and
time reversal in the latter, forbids the occurrence of odd
powers of the scaling field in f„„g,thus allowing logarith-
Illic IilodlficRtlons of thc powcl' 1Rw ollly wllcI1 d/y is RI1

even integer. The same holds for the Potts model which is
self-dual when defined on the square lattice. The self-
duality also implies that the amplitudes A+ and e+ ar'e the
saITle above and below thc crit1cal temperature,

III. CRITICAI. AMPI ITUDE DEPENDENCE ON q

A. Monotonicity ansatz

In this section wc make the ansatz that the critical am-
plitude of the two-dimensional Potts free energy is a
piecewise monotonic function of q, and we discuss the
consequences of the ansatz. The exact solution of the
eight-vertex model' has proven to be useful for acquiring
lnfoITQatlon on thc Potts IDodcl. Indeed, Baxter~ us1ng a
IQRpping between thc two Inodcls, has shown that for
q & 4 the transition is continuous while for q & 4 the Potts
transition is discontinuous. Mor'cover, den Nijs s conjec-
ture, which determines the therinal exponent of the Potts
model, is a relationship between the exponents of this
model Rnd the eight"vertex IDodel; It 1s then plaus1Mc that
insight can also be gained on the critical amplitude of the
Potts model by examining the exactly known critical aIn-
plitude of the eight-vertex model.
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The critical amplitude of the eight-vertex free energy
diverges when d /y (n/p. in Baxter's notation' ) is equal to
even integers (consistent with our discussion in Sec. II),
and in between two such values it varies monotonically be-
tween —oo and + Do. By analogy with the eight-vertex
model we make the ansatz that the critical amplitude of
the Potts model is a piecewise monotonic function of d/y
where y is the Potts-model thermal exponent and d =2.
Since d/y is a monotonic function of q, Eq. (13), the am-
plitude also varies monotonically with q. We verified this
ansatz by computing the q dependence of the amplitude
within the Migdal-Kadanoff renormalization-group
scheme, and the results are presented below in Sec. IV.

For 2 & q & 4 the specific heat, which is a positive quan-
tity, diverges with an exponent a=2 —d/y &0 [Eq. (13)],
and thus for small t it can be approximated by its singular
contribution,

C=A(2 —a)(1—a)
f
t

f
&0, (17)

where A =A+ ——A . Equation (17) implies that A &0.
Hence as q~q &+ ——2+, the amplitude A —++ ao, while for
q~q &

——2 it diverges to —co according to Eq. (11). At
q =1 the Potts model is trivial; the free energy f is pro-
portional to the coupling J. This is consistent with Eqs.
(2) and (3), provided that the critical amplitude A =0 at
q=1. Decreasing q still further, A increases and as
q~q2+ ——0.3820+ it diverges to + oo, while at q —+q2,
A ~—ao. The qualitative dependence of A on d/y and q
is shown in Fig. 1.

I f [ l f

Figure 1 is in agreetnent with results obtained for bond
percolation which is related to the q-state Potts model
with q~ 1. The mean number of clusters 6 is equal to the
derivative offwith respect to q evaluated at q = 1,

Then,

df
8q q=i

(18)

B. Interpolation formula for A (q)

The solution of the eight-vertex model suggests an ex-
pression for the dependence of the Potts-model critical
amplitude on q. In the eight-vertex model, the critical am-
plitude' is proportional to cot(m. /y), where y is the
thermal exponent. By analogy we propose the following
form for the Potts amplitude:

Since A (q =1)=0, it follows that the percolation ampli-
tude is dA/dq

f ~ &. A.ccording to our analysis, this is a
negative quantity (Fig. 1) in agreement with series expan-
sions ' for bond percolation.

An important consequence of the q dependence of A, as
shown in Fig. 1, is that there is a sequence of values I q„],
with q„+~&q„&q„[q„aregiven in Eq. (14)], starting
with q~

——1, where A is zero, A(q =q„)=0.Hence for
these values the free energy does not exhibit the singulari-
ties prescribed by den Nijs's conjecture.

A

(a)
A = b(q) cot— 1

y(q) 3

I I l

4 6 8

where y(q) is the Potts thermal exponent and b(q) is a
slowly varying positive function of q. The sign of b(q)
was chosen so that A &0 for q & 2. Equation (20) interpo-
lates between all exact or accepted results as follows: (i) A

diverges whenever d/y =2/y is an even integer and (ii) A

is zero for q =1 (y = —,
' ). It is interesting to note that by

using Eqs. (13) and (20) we obtain

q =4sin (n./6m), m =1,2, 3, . . . (21)

(b)

as the values of q where A =0. The sequence starts with

q~
——1 and continues with the following values in the in-

terval (0,1): q2 ——0.2679, q3 ——0.1206, q4
——0.0681, etc.

0—
l l l

2 4

FIG. 1. (a) Qualitative dependence of the amplitude on

d/y &8, d =2. The special values q„,q„,and q„are marked.
(b) q dependence on d/y from den Nijs's conjecture.

V. NUMERICAL COMPUTATIONS USING
THE MIGDAL-KADANOFF RENORMALIZATION

GROUP

In this section we present numerical computations of
the Potts critical amplitude and bond-percolation related
quantities. Fe use the Migdal-Kadanoff renor-
malization-group method with rescale factor b =2, which
is an approximation for two-dimensional lattices. At the
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same time this scheme is exact for the diamond hierarchi
co/ lattice '. This lattice is constructed, Fig. 2, in the fol-
lowing iterative way: four bonds such as the one in Fig.
2(a) are aggregated to form a diamond and then, four dia-
monds such as in Fig. 2(b) are aggregated to form a dia-
mond of diamonds; by repeating this process ad injinitum
&c gcnclatc tlM diamond hierarchical lattice.

A. Potts critical amplitude

The free energy per site for the Potts model, Eq. {1),on
the diamond hierarchical lattice is given by the conver-
gent ScAcS

(22)

g =—,'ln[2exp(2J)+q —2] .

The recursion equation for the exchange couphng is

J~„+I~ 1
exp(4J'"')+q —I—n

2 exp(2J'"')+q —2
(24)

and J+'=J [the original coupling appear1ng In Eq (1)].
In order to find the critical amplitude off„s,th«egu-

lar part f was subtracted f1'0111 tlM fl'cc energy&f„„=ff„.. The—free energy f is obtained from Eqs.
(22)—g4, ) while f„=gf (J—J*), with coefficients

f calculated by differentiating rn times the equation
f (J)=g (J)+ —,

' f (J"') at the fixed point J'"=J=J~. We
then computed the amplitude from A+
=f»„s(J)

~

J—J~
~

~~, with d =2, for several values of J
close to J~ until good numerical stability was achieved.
The numerical results in Fig. 3 support the ansatz of Sec.
III, i.e., the amplitude is a piecewise monotonic function
of q. We find that when d/y =2 and 4 (even integers),
corresponding to q& ——6.82 and q2

——0.54, the amplitude
diverges. At q =q& ——1 the amplitude is zero, which is a
consequence of the fact that for any lattice f-J. A
second zero occurs at q =q2-0.26. We also find the fol-
lowtng: (i) for any q, A+ ——A. , and (ii) for d/y =3 and 5
(odd integers), corresponding to q1

——1.33 and qz ——0.29,
the amplitude does not diverge. This exact result, which
is a consequence of duality, is discussed elsewhere. On

I'"IG. 3. Amplitude dependence on d/y(q) for the Potts
model on the diamond hierarchical lattice (Migdal-Kadanoff re-
normalization group, 6 =d =2). The special values q„,f„,and

are marked. Numerical results are displayed for
1.6 & d /g g 5.3.

»«arc»cai lattices, for fixed q, the critical amplitude is
equal to a constant plus a numerically small periodic func-
tion of ln~ J—J~ ~. In the cases we analyzed, the
periodic part of the amplitude is very small, about 10 of
the constant part, and does not effect the results quoted in
this paper. This is also true for the percolation amplitude
%'hiCh iS diSCUSSCd 1Mxt.

B. Bond pea'colation

The mean number of clusters per lattice site G for bond
pcrcolatlo11 ls obtained by dlffcrcntlat1ng thc Potts-111odcl
free energy per site with respect to q at q =1,Eq. (18). By
also using f (q =1)=3Jwe find

G= —,
' g 4 "{1—p„)

wllcl'c p~ = 1 —cxp( —2J ) Is thc occllpatloll probablllfy
for a bond of order n The recur.sion equation for p„is

FIG. 2. Diamond hierarchical lattice construction. Iteration
levels 0, I, and 2 are shown in (a), (b), and (c), respectively.

and po ——p is the occupation probability for the primitive
bonds of the lattice. This equations' is derived either by
setting q =1 in Eq. (24), or alternatively by calculating the
probability p„+Ito connect the boundary sites (open cir-
cles in Fig. 2) given that a nth-order bond is present with
a probability p„.The recursion equation (26) has three
fixed points: @=0, which governs the "nonpercolating
phase, = 1, which governs tlM percolating phase, and
p~ =( 5 —1)/2=0.618, which is the percolation thresh-
old Qn the diamond hierarchical lattice. The "therIDal"
cxponcnt, corresponding tQ a singularity 6„„—

( p —p~
~

~1', is y =0.6115, which is compared with den
Nijss prediction for two-dimensional bond percolation
y = 4. Thc dependence of G 011 p, computed by llslng
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Eqs. (25) and (26), is shown in Fig. 4.
We also computed the critical amplitude A+ defined

through b(9')(1 —)
Nb b(S) n(9')~p -p q

pb(8)( 1 p)bqn(9)tt (y)
G(p, q) =—1

N
(28)

Gsing =A+
I p p*

I
=G Greg ~ (27)

where G„g=g g~(p —p~) . We find A+ ——A =—6.3
to be compared with series expansions for square-lattice

bond percolation 3+ ——3 = —4.24+0.015.

V. BOND PERCOLATION WITH A FUGACITY
WHICH CONTROLS THE NUMBER OF CLUSTERS

In this section we consider bond-percolation processes
in the presence of a fugacity which controls the number of
clusters. Since the q-state Potts model is related to this
process, as is shown next, we will use the results of Secs.
II and III to analyze the singularities of the mean number
of clusters as a function of the bond-occupation probabili-

ty.
This study may be relevant for polymer mixtures under-

going gelation and vulcanization. Indeed, gelation and
vulcanization are percolation processes. Moreover, it
has been argued' that an appropriate choice of polyfunc-
tional units in polymer mixtures amounts to controlling
the number of loops in the allowed configurations. Then,
it seems plausible that a simple model for these processes
is bond percolation in the presence of a fugacity which
controls the number of clusters or equivalently the num-

ber of loops, since for a lattice of N sites, and for any

graph with b bonds, the number of loops c is determined

by the number of clusters n, according to Euler's formula
c =b+n N. —

For reasons which become clear later, we denote the
cluster fugacity by q and the bond occupation probability
by p. As usual, two sites connected through a chain of oc-
cupied bonds belong to the same cluster, and single-site
clusters are considered also. The mean number of clusters
per site is

where the summation is over all possible graphs 3' com-
patible with the lattice and Nb is the total number of lat-
tice edges. The fugacity q controls the number of clusters
in the sense that graphs with the same number of bonds b
but with different number of clusters get different
weights. When q & 1 the graphs with a smaller number of
clusters, or loops, are favored over graphs with greater
such numbers, while the reverse holds when q & 1. %hen
q =1, since

b(9')( 1 )
b

Eq. (28) reduces to the expression for the mean number of
clusters in the regular bond-percolation problem. '

The bond-percolation process with a fugacity q which
controls the number of clusters is related to the q-state
Potts model. Indeed, a high-temperature expansion' for
the partition function is

T b(S)
Z =exp(Nf) = g 1 —p

n (9') (29)

where p =1—exp( —2J) and N is the total number of lat-
tice sites. A consequence of Eqs. (28) and (29) is that the
mean number of clusters per site as a function of bond-
occupation probability p and fugacity q is related to the
q-state Potts free energy per site f according to

6=q
Bq

(30)

This also justifies our notation for fugacity. When q =1,
Eq. (30) is the usual relationship' between bond percola-
tion and Potts model with q~1.

The singularity of G as a function of t(q):p —p*(q), —
where p*(q) is the threshold probability, is given by
G„„g——q 8f„„g/Bq. For h(q) =d /y (q) noninteger,
f„„=A+(q)

~
t(q)

~

b(g) and

G„„g-qA+b, (sgn—t)
~

t
~

dq

dA+
+qA,

f
t

f
In

f
t

/ +q
dq

(31)

0 0.5

FIG. 4. Mean number of clusters per site G as a function of
the bond-occupation probability p for the diamond hierarchical
lattice (Migdal-Kadanoff renormalization group, b =d =2).

where sgnt equals 1 if t &0 and —1 if t &0. Hence the
leading singularity is

~

t
~

'. Moreover, in two dimen-
s&ons A+ ——A so that the amplitudes for G„„[Eq.(31)]
have opposite signs below and above the threshold proba-
bility. However, there is a sequence of q values, q„(Sec.
III), starting with q( ——1 where A+ ——0 and as a conse-
quence

dA+
Gsing —q

In two dimensions dA+ /dq =dA /dq &0, Sec. II, so that
the amplitude of G„„gfor these special values of q is the
same negative quantity below and above the threshold
probability.



When Q=d jy is ail integel' mo, t1ic siiiglllarity of f is
the result of the combined contributions A+ I

t
I

and

f t ' (Sec. II),

Ggjgs —q lini (flag r +&+ I
&

I )
R-+ma Bq

»I&I+c+Itl '

(32)

C+ = —QPlo (sgn&}c+,

(33)

fmo ~ dA+
d+ —— lim q (sg») +q

R~mo q

dA+
e+ ——lim q(h —mo) +q ~+

Q-+no dq

and u and c+ are given in Eq. (8). Tlic leading slllglllarlty

is G„.
„

t ' ln
I

r I, provided a@0. For the square lat-

ti.ce a =0 when mo is odd, Sec. II, Rnd thus a=b=o.
Moreover, c+ ——c, Eq. (12), which implies c+ ———c
Hence in these cases the leading singularity is

G»„s-c+sgnt I
t I, i.e., the percolation transition is

of (mo —1)th order, mo —1=2,4,6, . . ., in Ehrenfest's
classification.

The simple model for gelation and vulcanization of this
section, bond percolation with a cluster fugacity, is con-
sistent with the field-theoretical approach prediction
that these processes are in the Potts universality class vnth

q between zero and one. Our analysis, however, shows
that for (most) fugacity values the mean number of clus-
ters singularity is not G-

I
t

I

i'~', with y(q) the q-state
Potts thermal exponent, but G —

I
t

I

("~"'~' '1. On the
other hand, there is a sequence of values of the fugacity q„
[A (q„)=0], where the singularity of G is indeed given by
d/y (q), and this includes the q =1 case of the usual bond
pci'colRtioii.

We presented a study of the two-dimensional Potts-
IBodcl crltlcal-Rmplltudc dependence on g. ThcI'c ls 8 se-
quence of q values, Iq„),given in Eq. (14), at which the
cflt1cal amplitude d1vergcs and thc po%cI'-18% s1ngular1ty
of the free energy is modified by logarithms. There is evi-
dence for the existence of another sequence of q values,
Iq„I, where the critical amplitude vanishes and thus the
free energy of the corresponding Potts model does not ex-
hibit the expected singularity. An interesting question is
whether there is any singularity at all for the special
values q =q„with n ~ l. Estimates for q„,Eq. (21), were
obtained by using Eq. (20},which interpolates between the
known divergences of the amphtude at q„.We also stud-
ied thc Potts critical amplitude Rnd bond pcI'colatlon on
the diamond hierarchical lattice.

Quf %'ofk deals %'1th t%o-d1mcIls1onal and h1cfarchlcal
lattices, but it may be that the main results, such as the
generic dependence of the critical amphtude on q, Fig. 1,
will hold in three dimensions, with shifted values for q.
Thus there may be three-dimensional experimental reali-
zations, e.g., for polymer mixtures undergoing gelation
aild vlllcRIiization. It is also illtcrcstlllg to Iiotc tliat, iii
general, A+ &3 for three-dimensional systems. Hence
different singularities could occur above and below the
critical temperature at certain values of q where only one
amphtude (2+ or A ) is zero.

Irrelevant fields and nonlinearities in scaling fields gen-
cI'Rtc coI'I'cct1ons to scaling ' %hich Rlc Got d1scusscd 1n
this paper. Further studies of critical amplitudes, perhaps
by means of Nightingale's phenomenological
fcnoImallzatlon-group of scf1cs expans1ons, Rfc ncccs-
sary to verify our findings.
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