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The single and joint distribution functions of the nearest-neighbor cell magnetization of the
three-dimensional Ising model have been studied by Monte Carlo methods. Near the critical point,
both distribution functions tend, for large L, towards scaled universal forms. Estimates of the order
parameter and susceptibility are obtained from the distribution functions. The critical temperature
is estimated by a method independent of the estimate of the critical exponents. The critical ex-

ponent v is obtained with the use of finite-size scaling arguments. The joint distribution function
shows a double-well structure for T & T, and can be represented by a coarse-grained effective Ham-
iltonian of two cell variables. We have determined the dependence of this functional on the coarse-

graining cell size for several temperatures. In particular, we have calculated the dependence of the
"spinodal curve" on the (scaled) coarse-graining size. The relevance of this work to the kinetics of
first-order phase transitions is also discussed.

I. INTRODUCTION

It is well known that the concept of dividing a system
into "cells" or "blocks" of finite linear dimension I. has
useful applications in many statistical mechanical prob-
lems. This concept has been applied, for example, to
understand phase coexistence in the van der Waals fluid'
and to derive scaling laws between critical exponents. As
well, for a large class of problems the understanding of
the "coarse-grained" Helinholtz free-energy functional is
fundamentally important. Such problems include wet-
ting, the surface tension and interface profile of gas-

liquid and liquid-liquid interfaces, ' and nucleation and
spinodal decomposition processes. ' Also the coarse-
grained free-energy functional provides a starting point
for the renormalization-group theory of critical phenome-

9—12

A quantity which has played an important conceptual
role in the theory of metastable and unstable states is the
so-called spinoidal curve. This can be given a precise defi-
nition within the context of mean-field or van der Waals
type theories valid for systems with infinitely long-range
forces. Recall that in the van der Waals picture, there is a
"van der Waals" loop which does not describe thermo-
dynamic equilibrium states. Rather, the outer portions of
the loop (for which the order-parameter isothermal sus-
ceptibility is positive) describe metastable states. The
inner portion of the loop (for which the susceptibility is
negative) describes unstable states. The two points at
which the inverse susceptibility vanishes (for fixed
T & T, ) are known as spinodal points and in mean-field
theories provide a sharp distinction between metastable
and unstable states. The locus of these points as a func-

tion of temperature defines the classical spinodal curve.
For systeins with finite-range forces, however, the situa-

tion is much more subtle. One can, in fact, imagine giv-
ing at least two different definitions of a "spinodal curve. "
The first would be the analog of the van der Waals pic-
ture. Namely, consider the problem of analytically con-
tinuing the equilibrium free energy of a stable phase into
the metastable part of the two-phase region. Since it is
reasonably well established that there is an essential singu-
larity in this free energy at any point on the coexistence
curve below T„the analytic continuation consists of a real
and an imaginary part. This real part f(s) is schematical-
ly indicated in Fig. 1 by the dashed lines. The interpreta-
tion of this real part is that it describes the equilibrium
properties of the metastable state. That is, it would
describe such quantities as the susceptibility and specific
heat in experimental measurements of a metastable state
on a time scale during which the state has not begun to
decay. If this dashed line has a unique continuation the
extrapolated value of the measured susceptibility would
appear to diverge at some point (for fixed T). This could
provide one definition of a "pseudo-spinodal" point. '

However, in the dynamical theory of unstable and metast-
able states, the fundamental quantity which occurs in the
equations of motion is the coarse-grained Helmholtz free-
energy functional (Ginzburg-Landau Hamiltonian) men-
tioned above. This contains in addition to the usual gra-
dient term a free-energy density f(s) which has the form
of a double-well potential for T &T,. This is shown in
Fig. l. It is this double-well potential (whose shape de-
pends on the particular coarse-graining size chosen in the
theory) which describes the nonequilibrium properties of
the system. Thus there are two quite different free ener-
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tremely difficult. Therefore, in this paper we have studied
the two simplest distribution functions

PL(s;,s )= f g dsiPI (I$1 I) (1.5)
l&i
l~j

&i,j)

PI(s;)= f dsJPI (s;,sj) . (1.6)

In Eq. (1.5) i and j denote nearest-neighbor cells. Thus
PI (s;,$~ ) has a contribution related to a "gradient" param-
eter ci in the ansatz (1.4).

The organization of this paper is as follows: In Sec. II
we discuss the properties of the distribution functions for
L «g and L »g. The properties of the single distribu-
tion function are discussed very briefly, since a detailed
discussion can be found in Ref. 12. A Ginzburg-
Landau —type parametrization of Pl. (s;) and Pl (s;,sj) is
discussed. In Sec. III we present the numerical results of
our Monte Carlo study. At many points the previous
analysis by one of us' is repeated, since in this work there
was a small programming error resulting in the sampling
of a slightly different distribution, as noted in Ref. 12.
Only very small numerical deviations from the previous
results were found. In Sec. IV we perform the Ginzburg-
Landau —type parametrization of Pq (s;,$J ) and PL (s; ) and
compare our results with field-theoretic calculations. The
size dependence of a coarse-grained "spinodal" curve will
be discussed.

Xl is a good estimate of the susceptibility X of the infinite
system in the case that L »g where g is the order-
parameter correlation length. Below T, the cell suscepti-
bility is defined as

AT&I. =L (&s &I. & Is I &1. )~ksT» T & e

where

& 1~ 1 &i=( x ~
l

(2.4)

is the cell magnetization.
The distribution function PL(s) in the vicinity of the

critical-point scales as

tion function shows a double-peak structure. It is plausi-
ble to use two displaced Gaussian distribution functions to
represent Pq(s) for T & T, in the limit L-+oo. As far as
we know no theorems exist that such a two Gaussian rep-
resentation is correct. This representation could be
reasonable only near the peaks of the distribution, but in
the regime —

& I
s

I &I. «$ « & I
$

I &I. PL (s) is dominat-
ed by configurations which correspond to two-phase coex-
istence within the cell I. . Above T, the second moment
of the cell distribution function is related to the suscepti-
bility XL for a cell of linear size L as follows:

L 'k, T-X, =L '" g &S,S, &,
i,j E.ce11

(2.3)

P (s) =L~ 'aCO 'P(asL~ ",gL '), (2.5)

II. GENERAL PROPERTIES OF THE CELL
DISTRIBUTION FUNCTIONS

&s"&,= f dss"P, (s)

The first cumulant (which we will use) is

(2.1)

A. Single cell distribution function PI. (s)

Since the single cell distribution function has been dis-
cussed earlier in detail by one of us, ' we will present here

only a short summary of the results which are relevant to
this study. For zero magnetic field the distribution func-
tion PI (s) is symmetric, i.e., PL, ($)=PI.( —s). This holds
as such for T & T, Below T„w. here a spontaneous mag-
netization (with two different values +M) appears in the
thermodynamic limit, the symmetrization Pi'(s)
=[Pi.($)+PL, ( —$))/2 has to be implemented to regain
the above symmetry.

For the scaling analysis we need moments and cumu-
lants of the cell distribution function. The kth moment is
defined as follows:

where P(z,z') is a universal scaling function, a is a con-
+ 00

stant, Co —— dz P(z, oo ) is a universal constant, and p
and v are the critical exponents for the spontaneous mag-
netization M and correlation length g, respectively. Thus
one can write the moments (cumulants) in the scaling
form

k
& L kPlv( kC )

—lf—(P —1)

where fk(gL ') is a universal function.

(2.6)

B. Joint nearest-neighbor cell distribution
function PL, (s ~,s2 )

Now we consider the joint distribution function
PI ($1,sq) for nearest-neighbor cells (see Fig. 2). As men-
tioned in the Introduction the single cell distribution func-
tion PI (s) is obtained from the joint distribution function
by integrating out one of the cell spin degrees of freedom.
The symmetry properties of PL (s1,s2) are the same as for
PI (s), i.e.,

Ui ——l—
3(&$'& )' (2.2)

PI ($1,$2)=PI ( —s„s2) . — (2.7)

It was shown' that for T & T, all the cumulants vanish as
L ~00, so that PL (s) is a Gaussian distribution function.
This is also rigorously proven using the central limit
theorem of probability theory. ' For T & T, the situation
is much more complicated since the symmetrized distribu-

In addition to this spin-flip symmetry one also has

PI ($1,$2)=PI. ($2,$1) . (2.8)

Below T, these properties are valid for the symmetrized
cell distribution function
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PL'($),$2) = ,' [—PL,(sl,sz)+PL($1,$1)

+PL, ( —sl, —$1)+PL,( —$1,—Sl )j . (2.9)

From now on we will suppress our notation

PL (s I,sl ) +Pl—(Sl,sp) to Irlcall tllc symmctrlzcd dlstrlbll-
I

tloll flllletloll.
As discussed above the full distribution function

PI„(Is; j ) above T, for large linear system size L can be ex-

p dby lti t G i, h i gits
at It;j =I0j.' For the joint distribution function this
naturally means that PL, (s l, tz) can be written as a bivari-

ate Gaussian

P ($1,$1)=[2Ir(s )1(1—p )'/ ] 'expt —[2(1—p )(t )I, ] '(sl —2pslsz+$1)j, (2.10)

where p= ($1$I &I, /(t &L is a measure of the correlations
between cell spins tl and $2. ($1$2)L refers to the first
"cross" moment of the joint distribution function. The
general (k, l)th cross moments are defined as

(S ISI ) = f f dtldtz$1$2PL( SI, $1) . (2.11)

The first cross moment describes long-range correlations
as does Xl in Eq. (2.3). However,

($,$, ) =I. 'g (S-.SP),
a61
Pe2

does not approach the true susceptibility for L ~ ao, since
the sum is weighted differently from that in Eq. (2.3) for
(t )L, . Hence the amplitude of (s)$2)1 must differ from
that of (t )I. We do expect, however, the qualitative
behavior of

(Sitz�

)I to be the same as that of (S )I in the
critical region. Below T, it would be plausible to
represent Pl, ($),$2) by the sum of two displaced bivariate
Gaussians, but this would at most be valid only in the
neighborhood of the peaks $),„=$2,„(as in the case of
the single cell distribution function).

Now we will consider the scaling behavior of the joint
cell distribution function. We assume that for T~T, and
L~ (x)

is a universal constant. To show this we have used the
nofmallzat1on

We have used Eq. (1,6) to relate the constants of the scaled
joint distribution function with those appearing in the
scaled single distribution function, Eq. (2.5). Thus we can
now rewrite the scaling hypothesis as follows:

PL, (sl, tz)=L ~ 'a /C0PI(atIL~/", a$2L~/", g/L) . (2.13)

The scaling form for the "cross" moments now reads

(sksI ) L —2(k+l)P/v(g (k+1)C
)
—lf (g/L) (2 14)

where fk+I is the universal function related to the (k, l)th
CI'oss moment.

Next we will discuss the parametrization of the single
and joint cell distribution functions in terms of a double-

well potential and a gradient term. In the Introduction it
was mentioned that the total distribution function
Pl ( It; j ) could be parametrized in terms of the Ginzburg-
Landau Hamiltonian. Instead of the most general form,
Eqs. (1.3) and (1.4), we have taken the following $4/Insatz
with a nearest-neighbor cell gradient term:

PL ($1,$2) =L"PIPI(bt IL~,bsILS, (/L), (2.12)
P'ol(IS;j)= $( rIS; +ult; )+ $—cl, ($; —t, )

&i,j &

where we have taken into account the symmetry proper-
ties (2.7) and (2,8). It is easy to show that x'=2y' and

Pz b /CI whe——re
C, = f f P, (z,z, ~)dzdz

= g Vl($;)+ g cl, ($;—SJ)
&i,j&

(2.15)

%e will assume that a similar parametrization can be used

for the joint cell distribution function so that

Pl ($1,$2)=Z 'B(CL , SICL)SIpe[x—VL, (SI)—Vl. ($2)—CL, (SI —$2) j, (2.16)

N

( IcL, slcL)=$2f dsI ' ' ' ds)vcxp —g Vl (s ) — g cL (s SI ) —g cL (s —s1) —g—cL ($ —$1)
&~,j& j=2

1,1+1,2

Thlls wc paramctrlze PI ($1,$2 ) as

Pl ($)isz)=(Z ) cxp[+rr, (s I +$1)—ul (S I +$1 ) —CL ($1 —sz) ], (2.17)

where the parameters rL, uL, and CL have changed from
tllcll' orlglllal valllcs, 111 Eq. (2.15), duc to 'tllc gl'adlcllt pR-

rameter cl . It should be mentioned, however, that if cl is

vanlshmgly small~ PI ~I'I and QI ~QI . How good a
parametrization (2.17) is depends obviously on the

I

strength of the gradient term. Rigorously speaking this
paIametrization is arbitrary. However, we will how that
our numerical results are consistent with this parametriza-
tion. A similar procedure can be carried out for the single
distribution function
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FIG. 4. Estimates of the spontaneous magnetization as ob-

tained from extrapolating from the size dependence of the max-
imum (s,„), the second moment (s )L, and the first absolute
moment (

~

s
~
)L, of the joint distribution function.

kg' =4OJ
I I I I

O. I 0.2 0.3 0.4

PL (s,„+,' M) =PL (s,„)/—2 . (3.1)

Below T, one can use PL (s,„)or b,s. These various esti-
mates are consistent with each other and extrapolate to
the known series-expansion results for the susceptibility.
It should also be mentioned that finite-size effects are
large and thus an extrapolation is needed to obtain a reli-
able estimate of X. In the neighborhood of the critical
temperature (AT, /J=4. 51) the different estimates are
inconsistent, showing the breakdown of the Gaussian ap-
proximation. This clearly happens at ksT/J=4 575 and.
can be attributed to the fact that L =g.

In Fig. 6 we show the temperature variation of PL (0)
and PL(0,0). Since for a sufficiently large cell size both
distribution functions must increase with I. for T & T„
but decrease with L for T & T„we can estimate the criti-
cal temperature T, from the intersection of these curves.
These estimates are very near but slightly below the

maximum sm, „of the distribution function Pl. (s&,s~). It
should be mentioned that we calculated the moments from
PL (s) as well, and the results for (

~

s
~
)r and (s )I are

the same. This is to be expected due to the simple rela-
tionship, (1.6), between these two distribution functions.
All three estimates must extrapolate towards the same
value, M, for L~ao. The fact that such extrapolations
yield results consistent with each other is an important
consistency check on the accuracy of the calculation. It
also gives an idea of the finite-size effects below T, . We
note that very close to T, (or above T, ) ( ~s

~ )L, and
(s )L give spurious nonzero estimates for M due to
finite-size effects. In this case (s,„)L will probably yield
more reliable results.

Figure 5 shows various estimates of the susceptibility
obtained from PL (s). The validity of these estimates rely
on the Gaussian property of PL (s) for L &&g. Above T,
we can use (s )I, Pl (s =0), or the half-width bs of the
distribution defined as

FIG. 5. Various extrapolations of cell observables yielding the
susceptibility at several temperatures. Series-expansion results
are shown by arrows.

series-expansion estimate. Indeed they seem to converge
toward the correct T, .

Next we will check the finite-size scaling assumptions
for the single [Eq. (2.5)] and joint [Eq. (2.13)] distribution
functions. We have first tested the scaling of PL (0) and
PL(0,0) above and below T, . We have chosen" 2P/v
= 1.03 and v =0.63 and plotted PI, (0)L ~ ' and
PL (0,0)L ~ "in Figs. 7(a)—7(d). By anticipating a slight
shift of the critical temperature due to the finiteness of the
system (N ) causing a g/N-dependent correction, we
chose k+T,' /J =4.53, which is less than 0.5%%uo above the
series-expansion estimate. The scaling indeed seems to
hold since the data points seem to scatter around a single
curve, as expected from the scaling hypothesis. Below T,
the scattering is more prominent. This is to be expected
since the relative number of Monte Carlo samples is small
for s =s'=0 as compared to that around the maximum of
the distribution functions. For this reason the scaling test
above T, is more reliable than the test below T, . We have
also compared the scaling function for PL (0) with that for
Pl (0,0) and found that they are roughly the same, as can
be seen from Fig. 7. The similarity of these scaling func-
tions is to be expected on the basis of the discussions in
the previous section. We have also made another test of
scaling by plotting ((s )I )'~ Pl (s)/2 vs s/((s )I )'~ and
(s )I.PI. (s,s)/2 vs s /(s )l. in Fig. 8. Indeed this test
seems to verify scaling. One could also perform the scal-
ing test for the entire function PI (s&,sq), but we have not
done this. We instead rely on the two tests above as suffi-
cient indications of scaling.

In Fig. 9 we show the first cumulant versus the inverse
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we present a more systematic method to determine the
critical behavior by plotting UL

——UL (UI, ). The fixed-
point estimate is found when Ul. ——Ul ——U*. If our
values of L were large enough, corrections to scaling
would be negligible and the estimate Ul* for U* should be
independent of L. In Fig. 10 we have shown these func-
tions for some pairs of L,L'. These functions are smooth
functions throughout the critical region. In particular
they could be approximated by straight lines, thus allow-

ing rather accurate estimates of U*. Our estimates of U*

are somewhat higheI than obtained earHer, but are very
consistent with each other for different pairs of L and L'.
In Fig. 10 we have plotted Ul /UL as a function of tem-

perature to estimate T, as obtained from the condition

(UI. /UI. )I T ——1. The values obtained from such condi-

tion are within 0.8% of the series-expansion estimate. ' '
For subsystems of an infinite system, one would expect
that thc estimates convcI'gc to thc cxRct result Rs I and L.

become large. Our best estimate of T, in fact results from
the smallest pair of L and L', however. This may imply
that c1thcr the convergence 1s HGQIQonotomc, GI' that thc
effects of the finite linear dimension %=24 are still im-

portant. %c should also note thRt th1s %'Ry of cst1mat1ng

the critical temperature is independent of any estimates

for the critical exponents, We have also estimated critical
cxponcnts by 8 proccduI'c analogous to Nightingale s
phenomenological finite-size scaling. Thus we have

linearized Ul ——UL ( Ul ) in the neighborhood of the fixed

PoiQt U ."

BUl„~

8Ur L
(3.2)

4.B 455 440 4.45 450 455 4.60 4,65
k~T

J

FIG. 6. TcIllpcl'Rtllrc vallatloll of (8) PL(o) RIII1 (b) +I,(0 0)
for three different linear cell sizes L=4, 6, and 8. The critical
temperst'UI'e T~ ca,n be estlmRted from the crossIngs of these

cUrves 3,t different ceII1 sizes.

ccH size I . This plot can bc interpreted by RIlalogy
wltll 8 Icllol lllallzRtlon-gl'ollp flow diagram. Upoll
change of the length scale three fixed points emerge, as
discussed earlier by Binder. ' U*=O is the T= oo fixed
~int and U =—, is the T=O fixed point. IQ between

(roughly U* =0.27) there is a nontrivial fixed point corre-
sponding to the finite-temperature critical point
(kII T, /J =4.525—4.55). Estimating the critical point
from this flow diagram is obviously rather crude. Instead

The second equality assumes hypcrscallng. Our estimates
of the exponent v are within 5% of the series-expansion

CGQJecturcs.
We will now summarize the main results of this section.

First, from the distribution functions and their moments

we were able to obtain reasonable estimates for the mag-
netization and susceptibility. Second, we merc able to
show that these distribution functions scale in the vicinity
of the critical point. Our value of T, is roughly consistent
with other estimates of T, . Finally we used finite-size

scaling ideas to estimate the critical value for the first cu-
ITlulant and also obt81ned 8 conslstcnt cr1tlcal p01nt Rnd

critical exponents estimates. The estimate of T, is in-
dependent of thc cstiIQRtc of thc cxponcnts Rnd vlcc versa.
We have not carried out any firute-size-scaling analysis to
correct our estimates of critical behavior because our cal-
culations werc li1mtcd to I'athcI' sIIlall cell s1zcs. For 8
Inorc accurate study of critical bchav101 of thc I81ng
model aloHg s1mlla1 l1Qcs, onc would have to study 8 dis-
tinctly larger system (allowing larger subsystems) and also
11Tlprove GQ thc stat1st1cs.

In this section we will parametrize our numerical data
for the single and joint distribution functions in terms of a
Ginzburg-l. andau —type Ansatz. As mentioned in Sec. II
sucll 8 pal'RIIlctllzatloll can bc justlf lcd fol thc totR1 dlstrl-
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—in[PL, (sl,sz)] =aL rL (s I +sz)—
+ur. (s1+s2)+cl.(sl —sz)2 (4.1)

For this method to give rehable results one has to weigh

bution function PL, (Is; I ). We have carried out the same
parametrization for the joint distribution functions

Pl, (sI,sq) and single distribution function PI (s) and the
parameters so obtained show the behavior one might ex-

pect.
We have tried two ways to perform this parametriza-

tion. The most straightforward way is to make a least-
squares analysis to obtain the parameters al, ~L, ul, and
cL in [Eq. (2.17)]

the data points in the neighborhood of the peaks of
PI (s,s ) (l.c., potclltlal II11111II1R) Illolc tllall tllc tall parts.
Tllls ls duc to thc fact tllRt Molltc CRI'10 ploccdlll'c saII1-

ples the peaks much more accurately than the tails; hence
the data in the vicinity of the peaks is more reliable. We
have not carried out such a detailed analysis. However,
we have performed a much simpler, straightforward
least-squares analysis without giving different weight to
any part of the data. In the second approach we deter-
mine the ratios rL/2uL and cl /2uI„of the parameters in
Eq (4.1). As is obvious from the discussions of the prop-
erties of PL (sI,sz), its maximum occurs at s1 ——sl ——s
Thus it follows from Eq. (4.1) that

(4.2)
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Fig. 11 the ratio cL/2ut is only weakly dependent on the
temperature for fixed I., as is to be expected. Although
the quahtative behavior of cL seems to be similar to that
expected for cL, in (1A) it is quantitatively not the same as
er . This could be understood from the fact that PI (si,s2)
is a distribution function for nearest neighbor cells. -We

have also estimated these parameter ratios for a couple of
cell sizes and at a few temperatures below T, using the
UI1% clglltcd lcMt-sqUslcs RQRlpsls. Tbcsc I'csglts RI'c Hot
1QCGQSI.SfCIlt %1tb tboSC Obt81IlCd RboVC. Alt110Ug4 tlM
ovcr3, 11 behavior Of the pararnctrizatIoD %e lac used to
study PL(si, sz) seems to be consistent with the known
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series expansions. ' ' With the use of the fact that for
L((g {2.6) implies (s ) to be of the order L ~~~", to-
gether with the heuristic argument that the value M, tak-
en by s at the spinodal curve should be of the same order
as the scale (s )'~k~L ~~" for the function PL, (s) in this
limit, we conclude M, ~I. ~ ". Since the magnetization
itself can be written as M ~ g ~ ", we obtain

' =1 a(L—/g)M
(4.6)

for (L/g) «1, where 2 is a constant. This behavior ex-
plains what is seen in Fig. 13(a) for L/g « 1 as well as the
change of sign of (1—M, /M) there.

For L»g the effective coarse-grained "free energies"
Fz, ln——Pr, (s,s) or lnPL (s) are basically flat for
—M &s & +M, due to two-phase coexistence, apart from
an interface free-energy correction dd' (see Refs. 14 and 19
for a more detailed discussion). This interface free-energy
cost, for a compact region of opposite sign of the order
parameter with linear dimension R, in a cell of size L, is
of the order of

~~ (&/g) '/L

where we have normalized the free energy per spin. This
overturned region leads to a change M of the order pa-
rameter which is of the order

(4.8)
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FIG. 13. Two scaling forms of the "spinodal" curve. The
magnetization I and correlation length g have been calculated
using the best Pade approximants of the series expansion, given
in Refs. 17 and 18. The dashed lines are drawn as a visual aid.

and hence we have

~(~)~(~/M)' '"(g/L)g -', &»g.- {4.9)

=(&/M)zg ~.

Matching (4.9) and (4.10) yields the spinodal

I,' ~(PL)"+" ".
M M

(4.10)

(4.11)

We have also analyzed these limiting behaviors, (4.6) and
(4.11), for the scaled spinodal curve [Fig. 13{1)jwith the
use of log-log plots (Fig. 14). Our results for these slopes
are consistent with the exponents P/v and (1 + 1/d) as re-
ferred to in Eqs. (4.6) and (4.11), respectively. It is obvi-
ous that these limiting behaviors (4.6) and (4.11) give rise
to the turning point at (L /g) of order unity. Figure 13(b)
show that this occurs for L//=3. 0. In contrast to our re-
sults a mean-field theory gives a unique thermodynamic
spinodal curve. %e would expect that a spinodal curve as
determined from the coarse-grained Helmholtz free-
energy functional would exhibit a qualitatively similar

The maximum free-energy enhancement which occurs for
M =M is hence of the order g/L, when ~ is measured in
units of g, as should be expected from hypeiscaling.
Equation {4.8) by itself cannot be used to locate the spino-
dal, as B(~)/8(&) is monotonically decreasing with M,
but cannot be used for &~0 as there R»g is no longer
fulfilled. To locate the spinodal, we supplement (4.8) with
the complementary expansion at the coexistence curve

~(~)=(~)'X '~(M/M)'(g '~ r)'~"
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behav1or to that shown ln Flg. 13.
As we mentioned m the Introduction, the coarse-

grained Helmholtz free-energy functional is particularly
relevant to the theory of spinodal decomposition. This is
a process by which a thermodynamically unstable system
begins to phase separate. In the most successful nonlinear
theory to date, an ad hoc Ansatz for FL was used in the
absence of any first-principles knowledge of FL. Our re-
sults as obtained from the joint (or single) distribution
function do not yield FL itself, so we cannot yet test the
validity of the Ansatz. It should be mentioned, however,
that the coarse-grained spinodal curve implicit in this An-
satz for I.=(6m )'/ /=3. 9( differs from our results [Fig.
13(b)] only by an amount (20%. Our results also are
qualitatively very similar to the field-theoretical calcula-

tions of Ft. (which are presumably quantitatively inaccu-
rate in three dimensions, since it is only a first order in
e=4—d expansion). Thus our determination of the
double-well potential for a coarse-grained system starting
from a microscopic model seems a useful step towards
developing a continuum theory of the dynamics of phase
separation.

V. SUMMARY

In this work we have extended the Monte Carlo
"renormalization-group" analysis to study the joint cell
distribution function. The results are consistent with the
earlier study of single cell distribution functions. We have
also obtained some understanding of how a double-well
potential, and hence the location of an effective spinodal
curve, changes with the coarse-graining size. As noted in
the Introduction, however, we have not obtained the
Helmholtz free-energy functional. However, we think
that our estimates for the parameters rL and uz are not
too different from the parameters rz and uz of the
Helmholtz free-energy functional as we have discussed in
the text. In contrast it seems clear that our estimated cL
is rather different from the gradient coefficient ct of the
Helmholtz free-energy functional. The reason for this
would seem to be the fact that cL contains information
about the long-range correlation of the system while cl
describes only the correlation between nearest-neighbor
cells. One might improve the correspondence between cq
and cL, by studying distribution functions for further
neighbor-cell separations. As well, one might study the
distribution function of a cell and all its nearest neighbors.
Alternatively, one might simulate directly the coarse-
grained Hamiltonian (1.4) for a variety of values of rL, uL,
and cL on a lattice, and determine PI. (s;,s/) and P~(s;)
from such a study. If the resulting distributions can be
matched to those obtained in the present work estimates
for the parameters rl, uL, and ct describing a nearest-
neighbor Ising model would be obtained. This approach
seems to us more promising than the possibilities noted
above and will be pursued in future work.

This work was supported in part by a grant from the
National Science Foundation, No. DMR-80-13700. Two
of us (K.K.) and (J.D.G.) wish to acknowledge the kind
hospitality of the Kernforschungsanlage, Julich, where
much of this work was performed.

~N. G. van Kampen, Phys. Rev. 135, A362 (1964).
L. P. Kadanoff, AIln. Phys. (N.Y.) 2, 263 (1966).

3K. Kawasaki, T. Imaeda, and J. D. Gunton, in Perspectiues in

Statistical Physics, edited by H. J. Raveche (North-Holland,
Amsterdam, 1981),p. 203.

~A. B. Bhatia and N. H. March, J. Chem. Phys. 68, 4651
(1978).

5T. Ohta and K. Kawasaki, Prog. Theor. Phys. 58, 467 (1977).
6J. Rudnick and D, Jasnow, Phys. Rev. B 17, 13S1 (1978).
7J. S. Langer, M. Baron, and H. D. Miller, Phys. Rev. A 11,

1417 (1975); see also C. Billotet and K. Binder, Z. Phys. B 32,
195 (1979).

8J. D. Gunton„M. San Miguel, and P. Sahni, in Phase Transi-
tions and Critical Phenomena, edited by C. Domb and J. L.
Lebowitz (Academic, London, 1983), Vol. 8.

9K. G. %'ilson, Phys. Rev. B 4, 3174 (1971);4, 3184 (1971).
~oM. E. Fisher, Rev. Mod. Phys. 46, 587 (1974).

J. C. LeGUiHou and J. Zinn-Justin, Phys. Rev. B 21, 3976
(1980).

~2K. Binder, Z. Phys. B 43, 119 (1981).



I38. Chu, J. F. Schoenes, and M. E. Fisher, Phys. Rev. 185„219
(1969).

'"K. Binder, Phys. Rev. A 25, 1699 (1982); Phys. Rev. Lett. 47,
693 (1981).

~5MOAEe Cacao MetAOGs ill StaflstlcQ/ I&/sic~, ed1tcd by K.
Binder (Springer, Ber1in, 1979).
C. M. Nc&manq CGGlmun. Math. Phys. 74' 119 (1980)q scc

also G. A. Baker and S. Knnsky, J. Math. Phys. 18, 590

($977); J. Jona-I assino, Nuovo Cimcnto 268, 99 (1975),
~78. B.Tarko and M, E. Fisher, Phys. Rev. 8 11, 1217 (1975).
~SJ. W. Essam and M. E. Fisher, J.Chem. Phys. 38, 802 (1963).

I9D. Stauffer has performed such a study for systems with
%=40 and 80, using much larger subsystems in the present
cwork. Hc finds T& to wlthIQ 0.1% of thc ser1cs cxpansloQ
value. Hoover, his statistics arc Qot good cnoug4 to obtain
estimates of the exponents more accurate than those obtained
in Ref. 12. [D. Stauffer (private communication)j; see also
Fig. 1.3 of the article by K. Binder and D. StauÃer, in Monte
Carlo Methods 1Q Statistical Physics II, edited by K. Binder
(Springer, Berlin, in press).

2OH. Furukwva and K. Binder, Phys. Rcv. A 26, 556 (1982).


