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The single and joint distribution functions of the nearest-neighbor cell magnetization of the
three-dimensional Ising model have been studied by Monte Carlo methods. Near the critical point,
both distribution functions tend, for large L, towards scaled universal forms. Estimates of the order
parameter and susceptibility are obtained from the distribution functions. The critical temperature
is estimated by a method independent of the estimate of the critical exponents. The critical ex-
ponent v is obtained with the use of finite-size scaling arguments. The joint distribution function
shows a double-well structure for T < T, and can be represented by a coarse-grained effective Ham-
iltonian of two cell variables. We have determined the dependence of this functional on the coarse-
graining cell size for several temperatures. In particular, we have calculated the dependence of the
“spinodal curve” on the (scaled) coarse-graining size. The relevance of this work to the kinetics of

first-order phase transitions is also discussed.

I. INTRODUCTION

It is well known that the concept of dividing a system
into “cells” or “blocks” of finite linear dimension L has
useful applications in many statistical mechanical prob-
lems. This concept has been applied, for example, to
understand phase coexistence in the van der Waals fluid'
and to derive scaling laws between critical exponents.? As
well, for a large class of problems the understanding of
the “coarse-grained” Helmholtz free-energy functional is
fundamentally important.® Such problems include wet-
ting,* the surface tension and interface profile of gas-
liquid and liquid-liquid interfaces,”® and nucleation and
spinodal decomposition processes.”® Also the coarse-
grained free-energy functional provides a starting point
forgth& renormalization-group theory of critical phenome-
na.

A quantity which has played an important conceptual
role in the theory of metastable and unstable states is the
so-called spinoidal curve. This can be given a precise defi-
nition within the context of mean-field or van der Waals
type theories valid for systems with infinitely long-range
forces. Recall that in the van der Waals picture, there is a
“van der Waals” loop which does not describe thermo-
dynamic equilibrium states. Rather, the outer portions of
the loop (for which the order-parameter isothermal sus-
ceptibility is positive) describe metastable states. The
inner portion of the loop (for which the susceptibility is
negative) describes unstable states. The two points at
which the inverse susceptibility vanishes (for fixed
T <T,) are known as spinodal points and in mean-field
theories provide a sharp distinction between metastable
and unstable states. The locus of these points as a func-
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tion of temperature defines the classical spinodal curve.
For systems with finite-range forces, however, the situa-
tion is much more subtle. One can, in fact, imagine giv-
ing at least two different definitions of a “spinodal curve.”
The first would be the analog of the van der Waals pic-
ture. Namely, consider the problem of analytically con-
tinuing the equilibrium free energy of a stable phase into
the metastable part of the two-phase region. Since it is
reasonably well established that there is an essential singu-
larity in this free energy at any point on the coexistence
curve below T, the analytic continuation consists of a real
and an imaginary part. This real part f(s) is schematical-
ly indicated in Fig. 1 by the dashed lines. The interpreta-
tion of this real part is that it describes the equilibrium
properties of the metastable state. That is, it would
describe such quantities as the susceptibility and specific
heat in experimental measurements of a metastable state
on a time scale during which the state has not begun to
decay. If this dashed line has a unique continuation the
extrapolated value of the measured susceptibility would
appear to diverge at some point (for fixed 7). This could
provide one definition of a “pseudo-spinodal” point.'*
However, in the dynamical theory of unstable and metast-
able states, the fundamental quantity which occurs in the
equations of motion is the coarse-grained Helmholtz free-
energy functional (Ginzburg-Landau Hamiltonian) men-
tioned above. This contains in addition to the usual gra-
dient term a free-energy density f(s) which has the form
of a double-well potential for T < T,. This is shown in
Fig. 1. It is this double-well potential (whose shape de-
pends on the particular coarse-graining size chosen in the
theory) which describes the nonequilibrium properties of
the system. Thus there are two quite different free ener-
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FIG. 1. Schematic graph of the coarse-grained free energy
f(s) and the corresponding equilibrium free energy f(s). The
dashed sections denote the analytic continuation of f(s) into the
metastable region. :

gies, the coarse grained f(s) and the analytic continuation
of the equilibrium free energy f(s).

Since it is the former quantity f(s) which enters the
dynamical equations of motion, it is the relevant quantity
for any dynamical theory of spinodal decomposition, etc.
As a consequence one can use f(s) (which depends on the
coarse-graining size L) to define a so-called “coarse-
grained” spinodal curve, for which 62f /3s%=0. Since
f(s) depends on L, the coarse-grained spinodal curve will
also depend on L. That is, there is no unique coarse-
grained spinodal curve. One major goal of this paper is to
demonstrate this rather obvious fact (which is often a
source of confusion in the literature). We do this by an
explicit calculation of an effective Hamiltonian which is
analogous (but not identical) to the coarse-grained
Helmholtz functional. From this effective Hamiltonian
we can define an effective coarse-grained spinodal curve
which we show has all the properties to be expected for
the coarse-grained spinodal curve obtained from the
Helmbholtz free-energy functional.

For the dynamical theory of spinodal decomposition it
would obviously be useful to evaluate this free-energy
functional f(s) starting from some initial microscopic
model Hamiltonian. It would be particularly useful for a
coarse-graining cell size whose linear dimension L is of
the order of the correlation length &, since this is the scale
on which the dynamics of phase separation is treated. Al-
though we are unable to evaluate f(s) in this present
study, we outline now one way of determining f(s) in
principle. Our model Hamiltonian is the three-
dimensional Ising model in zero magnetic field:

H=—J S8y . (1.1)
]

We proceed as previously done'>'*!> by dividing the

NXN XN system into cells of linear dimension L, as

shown in Fig. 2. The magnetization per spin of cell i is

defined as
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FIG. 2. Division of N XN XN system into cells of linear di-
mension L. s; represents the degrees of freedom of the ith cell.
Some cells which are nearest neighbors of the ith cell are shown.

;=LY S, (1.2)

lei
where the sum is over all lattice sites / in the cell i, and
S;=+1. It is assumed that the Boltzmann factor
Z 'exp(—2/kpT) with the given constraint, Eq. (1.2),
can be written in terms of the discrete coarse-grained
Ginzburg-Landau (GL) Hamiltonian

Pr({s;})=Z 'exp[ - Fc({s:})], (1.3)

where

Hollsi})=3 (hps;—rpsi+ipst+opsi+ )
i

+ 2 EL(si_sj)2+ et (1.4)

Gi,j)

The factor (kzT)~! is absorbed in the Ginzburg-Landau
Hamiltonian, Z denotes the partition function, and (i,j)
denotes the sum over nearest-neighbor cells (see Fig. 2).
In order that the coefficients in (1.4), 77,47, ...,¢, ...,
depend on temperature and other external parameters in a
nonsingular way, it is crucial that L <<£. Close enough to
T, where § is arbitrarily large one can choose L >>1 (mea-
sured in units of the lattice spacing) and then proceed by
replacing (1.4) by a continuum approximation. The poly-
nomial in s in Eq. (1.4) would then yield f(s).

Although the relationship between Egs. (1.1) and (1.4) is
of crucial conceptual importance, it is hardly ever carried
out explicitly. As a consequence the resulting theories of
first- and second-order phase transitions can only predict
the universal properties of the system. Thus information
on nonuniversal properties such as on interaction parame-
ter ratios, lattice spacing, e.g., is lost. While it is essential-
ly impossible to perform this coarse graining exactly, it is
possible to obtain numerical results by Monte Carlo
methods, sampling the distribution function Pg({s;}).
Sampling the total distribution function is obviously ex-
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tremely difficult. Therefore, in this paper we have studied
the two simplest distribution functions

P(sis))= [ TT dsiP({s;}) (1.5)
1
(i,j)
and
(1.6)

Pris)= [ ds;Py(s;,s)) .

In Eq. (1.5) i and j denote nearest-neighbor cells. Thus
Py (s;,5;) has a contribution related to a “gradient” param-
eter ¢; in the ansatz (1.4).

The organization of this paper is as follows: In Sec. II
we discuss the properties of the distribution functions for
L «< & and L >>£. The properties of the single distribu-
tion function are discussed very briefly, since a detailed
discussion can be found in Ref. 12. A Ginzburg-
Landau—type parametrization of Pr(s;) and Py (s;,s;) is
discussed. In Sec. III we present the numerical results of
our Monte Carlo study. At many points the previous
analysis by one of us'? is repeated, since in this work there
was a small programming error resulting in the sampling
of a slightly different distribution, as noted in Ref. 12.
Only very small numerical deviations from the previous
results were found. In Sec. IV we perform the Ginzburg-
Landau—type parametrization of Py (s;,s;) and Py (s;) and
compare our results with field-theoretic calculations. The
size dependence of a coarse-grained “spinodal” curve will
be discussed.

II. GENERAL PROPERTIES OF THE CELL
DISTRIBUTION FUNCTIONS

A. Single cell distribution function Py (s)

Since the single cell distribution function has been dis-
cussed earlier in detail by one of us,'? we will present here
only a short summary of the results which are relevant to
this study. For zero magnetic field the distribution func-
tion P (s) is symmetric, i.e., Py (s)=P;(—s). This holds
as such for T > T,. Below T,, where a spontaneous mag-
netization (with two different values M) appears in the
thermodynamic ~ limit, the symmetrization P{*(s)
=[Py (s)+Pr(—5)]/2 has to be implemented to regain
the above symmetry.

For the scaling analysis we need moments and cumu-
lants of the cell distribution function. The kth moment is
defined as follows:

(s¥)p = [ dss*PL(s) . 2.1
The first cumulant (which we will use) is
(s*)
Uy=1——""—. (2.2)
L 3( <S2)L )2

It was shown'? that for T > T, all the cumulants vanish as
L — «, so that P; (s) is a Gaussian distribution function.
This is also rigorously proven using the central limit
theorem of probability theory.!® For T < T, the situation
is much more complicated since the symmetrized distribu-
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tion function shows a double-peak structure. It is plausi-
ble to use two displaced Gaussian distribution functions to
represent Py (s) for T < T, in the limit L — . As far as
we know no theorems exist that such a two Gaussian rep-
resentation is correct. This representation could be
reasonable only near the peaks of the distribution, but in
the regime —( [s | ), <<s <<{|s | )1, Pr(s) is dominat-
ed by configurations which correspond to two-phase coex-
istence within the cell L% Above T, the second moment
of the cell distribution function is related to the suscepti-
bility X; for a cell of linear size L as follows:

L~%pTX, =L~ 3 (S:iS;)r
i,jEcell

=(s¥)., T>T,. (2.3)
X is a good estimate of the susceptibility X of the infinite
system in the case that L >>£ where & is the order-
parameter correlation length. Below T, the cell suscepti-
bility is defined as

kgTX; =L%(s*), —(|s | )})—ksTX, T <T, (2.4
where

s 1e=(| 2 1))

510 ‘iézcell {T

is the cell magnetization.
The distribution function Py (s) in the vicinity of the

critical-point scales as

P (s)=LP"aCy'PlasLP",EL "), 2.5)

where P(z,z') is a universal scaling function, a is a con-
stant, Cy= f _ : dz P(z, ) is a universal constant, and
and v are the critical exponents for the spontaneous mag-
netization M and correlation length &, respectively. Thus
one can write the moments (cumulants) in the scaling

form
(s*yp =L ~*B™a*Cy)~'f (L),

where f3 (L ~!) is a universal function.

(2.6)

B. Joint nearest-neighbor cell distribution
function Py (s,,s;)

Now we consider the joint distribution function
P; (s,s,) for nearest-neighbor cells (see Fig. 2). As men-
tioned in the Introduction the single cell distribution func-
tion Py (s) is obtained from the joint distribution function
by integrating out one of the cell spin degrees of freedom.
The symmetry properties of Py (s;,s,) are the same as for
P L(S), i.e.,

PL(SI,S2)=PL(-—S1,——S2) . (2.7)
In addition to this spin-flip symmetry one also has
PL(SI,S2)=PL(S2,S1) . (28)

Below T, these properties are valid for the symmetrized
cell distribution function
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P{(s1,55)=7[Pr(s1,52)+Pr(s2,51)

+PL(_SI’_S2)+PL(_S2,"S1)] . (29)

From now on we will suppress our notation
P{*X(s,,5,)—Py(s1,5,) to mean the symmetrized distribu-
]

Py (s1,8,)=[2m(s2) (1—p})/2]Texpf -[2(1——pz)(s2>L]"l(s%—lpsls2+s%)} )

where p=(s;5,)1 /{s?), is a measure of the correlations
between cell spins s; and s,. (sis,); refers to the first
“cross” moment of the joint distribution function. The
general (k,!)th cross moments are defined as

(skty= f fdsldszs’fséPL(sl,sz).

The first cross moment describes long-range correlations
as does X; in Eq. (2.3). However,

(s18,)=L -2 2 (SaSﬁ>T
a€l
BE2

(2.11)

does not approach the true susceptibility for L — «, since
the sum is weighted differently from that in Eq. (2.3) for
(s%),. Hence the amplitude of {ss,); must differ from
that of (s?);,. We do expect, however, the qualitative
behavior of {s;5, ), to be the same as that of {(s), in the
critical region. Below T, it would be plausible to
represent Py (s{,s,) by the sum of two displaced bivariate
Gaussians, but this would at most be valid only in the
neighborhood of the peaks 51 max =52 max (as in the case of
the single cell distribution function).

Now we will consider the scaling behavior of the joint
cell distribution function. We assume that for T— T, and
L—

Py (sy,57)=L*P,P,(bs LY bs,L” /L) , (2.12)

where we have taken into account the symmetry proper-
ties (2.7) and (2.8). It is easy to show that x’=2y’ and
P,=b2%/C, where

Ci= [ [ Pyzz, w)dzdz’
J

PL(sl’s2)=Z_IB(CLSI’CLSZ)exp[_VL(SI)_VL(S2)—EL(SI -‘32)2] >

where
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tion function.

As discussed above the full distribution function
P; ({s;}) above T, for large linear system size L can be ex-
pressed by a multivariate Gaussian, having its maximum
at {s;}={0}.1® For the joint distribution function this
naturally means that P;(s{,s,) can be written as a bivari-
ate Gaussian

(2.10

[

is a universal constant. To show this we have used the
normalization

f de1d52PL(S1,S2)=1 .

We have used Eq. (1.6) to relate the constants of the scaled
joint distribution function with those appearing in the
scaled single distribution function, Eq. (2.5). Thus we can
now rewrite the scaling hypothesis as follows:

Py (s1,5,)=L*"a%/CyP,(as;LP"",as,LB/" £ /L) . (2.13)
The scaling form for the “cross” moments now reads

(skshy =L - 2k+DB/Ygk+DC)=1f (E/L),  (2.14)

where fy 4 is the universal function related to the (k,/)th
“cross” moment.

Next we will discuss the parametrization of the single
and joint cell distribution functions in terms of a double-
well potential and a gradient term. In the Introduction it
was mentioned that the total distribution function
P; ({s;}) could be parametrized in terms of the Ginzburg-
Landau Hamiltonian. Instead of the most general form,
Egs. (1.3) and (1.4), we have taken the following s* Ansatz
with a nearest-neighbor cell gradient term:

Houllsi )= (—rpst+ipsh+ 3, els;—s;)
i (i j)

= z VL(S,-)-}' 2 C~L(Si—Sj)2 .
i Cij)

(2.15)

We will assume that a similar parametrization can be used
for the joint cell distribution function so that

(2.16)

N N N
By (cps1,c18;)= f dsy---dsyexp | — S Vils))— 3 Clsi—s)— X eplsi—s)?— 3 ep(sj—s2)?
i=3 =2

(i»j)
Lj#1,2

Thus we parametrize Py (s,,s,) as

PL(Ssz):(Z')_leXP[+"L(S%+S%)—uL(S?+Sg)-CL(S1 -5,

where the parameters 7, u;, and ¢; have changed from
their original values, in Eq. (2.15), due to the gradient pa-
rameter c;. It should be mentioned, however, that if ¢, is
vanishingly small, r, —7; and u,—ii;. How good a
parametrization (2.17) is depends obviously on the

i#£2 j

(2.17)

I

strength of the gradient term. Rigorously speaking this
parametrization is arbitrary. However, we will how that
our numerical results are consistent with this parametriza-
tion. A similar procedure can be carried out for the single
distribution function
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Pr(s)=(Z") lexp(+r;s?—uis*) . (2.18)

We will use these parametrizations to analyze our
Monte Carlo data. The effect of the gradient term c¢; on
the parameters r; and u; can be tested by comparing
these parameters as obtained from Egs. (2.17) and (2.18),
respectively. Also the double-well structure of V; will be
compared with those obtained from field-theoretic Ansdtze

and estimates.

III. MONTE CARLO RESULTS AND ANALYSIS

We have studied a simple cubic 24X 24X 24 Ising lat-
tice with the use of standard Monte Carlo techniques.
The linear sizes of the cells studied were L=2, 3, 4, 6, and
8. A satisfactory accuracy for P;(s) and P;(s;,s,) was
obtained when effectively about 2.10* MCS/spin (Monte
Carlo steps per spin) were performed. Near the critical
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point the number of MCS/spin was doubled.

In Fig. 3 we show some of the “raw data” of the simu-
lation for Py (sy,s,) below and above T, for different cell
sizes L>. The peaks increase in height with increasing L,
as expected. Below T, the peaks in P;(s;,s,) and Py (s)
are asymmetric, reflecting the expected structure due to
the two-phase coexistence for s <sp,,. It should also be
mentioned that cross sections of the P (sy,s,) peaks do
not show the ellipsoidal shapes one would expect if the
Gaussian description were correct. It is clear that the 52"
terms, n =2,3, ..., play an important role in determining
the peaks. We will use these features later on when
parametrizing the joint distribution function in order to
give estimates for the double-well and gradient parameters
[see Egs. (2.17) and (2.18)].

In Fig. 4 we have shown estimates of the magnetization
as obtained from the absolute first moment ( s | ), the
square root of the second moment ({s2);)!/2, and the
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"FIG. 3. Joint cell distribution function Py (sy,5,) below and above T, for linear cell sizes L=4 and 6. (a) L=4, kzT /J=4.4; (b)
L=6,ksT/J=4.4;(c) L=4, kT /J=4.65; and (d) L=6, kT /J=4.65.



29 STUDY OF CELL DISTRIBUTION FUNCTIONS OF THE THREE- . ..

Symbol Quantity
Smax kgl

065F o
060
M 055

0.50

045

040 L * '
ol 02 03

L'l
FIG. 4. Estimates of the spontaneous magnetization as ob-
tained from extrapolating from the size dependence of the max-

imum (syqy), the second moment (s2); and the first absolute
moment { |s | ), of the joint distribution function.

maximum Sp,, of the distribution function P;(s,s;). It
should be mentioned that we calculated the moments from
P, (s) as well, and the results for ( |s | ), and (s2), are
the same. This is to be expected due to the simple rela-
tionship, (1.6), between these two distribution functions.
All three estimates must extrapolate towards the same
value, M, for L— «. The fact that such extrapolations
yield results consistent with each other is an important
consistency check on the accuracy of the calculation. It
also gives an idea of the finite-size effects below 7,. We
note that very close to T, (or above T,) {|s|), and
(s?), give spurious nonzero estimates for M due to
finite-size effects. In this case (sy,,); Will probably yield
more reliable results.

Figure 5 shows various estimates of the susceptibility
obtained from P (s). The validity of these estimates rely
on the Gaussian property of P;(s) for L >>§. Above T,
we can use {s2);, P, (s =0), or the half-width As of the
distribution defined as

Py (Smax 57 AS) =Py (Smay) /2 . 3.1)

Below T, one can use Py (sp,,,) or As. These various esti-
mates are consistent with each other and extrapolate to
the known series-expansion results for the susceptibility.
It should also be mentioned that finite-size effects are
large and thus an extrapolation is needed to obtain a reli-
able estimate of X. In the neighborhood of the critical
temperature (kpT,/J =~4.51) the different estimates are
inconsistent, showing the breakdown of the Gaussian ap-
proximation. This clearly happens at kpT /J=4.575 and
can be attributed to the fact that L ~&.

In Fig. 6 we show the temperature variation of P;(0)
and Py (0,0). Since for a sufficiently large cell size both
distribution functions must increase with L for 7 > T,,
but decrease with L for T < T,, we can estimate the criti-
cal temperature T, from the intersection of these curves.
These estimates are very near but slightly below the

4001
1000 A
s MC
100+ o Les®
x 3/[27 PSmax)]
° 13(as)%/(8In2)
kgl X (SEP) Low-temperature
series expansion
10.0
(SEP) — IfJET=4.575
(SEP) — ‘ide_T a7
1.0 KgT
Ksl .
; 42
kgT
I 4.0
Ol 1 1 L 1
Ol 02 03 04
l:l

FIG. 5. Various extrapolations of cell observables yielding the
susceptibility at several temperatures. Series-expansion results
are shown by arrows.

series-expansion estimate. Indeed they seem to converge
toward the correct T,.

Next we will check the finite-size scaling assumptions
for the single [Eq. (2.5)] and joint [Eq. (2.13)] distribution
functions. We have first tested the scaling of P;(0) and
P; (0,0) above and below T,. We have chosen!! 28/v
=1.03 and v=0.63 and plotted P}(0)L~2’* and
P, (0,0)L ~%8/ in Figs. 7(a)—7(d). By anticipating a slight
shift of the critical temperature due to the finiteness of the
system (N3) causing a &/N-dependent correction, we
chose kp T /7 ~4.53, which is less than 0.5% above the
series-expansion estimate. The scaling indeed seems to
hold since the data points seem to scatter around a single
curve, as expected from the scaling hypothesis. Below T,
the scattering is more prominent. This is to be expected
since the relative number of Monte Carlo samples is small
for s =s'=0 as compared to that around the maximum of
the distribution functions. For this reason the scaling test
above T, is more reliable than the test below 7,. We have
also compared the scaling function for P#(0) with that for
P;(0,0) and found that they are roughly the same, as can
be seen from Fig. 7. The similarity of these scaling func-
tions is to be expected on the basis of the discussions in
the previous section. We have also made another test of
scaling by plotting ({s2),)"2P(s)/2 vs s /({s?);)!/? and
(s2) P (5,5)/2 vs s*/(s?), in Fig. 8. Indeed this test
seems to verify scaling. One could also perform the scal-
ing test for the entire function Py (s;,s,), but we have not
done this. We instead rely on the two tests above as suffi-
cient indications of scaling.

In Fig. 9 we show the first cumulant versus the inverse
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FIG. 6. Temperature variation of (a) P.(0) and (b) P.(0,0)
for three different linear cell sizes L=4, 6, and 8. The critical
temperature T, can be estimated from the crossings of these
curves at different cell sizes.

cell size L~!. This plot can be interpreted by analogy
with a renormalization-group “flow diagram.” Upon
change of the length scale three fixed points emerge, as
discussed earlier by Binder.!? U*=0 is the T= oo fixed
point and U*=+% is the T=0 fixed point. In between
(roughly U* ~0.27) there is a nontrivial fixed point corre-
sponding to the finite-temperature critical point
(kgT,/J =4.525—4.55). Estimating the critical point
from this flow diagram is obviously rather crude. Instead
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we present a more systematic method to determine the
critical behavior by plotting U =U;.(U.). The fixed-
point estimate is found when U =U,=U*. If our
values of L were large enough, corrections to scaling
would be negligible and the estimate U} for U* should be
independent of L. In Fig. 10 we have shown these func-
tions for some pairs of L,L’. These functions are smooth
functions throughout the critical region. In particular
they could be approximated by straight lines, thus allow-
ing rather accurate estimates of U*. Our estimates of U*
are somewhat higher than obtained earlier,'? but are very
consistent with each other for different pairs of L and L’.
In Fig. 10 we have plotted U;./U, as a function of tem-
perature to estimate 7, as obtained from the condition
(U /UL)r=r,=1. The values obtained from such condi-

tion are within 0.8% of the series-expansion estimate.!”!°
For subsystems of an infinite system, one would expect
that the estimates converge to the exact result as L and L’
become large. Our best estimate of T, in fact results from
the smallest pair of L and L’, however. This may imply
that either the convergence is nonmonotonic, or that the
effects of the finite linear dimension N=24 are still im-
portant.! We should also note that this way of estimating
the critical temperature is independent of any estimates
for the critical exponents. We have also estimated critical
exponents by a procedure analogous to Nightingale’s
phenomenological finite-size scaling. Thus we have
linearized U;.=U;(U;) in the neighborhood of the fixed
point U*:

Uy
U,

(1—a)/v vl

L
L

L
L

(3.2)

The second equality assumes hyperscaling. Our estimates
of the exponent v are within 5% of the series-expansion
conjectures.

We will now summarize the main results of this section.
First, from the distribution functions and their moments
we were able to obtain reasonable estimates for the mag-
netization and susceptibility. Second, we were able to
show that these distribution functions scale in the vicinity
of the critical point. Our value of T, is roughly consistent
with other estimates of T,. Finally we used finite-size
scaling ideas to estimate the critical value for the first cu-
mulant and also obtained a consistent critical point and
critical exponents estimates. The estimate of T, is in-
dependent of the estimate of the exponents and vice versa.
We have not carried out any finite-size-scaling analysis to
correct our estimates of critical behavior because our cal-
culations were limited to rather small cell sizes. For a
more accurate study of critical behavior of the Ising
model along similar lines, one would have to study a dis-
tinctly larger system (allowing larger subsystems) and also
improve on the statistics.

IV. PARAMETRIZATION OF THE DISTRIBUTION
FUNCTIONS

In this section we will parametrize our numerical data
for the single and joint distribution functions in terms of a
Ginzburg-Landau—type Ansatz. As mentioned in Sec. II
such a parametrization can be justified for the total distri-
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above T,.

bution function P ({s;}). We have carried out the same
parametrization for the joint distribution functions
P;(sy,s,) and single distribution function Py (s) and the
parameters so obtained show the behavior one might ex-
pect.

We have tried two ways to perform this parametriza-
tion. The most straightforward way is to make a least-

squares analysis to obtain the parameters a;, rr, uy, and
c; in [Eq. (2.17)]

—In[Pp(sy,5,)]1=a; —rp(s3+53)
+uL(S‘:+Sg)+CL(S1—S2)2 .

4.1
For this method to give reliable results one has to weigh

the data points in the neighborhood of the peaks of
P; (s,s') (i.e., potential minima) more than the tail parts.
This is due to the fact that Monte Carlo procedure sam-
ples the peaks much more accurately than the tails; hence
the data in the vicinity of the peaks is more reliable. We
have not carried out such a detailed analysis. However,
we have performed a much simpler, straightforward
least-squares analysis without giving different weight to
any part of the data. In the second approach we deter-

mine the ratios 7; /2u; and c; /2u; of the parameters in

Eq (4.1). As is obvious from the discussions of the prop-

erties of P;(sq,s,), its maximum occurs at §; =55 ==Smay-
Thus it follows from Eq. (4.1) that

re/2up =s2a . (4.2)
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Similarly we can search for a maximum of Py (sq,s,) for
fixed s, (s£s;) in the neighborhood of s.,,,. Denoting the
maximum of the distribution functions for fixed s, by
sf,ﬂx we can write an equation for the gradient term:

(2) 3 (2)
L _ (smax) +Smaxsmax
2y =" & : (4.3)
L Smax —S52
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Since above the critical temperature Py (s;,s,) has only
one peak at s.,,, =0, Eq. (4.2) can be used only up to the
critical temperature. Above T, we have solved Eq. (4.1) at
three different points, s;=s,=0, s;=s5,=s5, and
§1=s5,=s', to determine the quantity r; /2u;. Alterna-
tively, one could use the least-squares analysis around
smax =0. Equation (4.3), however, is valid both below and
above T,. Similarly, one can determine the parameters of
the s* potential. Then, however, information about the
gradient term is lost.

In Fig. 11 we show our results for r; /2u; and ¢y /2u;
for temperatures both below and above T,. As is to be ex-
pected, r; (T) changes sign at a temperature 7,(L) which
is greater than the bulk critical temperature 7,. We note
that our critical-temperature estimates derived in this way
also are within 1% of the series-expansion estimate. As
well, convergence towards T, is observed when the cell
size is increased. In Fig. 11 we have also shown the M?
curve as a comparison. The r; /2u; curve seemingly con-
verges toward that curve showing only a very small devia-
tion from it for the cell size L =8. We have also estimat-
ed the critical exponent B from the r; /2u; curve below
T.. We obtain results within 5% of the series-expansion
estimate B=->. All these results for 7, /2u; seem to in-
dicate a quantitatively correct estimate for the double-well
potential ¥;. This also seems to indicate that integrating
out degrees of freedom does not strongly affect the shape
and parameter values in the double-well potential. We
also analyzed the single distribution data in the same way
as described above. Quantitatively these results are almost
indistinguishable from the results for P (s,s,). This fur-
ther indicates how small a role the gradient term seems to
play in changing the parameter ratio r; /2u; when one is
going from the total distribution function to the joint and
single distribution functions, subsequently. As shown in
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Fig. 11 the ratio c¢; /2u; is only weakly dependent on the
temperature for fixed L, as is to be expected. Although
the qualitative behavior of ¢; seems to be similar to that
expected for €7 in (1.4) it is quantitatively not the same as
¢z. This could be understood from the fact that P; (s,,s;)
is a distribution function for nearest-neighbor cells. We

have also estimated these parameter ratios for a couple of
cell sizes and at a few temperatures below T, using the
unweighted least-squares analysis. These results are not
inconsistent with those obtained above. Although the
overall behavior of the parametrization we have used to
study P;(s;,s,) seems to be consistent with the known
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behavior for the model, these parameters do not in general
correspond to the parameters in the Helmholtz free-energy
functional.

In Fig. 12 we have shown the coarse-grained double-
well potential ¥ as a function of the cell magnetization s
for different cell sizes L, using the parameter ratio
rr /2u; obtained above. These curves are qualitatively
very similar to the coarse-grained double-well potential as
determined by a first order in € field-theoretical calcula-
tion® (where e=4—d and d denotes the dimensionality).

We now turn to the spinodal curve for the coarse-
grained free-energy functional. By analogy with the
mean-field theory this could be defined as the function
M,(L,T) for which the second derivative of the coarse-
grained free-energy functional with respect to the magnet-
ization vanishes, i.e., [02FL(M)/dM?*]; =0. Although
we cannot calculate F; and hence cannot compute
M,(L,T), we can compute an analogous quantity M, (L, T)
using the definition
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2|
1inPis5)] [InPy(s,s)] =0 (4.4)
aS2 LT
or
d[InPy (s)]
———=0. 4.5
352 4.5)

We could also estimate M (L,T) from the parametrized
form (4.1). A more accurate estimate of M, is to first
smooth the In[P; (s{,s,)] curve by the method of cubic
spline (a standard smoothing routine in most computer li-
braries) and use the so obtained analytic form to find the
zero of the second deriviative. This method is not specifi-
cally limited to the s* Ansatz, as is the parametrized ver-
sion, (4.1). We would expect that the coarse-grained “spi-
nodal curve” that we have obtained has a qualitatively
similar behavior to the curve one would obtain from the
Helmholtz free-energy functional. This is based on the
rather accurate results which we obtained for the magneti-
zation, susceptibility, and critical behavior in this and the
preceding sections. Our results for the “spinodal curve”
are given in Fig. 13 in two scaling forms. In this figure
we have added the results obtained by Furukawa and
Binder® for L /& >>1. Their results fit very well with the
results of the present study. In Fig. 13(a) the abscissa is
(1—M, /sax) which should approach the Ginzburg-
Landau (mean-field) value (1—1/v3)=041 for
(L /&) << 1. Our result is within 5% of this limit, in grati-
fying agreement with theoretical expectations. An alter-
native scaling form is shown in Fig. 13(b) where the
abscissa of Fig. 13(a) is replaced by (1—M,/M). The
magnetization M and correlation length £ are calculated
nsing the best Padé approximants to low-temperature
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series expansions.'”!® With the use of the fact that for
L <<£ (2.6) implies (s*) to be of the order L ~*#/*, to-
gether with the heuristic argument that the value M, tak-
en by s at the spinodal curve should be of the same order
as the scale (s%)'/%«c L =#/* for the function Py (s) in this
limit, we conclude M, « L ~2’*. Since the magnetization
itself can be written as M « £72/%, we obtain

Ms —B/v
1 T =1—A(L/§)
for (L /&) << 1, where 4 is a constant. This behavior ex-
plains what is seen in Fig. 13(a) for L /€ << 1 as well as the
change of sign of (1—M;/M) there.

For L >>& the effective coarse-grained “free energies”
F; =InP;(s,s) or InP;(s) are basically flat for
—M <s < +M, due to two-phase coexistence, apart from
an interface free-energy correction AF (see Refs. 14 and 19
for a more detailed discussion). This interface free-energy
cost, for a compact region of opposite sign of the order
parameter with linear dimension R, in a cell of size L, is
of the order of

AF <(R/E¥-1/L9,

(4.6)

4.7)

where we have normalized the free energy per spin. This
overturned region leads to a change As of the order pa-
rameter which is of the order

As

2 <R 7€) 4.8)
and hence we have
AF (As) o« (As /M)~ V4 E/L)E™?, R>>E . 4.9)

The maximum free-energy enhancement which occurs for
As =M is hence of the order §/L, when AF is measured in
units of £79 as should be expected from hyperscaling.
Equation (4.8) by itself cannot be used to locate the spino-
dal, as (AF)/3(As) is monotonically decreasing with As,
but cannot be used for As—0 as there R >>£ is no longer
fulfilled. To locate the spinodal, we supplement (4.8) with
the complementary expansion at the coexistence curve

AF (As)~(As’X '« (As /M)HE—2B—T)1/¥

=(As/M)*~2 . (4.10)
Matching (4.9) and (4.10) yields the spinodal
A M (1+d=1)
M_l— v, «(£/L) . (4.11)

We have also analyzed these limiting behaviors, (4.6) and
(4.11), for the scaled spinodal curve [Fig. 13(b)] with the
use of log-log plots (Fig. 14). Our results for these slopes
are consistent with the exponents 8/v and (1 4 1/d) as re-
ferred to in Eqs. (4.6) and (4.11), respectively. It is obvi-
ous that these limiting behaviors (4.6) and (4.11) give rise
to the turning point at (L /&) of order unity. Figure 13(b)
show that this occurs for L /€~3.0. In contrast to our re-
sults a mean-field theory gives a unique thermodynamic
spinodal curve. We would expect that a spinodal curve as
determined from the coarse-grained Helmholtz free-
energy functional would exhibit a qualitatively similar
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behavior to that shown in Fig. 13.

As we mentioned in the Introduction, the coarse-
grained Helmholtz free-energy functional is particularly
relevant to the theory of spinodal decomposition. This is
a process by which a thermodynamically unstable system
begins to phase separate. In the most successful nonlinear
theory to date,” an ad hoc Ansatz for F; was used in the
absence of any first-principles knowledge of F;. Our re-
sults as obtained from the joint (or single) distribution
function do not yield Fy itself, so we cannot yet test the
validity of the Ansatz. It should be mentioned, however,
that the coarse-grained spinodal curve implicit in this An-
satz” for L =(67%)13¢~3.9¢ differs from our results [Fig.
13(b)] only by an amount <20%. Our results also are
qualitatively very similar to the field-theoretical calcula-
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tions of F; (which are presumably quantitatively inaccu-
rate in three dimensions, since it is only a first order in
€=4—d expansion). Thus our determination of the
double-well potential for a coarse-grained system starting
from a microscopic model seems a useful step towards
developing a continuum theory of the dynamics of phase
separation.

V. SUMMARY

In this work we have extended the Monte Carlo
“renormalization-group” analysis to study the joint cell
distribution function. The results are consistent with the
earlier study of single cell distribution functions. We have
also obtained some understanding of how a double-well
potential, and hence the location of an effective spinodal
curve, changes with the coarse-graining size. As noted in
the Introduction, however, we have not obtained the
Helmholtz free-energy functional. However, we think
that our estimates for the parameters r; and u; are not
too different from the parameters 7; and #; of the
Helmholtz free-energy functional as we have discussed in
the text. In contrast it seems clear that our estimated ¢y
is rather different from the gradient coefficient ¢; of the
Helmholtz free-energy functional. The reason for this
would seem to be the fact that ¢; contains information
about the long-range correlation of the system while c;
describes only the correlation between nearest-neighbor
cells. One might improve the correspondence between ¢,
and ¢; by studying distribution functions for further
neighbor-cell separations. As well, one might study the
distribution function of a cell and all its nearest neighbors.
Alternatively, one might simulate directly the coarse-
grained Hamiltonian (1.4) for a variety of values of r;, u;,
and ¢, on a lattice, and determine Py (s;,s;) and Py (s;)
from such a study. If the resulting distributions can be
matched to those obtained in the present work estimates
for the parameters r;, u;, and c¢; describing a nearest-
neighbor Ising model would be obtained. This approach
seems to us more promising than the possibilities noted
above and will be pursued in future work.
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