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A many-body variational method for the ground-state properties of two-charged-component Fer-
mi fluids has been presented. The unique feature of this work is that the theory has been applied to
systems with the mass ratio of the two components varying from m —1 (electron-hole liquid in Ge
or Si) to m =-1836 (liquid-metallic hydrogen). The ground-state structures obtained for these sys-

tems are in very good agreement with other theoretical approaches and experiments. We also dis-

cuss the collective modes and the possibility of the existence of acoustic plasmons in these liquids.

I. INTRODUCTION

A system of electrons moving against a rigid uniform
background of positive charge (the jellium model) has
been a classic model' for the study of electron correlations
in metals. Several theories exist which study the electron
gas at zero temperature. There are perturbative methods
and variational methods, which approximately calcu-
late the correlation energy and other quantities with rela-
tive success. There are also very accurate Monte Carlo
simulations for the electron-gas correlation energy.
There are, however, no experiments for direct comparison
with those theoretical results.

The situation is different in the case where one replaces
the uniform positive background of the jellium model by a
liquid of positively charged particles —the two-charged-
component Fermi fluids. At low temperatures and high
carrier concentrations, the electrons and holes in semicon-
ductors condense to form a high-density metallic liquid.
The electron-hole liquid (EHL) ' is a collective state of
electrons and holes, which is unique in many respects: It
is the most metallic of metals and the most quantum of
fluids. There are several review articles dealing with the
theoretical ' and experimental' aspects of the EHL.

Another interesting example of the two —charged-
component Fermi fluids is liquid-metallic hydrogen
(LHM)." ' It is expected that for pressure of the order
of 1—10 Mbar, condensed hydrogen will undergo a transi-
tion from an insulating molecular crystal phase to a
metallic-liquid phase at zero temperature. Thus we have
here a system of two interpenetrating Fermi fluids of elec-
trons and protons, which differs from the EHL (m —1)
with its vastly different masses between the two species
(mz/m, = 1836.109).

In this paper, we will present a variational calculation
of the ground-state properties of these two systems. The
formalism to be presented below stem from a generaliza-
tion' ' of the many-body variational approach for the
single-component case' of bosons. In the case of fer-
mions, we select a variational wave function of the Jas-
trow form

+—+11+22+12@1@2~

where F tt are symmetric correlation operators and of the
orm

+ap= gfap( I rat rp 1'
I

)

and 4& (rp2) is a determinant of single-particle
momentum-spin states for electrons (holes). For bosons,
41 and 42 are set to unity and we have a very reliable
method, the hypernetted-chain (HNC) diagrammatic ex-
pansion, at our disposal. ' In the case of fermions, the
generalization of the Fermi-HNC scheme of Fantoni and
Rosati2' is very complicated for computational purposes.
Instead, one can adopt a simpler approach by Lado
which has been found to be quite accurate for the electron
gas ' and for liquid helium.

In Sec. II we briefly introduce the basic formalism
needed to study the ground-state properties of the boson
or fermion mixtures. In Sec. III the Euler-Lagrange equa-
tions are solved for different values of the masses of the
two species. The corresponding results for EHL's and the
LMH are discussed and compared with the other theoreti-
cal approaches and experimental results. Section IV ad-
dresses the collective modes of the systems studied. The
plasmon mode and the most interesting "acoustic-plasmon
mode" are discussed. We briefly give our conclusions in
Sec. V. Some of the results for EHL's and LMH have
been reported earlier.

II. BASIC FORMALISM

For a system of two interpenetrating charged fluids of
electrons and holes, the overall change neutrality requires
that e &N& +e2N2 ——0, where ea and Na are the charge and
particle number of the species a. In the present case,
ei ———e2 ——e, the electron charge; therefore, the partial
densities of the two species have to be the same. The den-
sity of electrons (or holes) per unit volume is p=kF/3',
where kz is the radius of the Fermi sphere. In terms of
the dimensionless parameter r„ the electron (or hole) den-
sity is expressed as

4m.
COT
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The correlation functions (2) are written explicitly as

N
+ p=exp —' g u p(Ir —rpj I

» (3)

/C
/

=exp g u (/r; —rpj/).

E~ ——X2 ——X being the number of electrons or holes, and
the HNC equations relate u~p(r) and the partial-pair
correlation functions g p(r) and the static structure func-
tions S p(k) as' '

The major advantage of this approximation is that one
can again use the HNC equations (4) and (5) to evaluate
the radial distribution functions. The most common way
to obtain u~~(r) is to start with the well-known result for
the nondynamical correlations,

gF(r)=1 ——,
' [3(smx —x cosx)lx j, x =k~r

u p(r)=ln[g p(r)] [g p(r—) 1]+C—p(r) (4)
and the ideal-gas structure factor,

S~p(k) 6p —C~p(k——)+ g [S~r(k)—5~r]Cpr(k) . (5)
y=1,2

We now introduce the I.ado approach ' ' by writing
the spin-averaged ideal-gas probability density as

, (kIk—p) —„(k—Ikp), k (2k'
S~(k)=

1, k ~2kF

and invert the HNC equation, using the exact result for
gF(r) to obtain u (r).

In the Lado-HNC approach the energy per electron is
now glvcIl by

3 fikF fiE = — (1+M)+ f g&& (Vg&&) dr+M f g22 (Vg&2) dr+(1+M) f g&& (Vg&&) dr
5 2' i Sm1
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8m]
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M =m
~ Im2, and D (k) =S»Szz —S&2. The next step is to find the condition for (9) to be minimum with respect to arbi-

trary variations of g~p(r) This is wr. itten in the form

[ V'+U p(r)+—~ p(r) jg'p'(r)=0, (10)

where the bare interactions U p(r) and the induced potentials 8' p(k) are given in Refs. 25 and 26. Once the optimum

g p(r) are obtained by solving (10), the pressure can readily be obtained from'

r

1+M 3(S»+MS») (1+M)S))S22+ +(S()+MSp2)+
Sm ) (2~)3p D D Z2

22+ —3(1+M) k d k .
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The expression given above depends only on the structure
functions which are obtained from the solutions g~p(r) of
the Euler-Lagrange (EL) equation (10) and are therefore
nUIIleflcally very convcn1cnt. In thc case of thc boson
fiuid, this expression has been shown to be equivalent to
the pressure obtained from the virial theorem. ' '

The energy expression (9) contains only the two-body
distribution functions and can be iInproved by including
the three-body distribution functions. ' ' However, this
1IIlprovcIIlcnt In thc cncfgy values docs not have any no"
ticeable effect on the ground-state structures of the sys-
tem. One could, therefore, calculate the distribution func-

t1ons 1Il the prcscnt schcIl1e aIld 1ncludc thc cffccts of
three-body distribution functions from, e.g., Ref. 3. This
step has indeed been followed by us in our published re-
sults earlier. ' However, at very low densities, e.g., den-
sities corresponding to the isotropic EHI., the contribu-
tions from the three-body distributions were found to be
insignificant. The energy values to be presented below
are obtained from (9).

III. GROUND-STATE PROPERTIES

The ground-state properties of the two-charged-
component Fermi fluids are now obtained by solving the
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predictions of many-body approximation schemes. In Fig.
2, we have compared our variational results with the ex-
perimental results and other theoretical results. In the fig-
ure, HA and RPA refer to the standard Hubbard and the
random-phase approximations, ' and VBS refers to a
self-consistent scheme by Vashishta, Bhattacharyya, and
Singwi. The comparison is strong evidence that our vari-
ational result [note CP, for Chakraborty and Pietilainen
(Ref. 25), present in Fig. 2] quite accurately predicts the
structure of the EHL for the density range of interest.

Recently, there have been some experimental studies of
the decay kinetics of electron-hole drops. These studies
provide information about the intrinsic recombination of
the electron-hole drops. Considering the case of Si under
uniaxial stress, and assuming that the most probable decay
mechanism in this case is Auger recombination, one ob-
tains the density variation of g~p(0). Here too, our varia-
tional result agrees very well with the experimental re-
sults of Ref. 29.

The ground-state energy and pressure (in units of
exciton Rydbergs) are plotted in Fig. 3 as a function of r,
for different values of the hole-to-electron mass ratio.
The case of m, /mz ——1 has been compared with two other
theoretical approaches: Brinkman, Rice, Anderson, and
Chui (BRAC) from Ref. 7 and VBS from Ref. 8. All the
calculations predict a local energy minimum at an equi-
librium density, ' the minimum energy in all calculations,
however, lies above the energy of free excitons ( —1 Ry in
the isotropic case). Therefore, the metallic state can be
metastable minimum, but not the ground state. This con-
clusion remains unaltered even for ml, »m„as our re-
sults indicate. In fact, it is known from the study of an-
isotropic cases that the effects of band anisotropy, cou-
pling between degenerate valence bands, and other effects
tend to stabilize the metallic liquid in the semiconductors.
A study of these effects is however, beyond the scope of
the present work. For a detailed report on these effects in
EHL's for various semiconductors, we refer to the work of
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FIG. 4. Pair correlation functions g, ,(r), gp p(r), and g, p(r)
vs kFr for LMH. Dashed lines for gp p(r) are by Chakravarty
and Ashcroft (Ref. 13).

T =0 around the density corresponding to r, = 1.64.
There is also a recent work' where it has been argued
that, because of the differing roles of electronic screening
in solid and fluid states, metallic hydrogen will remain a
fluid at all pressures.

In our calculations of the liquid phase, we have solved
again the EL equation (10) for the electron-proton mass
ratio and Coulomb interaction for the electron-electron,
proton-proton, and electron-proton pairs. In Fig. 4, we
have plotted the distribution functions g, ,(r), gr z(r), and

g, r(r) as functions of k~r for different values of r, Com-.

paring these results with those of Fig. 1, we find that the
general behavior of the distribution functions for the
LMH is apparently a continuous development of the EHL
case as the hole mass increases. The proton-proton distri-
bution functions are compared with the results of Chakra-
varty and Ashcroft' for r, =0.8 and 1.36 and good agree-
ment is obtained.

Finally, we present in Fig. 5 the energy and pressure

B. Liquid-metallic hydrogen

Unlike EHL, LMH has yet to be realized in the labora-
tory. However, there are several theoretical calculations
which raise the possibility of a stable (or metastable) phase
of LMH at low temperatures and at least for a certain
narrow density range. Recently, Mon et al. ' calculated
the upper bounds for the ground-state energies of liquid
and solid phases using the Jastrow-Slater many-body vari-
ational ansatz and Monte Carlo techniques. The calcula-
tions were based on a model of pair interactions between
protons, and therefore take into account only the second-
order effects in the electron-proton screened interaction.
They concluded that, while at the densities corresponding
to r, =0.8—1.6, the solid phase was preferred, at r, =1.6,
the liquid phase could not be ruled out. Later, Chakravar-
ty and Ashcroft' calculated a variational upper bound to
the ground-state energies of the LMH and included the
important third-order effects in the electron-proton
screened interaction. They also concluded that the possi-
bility of a liquid metallic phase cannot be ruled out at

(Ryf
LMH

1.2 1.41 r

FIG. 5. Ground-state energy and pressure vs r, for LMH.
Dashed line is by Chakravarty and Ashcroft (Ref. 13).
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values for the LMH as a function of r, using (9) and (11)
and the optimum solutions g p(r). We also present the
energy values obtained by Chakravarty and Ashcroft. As
we mentioned above, a more improved result has been
given in Ref. 26; however, the difference between the
present result and that of Ref. 13 is quite small around the
density r, =1.6 and decreases with r, . %e have not been
able to obtain any stable solutions for r, & 1.6, where the
pressure is expected to vanish. This fact might be related
to the rapid enhancement of the compressibility in that
density range, " leading to difficult numerical problems
encountered earlier. There are other instabilities which
also have to be studied at these densities.

IV. COLLECTIVE MODES

1.

1- 12

is =1

0 c'

0.5-

0.01-
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%e now consider the collective excitation modes in the
two-charged-component Fermi fluids. First we have the
usual plasmon mode where the particles oscillate out of
phase. The uniform displacement of the two species to-
ward the opposite direction from each other gives rise to
the depolarizing field. The strength of this field acts as
the restoring force which produces the plasma oscillation'
with a nonzero frequency even at k =0. In a two-
component fluid, this frequency is

0.005'-

1 k/kF 2
FIG. 7. Same as in Fig. 6, but for LMH at different values

of r, .

2= 2 2
CO =CD +CD (13)

where cuz, ——4mpe; /m; is the plasma frequency of the ith

species. In this case, the charge densities of the two
species add together, resulting in a greater restoring force
and higher frequency compared to either of the separate
plasmas.

The most interesting mode in a two-charged-component

ls 1

10

50. -2000

— 0.005

0 1 k/k,
FIG. 6. Excitation spectrum for the EHL. Dashed-dotted

lines represent the maximum energy of the particle-hole pair ex-
citations as explained in the text.

Fermi fluid is, however, the acoustic-plasmon mode,
where the particles oscillate in phase with the light parti-
cles following the motion of the heavy particles in such a
way as to screen out the field of heavy particles. Howev-
er, for the Landau damping of the acoustic plasma wave
(by the faster species) to be relatively small, one should
have m~/mz &&1, which means the Fermi velocities of
the two species will have to be quite different from one
another. In fact, this is a necessary condition, as earlier
studies indicate, ' for the existence of a well-defined
acoustic wave traveling at a speed that is essentially the
geometric mean of the two Fermi velocities.

Recently, Vignale and Singwi studied the collective
modes in the isotropic EHL for different values of hole-
to-electron mass ratio, I =mI, /m, . They obtained a
minimum value of m to be 7 & mo & 10, below which the
acoustic mode does not exist.

Oliva and Ashcroft' studied the collective modes in the
LMH in a generalized Landau-Silin-Boltzmann —equation
approach. They noticed that the acoustic-plasrnon mode
will be Landau-damped due to (at least) electron particle-
hole pair excitations. However, on account of the large
component mass ratio, it would be difficult for the light
electrons to retard the heavy, slowly oscillating protons.
Therefore, the Landau damping of LMH by the electrons
is expected to be relatively small.

In order to study the collective modes in a two-
charged-component Fermi fluid with variable mass ratio,
we adopt the generalization of the Bijl-Feynman equation
for the two-component system. ' Then the two branches
of the excitation spectrum are given as the eigenvalues of
the matrix S '(k)eo(k), where S is the matrix with com-
ponent S &(k) and eo(k)=diag(A k /2m~). The eigen-
values are readily obtained as
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~1,2/~F (qo/2D) {(0~11+~22)

+ [(OS11+S22) 4—0D) ' J, (14)

where a=m1/m2, qo=k/kF, and eF is the electron Fer-
mi energy.

In Fig. 6 we have plotted the two branches of the exci-
tation spectrum e1 and e2 in units of electron Fermi ener-

gy, as a function of qo for m = 1, 2, 10, 50, and the
proton-to-electron mass ratio. The dashed-dotted lines are
the threshold energy for the onset of Landau damping due
to excitation of particle-hole pairs of type 1 [co,/eF
=qo(qo+2)] and that of type 2 [co2/eF ——qo(qo+2)o]
(the curve in the upper half of the figure and the curves in
the lower half of the figure, respectively). The acoustic
mode does not seem to exist for m & 10. The cutoff value

q, of k, where the acoustic mode enters the particle-hole
continuum of the heavier species, increases with the mass
ratio, while it slowly decreases for the plasmon mode as it
enters the particle-hole continuum of the lighter species.
Thus a degenerate two-charged-component Fermi fluid
might support an acoustic plasma wave if one of the
species is quite heavier than the other species. In Fig. 7
we have plotted the collective modes in LHM for different
values of r, . The value of q, for the acoustic mode is ap-
parently independent of density, but increases for the
plasmon mode. While the general shape of the curves for
the acoustic mode remains the same for different values of
r„ the small-k behavior changes quite rapidly with r, . In
fact, for r, ) 1.6, the acoustic mode remains below the
maximum energy of the particle-hole pair excitations
(dashed-dotted line) for 0&q &0.5. Therefore, at these
densities the low-k acoustic plasmons possibly decay into
single-particle excitations. It should be recalled that at
these densities we have not been able to obtain any stable
solutions of Eq. (10).

The collective modes in LMH have also been studied
within the "mean-spherical-approximation" scheme us-
ing the Bijl-Feynman equations. While this is a high-
density-limit approach, it leads to a qualitatively correct
picture for the collective modes at the densities of interest.
The method is also convenient for a formal study of the
collective modes.

Finally, it would be interesting to study the collective
excitations of the two-charged-component fluids when the
component species are bosons. In Ref. 17 we have studied
the ground-state structures of such a system. The struc-
ture functions obtained in that paper are given in Fig. 8
for r, =0.126 and 1.26. (In Ref. 17, r, corresponds to the
total density of the system, and hence r, =0.1 and 1.0,
respectively. ) We have calculated the two branches of the
excitation spectrum from Eq. (14). As shown in Fig. 9
one obtains the usual plasma-type excitation, while the
other mode is free-particle type. This is exactly what was
expected in these systems.

1.2 2.4 3.6

0.

0.4

0.8 =0.126-

0.0

0 0.9 1.8 q 2.7

FIG. 8. Partial structure functions S p(q) vs q =kaor, for the
two-charged-component Bose fluids (from Ref. 17).

62

teresting systems: EHL's and LMH. Some of the results
obtained here are compared with recent experimental and
theoretical results and are found to be in good agreement
with them. The study of elementary excitations in these
systems reveals the possibility that the system might sup-
port an acoustic plasma wave if one of the species is much
heavier than the other. Finally, the present work can be
extended to two dimensions for these systems, where the
short-range correlations play a very important role. Such
calculations for the layered EHL will be published else-
where.

V. CONCLUSIONS
0.75

I

1.5 225 q
Using a many-body variational approach for two-

charged-component Fermi fluids, we have been able to
study the various ground-state properties of two very in-

FIG. 9. Excitation spectrum for the two-charged-component
Bose fluids.
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