
PHYSICAL REVIEW 8 VOLUME 29, NUMBER 1 1 JANUARY 1984

Crystalline phases of thiourea. I. Model of incommensurate phases
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A one-dimensional model describing the successive phases in completely deuterated thiourea

[SC(ND2)2] is proposed. The stable phases of the model are investigated by numerical and analyti-

cal methods. Lock-in phases with wave-vector modulations 7, —,, and 9 have been found. The

essential couplings between harmonics of different symmetries have been established.

I. INTRODUCTION

The crystal of deuterated thiourea SC(ND2)2 undergoes
several phase transitions. The highest temperature phase
has Dg (Pnma) symmetry' and is paraelectric where-
as the lowest phase has symmetry C2, (Pmc 2&) and is fer-
roelectric. ' In addition there exists an intermediate in-
commensurate phase characterized by an incommensu-
rate wave vector k, which in the whole temperature
range and under normal pressure changes" approximately
from the values —,

' to —,'. Close to the ferroelectric phase,
the incommensurate phase is locked to the commensurate
phase —,. The commensurate phase —,

'
appears at higher

pressures. The phase diagram for deuterated thiourea is
shown in Fig. 1. Although the wave vector passes the
value —,, no trace of such a lock-in phase has been noticed
in neutron scattering experiments at zero electric field.
The phase transition from the incommensurate phase to
the —, lock-in phase shows hysteresis. The above-

described behavior is in agreement with heat-capacity
measurement, elastic constant data obtained by Brillouin
scattering technique, and thermal expansion. The mea-
surements made on nondeuterated crystals SC(NH2)2 ex-
hibit a nonzero value of spontaneous polarization inside
the region of the incommensurate phase. ' '"

The orthorhombic unit cell in the high-temperature
phase of thiourea is shown in Fig. 2. It contains four mol-
ecules. The SC(ND2)2 molecule is almost flat' and then

its symmetry is C2„. The twofold-symmetry axis of the
molecule and one of its symmetry planes are parallel to
the (a,c) plane of the unit cell. Proceeding along the b

axis, one notices the planes with alternating molecular
orientations. Their projections onto the plane (a,c) are
shown in Fig. 3.

The ferroelectric phase has a unit cell of approximately
the same size as the high-temperature phase and it arises
as an effect of a condensation of 83„mode at k =0. The
ferroelectric polarization results from the rotations of
each molecule around the b axis' by an angle y of about
5. 1'. The rotational displacements in two neighboring
(a,c) planes are opposite, as is indicated in Fig. 3.

The modulation in the incommensurate phase of
thiourea propagates along the b direction. ' ' It can be
visualized as a sequence of (a,c) planes characterized by a
changeable value of the molecular orientation y.

The incommensurate phase is characterized by the pres-
ence of satellite reflections in the x-ray diffraction pattern.
The intensity of the first-order satellite increases with de-

creasing temperature. The same behavior has been ob-
served' for the second-order satellite.

The inelastic coherent neutron scattering experiments
have revealed, in addition to critical scattering, ' the ex-
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FIG. 1. Temperature-pressure phase diagram (Ref. 6). Re-
~ 1 1 1

glons 3 7 and 9 correspond to the commensurate phases.

FIG. 2. High-temperature unit cell of thiourea. Molecules

1,2 and 3,4 are in the first and second (a,c) plane, respectively.
The ND2 groups are shown as the larger open circles.
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phases —', , —,', and —,
' are obtained. Squaring effects in the

incommensurate state and phase dependence in the lock-in
states are investigated. Next (Sec. VI) we give an analytic
description of the free energy in terms of normal modes of
~i and ~4 symmetry and their corresponding higher har-
monics. Stability conditions which lead to relations be-
tween various harmonics are discussed and compared with
experiment (Sec. VII) and with the numerical results of
Sec. V. Our overall conclusion is that the present model
accounts qualitatively of the complex situation of the
phase diagram in thiourea at atmospheric pressure.

FIG. 3. Projection of the high-symmetry unit ce11 on the (a,c)
plane. Molecules 1,4 and 2,3 are parallel, respectively, The ar-
rows are the librational polarization vectors belonging to the 83„
mode.

istence of a soft optic phonon branch' in direction b and
close to the Brillouin-zone center. This phonon branch
has a symmetry ~4 and belongs to the irreducible star k7
in Kovalev's notation. ' It shows a pronounced minimum
near k =0.16. This minimum lowers with decreasing
temperature, eventually producing the incommensurate
phase. There also exists a transverse acoustic phonon of
the same symmetry w4. The soft optic mode and the
transverse acoustic mode couple together giving rise to the
static rotational and translational displacements of the
thiourea molecules.

Thiourea is sometimes referred to as an experimental
model system, where some features that follow from rath-
er general theories' ' are realized. On the other hand,
one has the proposed continuous models, which are based
on a Landau-Ginsburg type of free energy, to describe
some properties of the incommensurate phase transitions
in thiourea. 2 To our knowledge, it has not been possi-
ble so far to give a description which accounts in a unified
way for the complex set of phases in thiourea, even at at-
mospheric pressure. It is our purpose in the present paper
to undertake such a study. The outline of the paper is as
follows.

In Sec. II we propose a discrete one-dimensional model
and write the corresponding free energy in terms of orien-
tational displacements of thiourea molecules in successive
(a,c) planes perpendicular to the crystallographic b axis.
Harmonic and anharmonic terms contribute to the local
and to the intermolecular potential. Force constants up to
nine neighbors must be taken into account. An approxi-
mate analytical solution of the model in terms of a single
cosine modulation of v4 symmetry is derived in Sec. III.
In Secs. IV and V we present a numerical solution of the
model. The method consists of finding the most stable
configuration of a linear chain of 1008 molecules that in-
teract according to the force laws of our model. The nu-
merical results are studied as a function of temperature
and of certain other parameters of the model, in particular
the strength of the local potential. In addition to modu-
lated incommensurate phases, commensurate lock-in

II. ONE-DIMENSIONAL MODEL

where 4„is the equilibrium thermal average of y(„)in
the high-symmetry phase for the sublattice a and hence
4i ——40++.

Since the unit cell of the one-dimensional model con-
tains two molecules, there are two normal modes present
for a given wave vector k. The first one, of r4 symmetry,
corresponds to a rotation of two successive molecules in
opposite directions; the second one, of ~i symmetry, corre-
sponds to a rotation in the same direction. For our one-
dimensional model we keep the notations of the corre-
sponding representations of the three-dimensional crystal.
Calling r14 and ri& the amplitudes of these modes, respec-
tively, we can write a representation of a modulation with
a single wave vector k in the form

p( „)= ( —1)"g4(k)cos[2mk(mbo+r„) e4j—
+ rii(k)cos[2n. k (mbo+ r„) e&] . —(2.2)

From symmetry it follows that the essential features of
thiourea can be described within a one-dimensional model.
Indeed the structural changes at all phase transitions are
related to the soft mode of symmetry r4 close to k =0.
That symmetry implies that the orientations of molecules
labeled 3 and 2 in Fig. 3 follow from the orientation of
molecules 1 and 4, respectively. In other words, the orien-
tational coordinate of one molecule in an (a,c) plane de-
fines the orientation of all other molecules in that plane.
Therefore the orientational configuration of one chain of
molecules along the b direction is sufficient to represent
the paraelectric, ferroelectric, and incommensurate phases.

Taking into account that two successive molecules
separated by a distance bo/2 along the chain have alter-
nating orientations and different projections in the (a,c)
plane, we see that there are two molecules (for example, 1

and 4 in Fig. 3) per unit cell. The rotation of each mole-
cule is accompanied by a translational shift in the (a,c)
plane. Therefore both types of displacements can be
described by one coordinate g( „).Here m =1,2, . . . , X
labels the unit cells along the chain and ~=0, 1 denotes the
first and the second molecule in the unit cell. Although
y( „)is a mixed coordinate caused by translation-rotation
coupling, we shall from. here on always speak loosely of
y(„)as the angle of rotation. Then the coordinate q&(„)
can be written as

(2.1)
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Here r„=0or bo/2 or ~=0 or 1, respectively, and e'4, and
e& are phase shifts. The factor ( —1)"ensures that the ro-
tation angle in successive planes alternates its sign in
agreement with the polarization vector of the 83„
mode. '

We assume that the free energy of the one-dimensional
model per molecule can be written as

(2.3)

(2.4)

and where X denotes the total number of unit cells in the
linear chain.

We shall also use the following notation of the self-
force constants:

and the force constants to the pth neighbors

P KP )& ~P /Cjll (2.7)

(2.S)

At that state the free energy E reaches a minimum. This

where p =2(n —m)+p —~, since now we measure inter-
molecular distances in units bo/2 Owing t.o the existence
of the symmetry plane perpendicular to the b direction,
the force constants are symmetric, a~ =a z and

Pz ——P z. The functions V(p(„))and 8'(y(„)—y(z))
represent the local and intermolecular potentials, respec-
tively.

It should be emphasized that expression [(2.3)—(2.5)] of
the free energy for the one-dimensional model is an effec-
tive free energy. It is thought to be obtained from the
Hamiltonian of a three-dimensional crystal after averag-

ing out all nonrelevant degrees of freedom and retaining
only those coordinates which refer to the orientational po-
sitions along one chain. As a result of this procedure, ex-
pressions (2.3)—(2.5) constitute a molecular-field type of
free energy where some of the coefficients are temperature
dependent.

A quasi-one-dimensional model for incommensurate
phases has been studied from a somewhat more general
point of view in Ref 24. Alt.hough there are some com-
mon aspects, that model differs from the present one in
many details. In fact, the details are, as we shall see, to a
large extent essential to describe the experimental situation
in thiourea.

The stable configuration of the molecular displacements
is achieved when forces acting on each molecule vanish,
1.C.,

d)d2 3(di R)(d2 R)
Vq;

—— cosy(1, 2)— (2.9)

Here R is the distance between two molecules l and 2,.
y(1,2) is the angle between the dipoles d~ and dq. Owing
to the one-dimensional character of the model and due to
the fact that the molecules are in planes perpendicular to
the b axis, only the first term of Eq. (2.9) contributes to
the interaction. Calculating its second and fourth deriva-
tives with respect to the angles, one finds the harmonic
and the anharmonic force constants as expansion coeffi-
cients in a Taylor series:

(2.10a)

P~ =( —1P
24Rp

(2.10b)

where Rz ——
~ p ~

bo/2 is the distance to the pth neighbor.
The quantity d /8

&
is treated as a fitting parameter. In

this manner one calculates the harmonic force constants.
az, Eq. (2.10a) for the neighbors p =3,4, . . . , 9 and the
anharmonic force constants P~, Eq. (2.10b) for
p =2,3,4, . . . , 9. It is necessary to take into account so
many harmonic force constants because only then the
minimum of the phonon dispersion curve can be obtained
at about k~ =0.16. Thc values of thc harmonic folcc coIl-
stants a,a~, a2 and of the parameter d /R~ were found
from fitting the dispersion curve [see Sec. III, Eq. (3.7)] to
four phonon frequencies' measured at a temperature
close to the paraelectric-incommensurate phase transition.

condition is used in Sec. III in order to find numerically
the exact stable configuration of all displacements [qr( „)].

The parameters a, h, b are described by the interaction of
all atoms in the crystal, those in the (a,c) plane and those
along the chain. The parameter a is a harmonic force
constant. The extremum at y(, ) =0 of the single-particle
potential V(tp(„))is not fixed by any symmetry element
of the crystal. The third-order anharmonic term in V ac-
counts for the following facts. First, the local potential
V(p(, )), being partly an effective interaction potential
within the (a,c) plane, is not necessarily symmetric in
y( „)and hence the lowest admitted asymmetric term is
hy ( ~™).Second, one sees from Fig. 3 that the centers of
rotations of two neighboring molecules 1 and 4 are out of
the b axis. Therefore, a simultaneous rotation of both
molecules to the right leads generally to different interact-
ing forces than a rotation of both molecules to the left.
The term hp (, ) is the only one which will take this ef-
fect into account. Notice, however, that if a rotation of
the molecule 1 to the right increases the energy, a rotation
of the molecule 2 in the second chain and in the same
direction decreases the energy. The term hy („)agrees
also with the symmetry requirements of the 74 irreducible
representation and corresponds to the third-order um-

klapp term.
The SC(ND2)z molecule has a permanent dipole mo-

ment whtch iles along tts twofold-symmetry axis. Conse-
quently, part of the intermolecular interaction is of
dipole-dipole type:
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The four points are indicated in Fig. 4.
The force constants depend on temperature and pres-

sure. A simple approach which takes into account the
temperature dependence of harmonic force constants is
thc pscudoharmonic theory. According to 1t, thc 1Rrgcst
effect of renormalization occurs for those force constants
wh1ch corrcspond to small intermolecular d1stanccs where
the potential changes drastically. On the other hand, for
long-range potentials, such as the dipole-dipole interac-
tion, the renormalization effect is negligible. Therefore
the assumption is made below that all force constants,
haImonlc RIld anhRITIlon1c OIlcs, Rrc tcIIlpcI"atUI'c 1ndcpcn-
dent, with the one exception that the force constant ai be-
tween nearest-neighbor molecules depends on temperature:
ai =a, ( T). Here the short-range potentials, i.e., the repul-
sive forces and the hydrogen bonds between sulfur and
deuterium IQRQ produce changes 1n thc temperature range
of the incommensurate phase.

Since it is not our aim here to derive the free energy
[Eqs. (2.3)—(2.5)] from a microscopic force model, we re-
strict ourselves to the following conclusions about ai.
From the fit to the experimental phonon dispersion it fol-
lows that n1 is negative and that in absolute value u1 de-
creases with increasing temperature. Finally in all our
calculat1ons 1t w111 bc assumed that Rnf temp cI'RtuI'c

dependence of the results follows from the temperature
dependence of the nearest-neighbor harmonic force con-
stant a&.

The remaining fourth-order anharmonic force constants
b and /31 were estimated from two requirements: First,
that the free energy of the incommensurate and the fer-
roclcctr1c phases obt81ncd bp thc nUGler1cal IIlcthod shoUld
be equal in the vicinity of k = —,; second, that the highest
ratio of the third harmonic to the first one,
Ilq(3k )/Ilq(k ), is about 0.2. Both requirements can be

fulfilled only when b is positive, which means that the lo-
cal potential becomes harder for larger displacements.

Since the present model of thiourea is only one dimen-
sional, no attempt has been made to reproduce the experi-
mental data exactly. The aim was to find the microscopic
configurations of molecular displacements and to relate
them to the different macroscopic properties of thiourea.
%c should rcHlcmbcr, however, that thc Icsults map
change when another set of parameters, especially fourth-
order anharmonic force constants, will be chosen. The
numerical values of parameters of the model free energy
[(2.3)—(2.5)] used in the calculations are listed in Table I.

III. APPROXIMATE SOLUTION

where the phase shift n, is defined by

c4(k) =2Irkn, bo/2 . (3.2)

The values of Il,= 1 and 2 correspond to the shift of the
modulation wave by bo/2 and bo, respectively.

The solution (3.1) plays a role of initial conditions for
the numerical calculation. Substituting this ansatz into
Eq. (2.3), one can rewrite the free energy in the general
form

In the following sections we refer to the results of the
numerical solutions of the one-dimensional model of
thiourea. Before looking for the exact configurations of
the incommensurate and ferroelectric phases, it is useful
first to write explicitly a simple incommensurate solution
of tllc 1111car c11aln model [Eqs. (2.3)—(2.5)] 111 tcrIIls of tllc
fii st llarIIloIiic of r4 syInIIlctI'y:

~(„)=(—1) ~,(k)cos[2~k(mb, +.„—n, b, /2)],

2X

g A(2@k (n —n, )bo/2), (3.3)

whcrc

A(2Irk (n —n, )bo/2) =A(2Irk (n —n, )bo/2+2nm ikl ),

with mi ——0, +1,+2, . . . , as a periodic function which
can easily be calculated explicitly. The values of
A(2mk(n n, )bo/2) for n b—elonging to the second (l,2l),
third (21,3l), and following periods of the modulation,
where l is the period of modulation, can be mapped onto
the first one (O, l). As a result of this procedure and for N
sufficiently large, the discrete function
A(2Irk(n —n, )bo/2) becomes a continuous distribution

TABLE I. Parameter s of thc 01M-dimcIlsioQal model of
thlourca.

QG'
0 O'I Q2 03 OA 05

FIG. 4. Phonon dispersion curve calculated with Eq. (3.7) for
several values of thc force coQstaIlt AI.

A2

0!3
d /RI

—0.030825
0.012249
0.661440

0.150

0.008621
0.002569
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A(2m. k(x —n, )bo/2), and consequently, the free energy
can be calculated as an integral

1 A

xA2w x —n~bo 2 (3.5)

where A=2, 1/bo T.he integration is performed over one
period of the function A, and therefore the free energy F
does not depend on the phase n, .

Converting the summation over n in expression (3.3)
into the integral (3.5), one finds

F= ,' al {k—)rid(k)+—', C(k)I}4(k), (3.6)

II4(0) 3 Fy

I}4{k=0) 4 ' F„,(k =0) 2
(3.14)

This apparently strange result becomes obvious when one
recollects that the incommensurate free energy F„,(k =0)
is still described by the infinitely long wave and cannot be
continuously transferred to the ferroelectric phase expres-
sion (3.12). Moreover, the value of the free energy de-
pends on the order„whether one takes first the limit k —+0
or the integral.

P
all(k) =a +4g a» [1—( —1)»cos(2n.kpbo/2)],

C (k) =b +8 g P~ [1—( —1)»cos(2mkpbo/2) ]

(3.8)

and secondary,

2' (k) co (k)
3C(k) ' "' 6C(k)

(3.10)

The first corresponds to the paraelectric, the second to the
incommensurate phase. The incommensurate configura-
tion occurs for a wave vector k which is a solution of
equation BF/Bk =0.

In the ferroelectric phase, the configuration of the mol-
ecules can be written as

q ( „)= ( —1)"l}4(0).

The free energy (2.3) with notation FI=Fr, ,is-
Fg aI) (0)+bI) (0——)+8' (0)g'a

p=1

+32r14(0)g'P», (3.12)
@=1

where the summations g' I are confined to odd values

7 = 1 3 ~ ~ ~ ~ Thc cqulllbr111m aIllplltlldc alld tile free en-
ergy of thc fcrroelectric phase are given by

For our choice of model parameters (Table I) the phonon
dispersion curve (3.7) is drawn in Fig. 4. The condition of
extremum of the free energy BF/BI14(k)=0 produces two
solutions: primary,

r14(k) =0, F=0, (3.9)

For a given value of the incommensurate wave number
k~ and of the phase n„the stable configuration of the
molecules which corresponds to a minimum value of the
model free energy Eqs. (2.3)—(2.5) can be found numeri-
cally. The calculations have been done for the chain of
1008 molecules (X=504 lattice constants bo) with period-
ic boundary conditions. With this number of molecules it
is possible to adjust to the chain the modulation waves
which correspond to the commensurate phases ko ———,, —,,
and 9 So, for example, the modulation waves kbo
and kbo= 9 cover the whole chain by 63 and 56 per1ods»
respectively. It is also possible to apply a modulation
wave which covers the chain by any other integer number
of periods, for example, 62. Although the last wave is, in
principle, commensurate, we shall treat it later as incom-
mensurate. This assumption can be easily accepted in the
region where the lock-in phases are separated by truly in-
commensurate phases. The performed calculations
showed also that the points of the free energies for such
"incommensurate" wave vectors form smooth curves like
the example in Fig. 9.

The system is given by the free energy. Replacing the
g( „)by y„,where

one can write the free energy [(2.3)—(2.5)] with the aid of
definitions (2.6) and (2.7) in the form

F= g ay„+hq)„+by)„
n=l

+ X I &»[«.—&.-»)'+(V. —V.+, )']

+P»[(y„—q„»)4

r14(0)= ——,FI=——I 1 al (0) 1 co (0)
2 C(0) ' 4 C(0) '

+(~.—m. +, )'l I (4.2)

where C(0) and co (0) must be calculated with Eq. (3.7)
and (3.8), respectively, by setting k =0. Note that the lim-
it for infinitely long wavelength (k —+0) calculated from
expressions {3.10) differs from the results given by Eq.
(3.13). Their ratios are

where X= 1008. In the numerical calculations we try to
find sllch collflgula'tloIls of lllolcculcs jap~ I wlllch glvc thc
smallest free energy F at a given external condition. To
do so, we construct in the computer the configuration
Iy„jof all 1008 molecules in the form of a simple cosine
wave (3.1) of a desired wavelength I = 1/k, phase n„and
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the normal amplitude i14(k) calculated from (3.10).
Next, the force acting on each molecule n has been cal-

culated from the derivative of the free energy (4.2)

= —2ay„—3h q„—4bq„

2N

g y„(—1)'" ""sin(2m jknbo/2)

tan@„(jk)=
g y„(—1)' ""cos(2mjknbo/2)

n=1

(4.7)

P—4y [ a, [(V. V.—p)+-(%. V.—+p)l
p=1

(4.3)

Then each molecule was shifted proportionally to the
force (4.3) so that the new positions y„' were related to the
old ones by

fn =f'n+O (4.4)

y„=g [ rii(jk)cos[2m jknbo/2 —e,(jk)]
j p0

+(—1)"rl4(jk)cos[2n jknbo/2 —e4(jk)]I .

(4.5)

To visualize the results we shall calculate the amplitudes
of the harmonics

g„(jk)=
2N

'2

g p„(—1)'" ""cos(2mjknbo/2)
n=1

2N

+ g y„(—1)'" ""sin(2m jknbo/2)
n=1

(4.6)

and the phases

The coefficient o =0.09 was chosen such that it ensured
the convergence of the procedure in a reasonable time.
The process (44) was repeated usually 100—1000 times.
At the end, the forces (BF/By„) e—xperienced by each
molecule were zero. The free energy (4.2) calculated dur-

ing the iteration procedure was monotonically decreasing
and at the end successive changes were inferior to 10

In principle, owing to the boundary conditions, the sys-
tem was unable to change the modulation wavelength dur-

ing the calculations. At the end.of each run the stable dis-
placements y„ofall molecules were established. Other
initial conditions were also tested, in particular, a first-
harmonic cosine wave (3.1) modulated with the second
harmonic of smaller amplitude. After a long run the
same configuration was reached as with the initial condi-
tions in the form of the first harmonic only.

Any stable configuration of molecules can be analyzed

by means of the expansion over harmonic and phases of
symmetry z1 and ~4.

The phases are specified by Eq. (4.7) modulo m. m. should
be added to e„(jk)if the sign of the denominator of Eq.
(4.7) is negative.

Also, two effects are worth mentioning for the case
when the external conditions correspond to the lock-in
phase. First, if one starts with the cosine modulation
characterized by the phase n, which does not correspond
to the minimum of pinning free energy, then the modula-
tion wave changes its phase so that at the end of the cal-
culation the free energy reaches the minimum. However,
this process has rather long relaxation time of an order of
2000 time steps. Second, starting froin such ai and h,
which correspond to the lock-in region and using initial
conditions with the wave vector k close to the lock-in
value, one finds after a long run of 2000 steps a final con-
figuration which consists of the region of commensurate
lock-in structure and incommensurate defects. The sys-
tem goes over from the initially incommensurate modula-
tion to the locally commensurate one. It cannot get rid of
the defects that have arisen because of the periodic boun-
dary conditions.

V. NUMERICAL RESULTS

Here we shall discuss the results of the numerical calcu-
lations of the free energy (4.2) for the various choices of
the values of the parameters k, a~, h, and n, :

F= F(2m. ,k a„h, n, ) . (5.1)

The remaining parameters are taken fixed with the values
given in Table I.

A. Case h =0

The values of F for discrete values of k (measured in
units bo ) lie on the curve with a single minimum. The
values of the free energy at the minimum
F~ =F(2nk~, a&,0,n, ) and the position of the minimum
k~, as a function of a&, are shown in Figs. 5 and 6,
respectively. The results show that within the accuracy of
our calculations the free energy F for h =0 does not de-
pend on the phase n, for any value of o, 1 and k including
the commensurate values —,', —,, and —,. In other words,
no lock-in phases appear in the model without the asym-
metric field h.

The free energy of the ferroelectric phase calculated
with the use of Eq. (3.12) and the free energy F„,of the
incommensurate phase with one cosine modulation [Eq.
(3.10)] are also shown in Fig. 5. The value of F,» is given
at its absolute minimum. The position of that minimum
is also indicated in Fig. 6. The behavior of the free ener-
gies as a function of ai shows that the phase transition
from the paraelectric to the incommensurate phase at
ai(T, )= —0.237 is of second order while that from the
incommensurate to the ferroelectric phase at
ai(TO) = —0.2720 is of first order. One can notice that
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0.08

x10

FIG. 5. Free energies with h =0 as function of a~. I' is the
value at the absolute minimum obtained from numerical calcula-
tions. F„,corresponds to expression (3.10) at the absolute
minimum.

a~(T) changes in the whole region of the incommensurate
phase by 15%%uo. Such changes are to be expected in
thiourea, since cr, is described by short-range forces in-
cluding the hydrogen bond.

When lowering a~ (or equivalently T), one can observe
the increase of the difference between the free energy I'„,
and the true free energy Ii . This effect is due to squaring
of the modulation wave. It means that the cosine-type in-
commensurate wave, which appears just below the phase-
transition point from the paraelectric phase, becomes gra-
dually similar to the periodic steplike function. ' This
process is accompanied by an increase of the wavelength
of the incommensurate phase, which is indicated in Fig. 6.
There too one can notice that the difference between the
wave vectors for a simple solution with a single cosine
modulation and the exact solution increases while the tem-
perature is lowered. The calculated periodic and stable
configuration of molecules in thiourea can be analyzed by

k

FIG. 7. Amplitudes of normal harmonics q~(jk) and q4(jk)
of symmetry wl and z4, respectively, of the incommensurate con-
figuration with a~ ———0.262, k =0.127, h =0.05.

an expansion into harmonics g„(jk),Eq. (4.5). Then one
finds that when h =0, the even harmonics of symmetry r4
and all harmonics of symmetry r& are absent. The har-
monics of symmetry r4, decrease with increasing index j as
is shown in Fig. 7. The functions ri4(jk ) increase with
decreasing a~ or equivalently with decreasing temperature
(Fig. 8). With a diminishing value of at, the third and
fifth harmonics F4(3k ) and r)4(5k ), respectively, in-
crease much faster than the first one. That indicates that
the squaring effect also increases with decreasing tempera-
ture.

The phases e4(jk) of the incommensurate modulation
were calculated with the relation (4.7). Each phase of
higher harmonic proves to be a multiple of the phase of
the first harmonic. We have found that

eg(3k) =3e4(k) —rr

T) (kmj

O75-

C'

-025

FIG. 6. Modulation wave vector of the incommensurate and
lock-in phases as a function of o,~. The curves abcdhi,
acc'd'dff'hh'i'i, and abb'ee'j correspond to h =0, h =0.015,
and h =0.1, respectively. The line (——) denotes the minimum
of the phonon dispersion curve (3.7).

-0.27 -0 26 -0 25 -0,24
Q.

1

PIG. 8. Upper panel, amplitude of first harmonic of syrnme-

try ~4 at the wave vector k as a function of a& for h =0.
Lower panel, ratios of third and fifth harmonics of symmetry w4

to the first one. The abcde and a'b'b'c'd'e'e curves correspond
to h =0 and h =0.05, respectively.
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( —I )"II~(jk)( —I) '
j (&o)

X cos[2Irjk (n —n, )bo/2], (5.3)

where q~ =0, 1,0 for j=1,3,5, respectively. Since n, is ar-
bitrary, any shift of the modulation wave is possible. This
is in agreement with the well-known symmetry properties
of the incommensurate state.

The numerical solution of the one-dimensional model
[(2.3)—(2.5)] with a nonzero value of the coefficient h of
the third-order terms leads to new phenomena. The free
energy {5.1) as a function of k has two kinds of solutions:
the continuous curves which correspond to the incom-
mensurate configurations and the isolated points which
occllr for tllc conlIIlcllsul'atc valllcs 7, g, and 9 . Flglll c 9
shows the case when the free energy at —, is lower than the
1ncomIQcnsuratc values. Thc systcIIl 1Ilcorpolatcs thc con"
figuration which has the lowest free energy. If it is the
isolated point, then the system goes over into one of the
lock-in phases —,, —,, or —,, One sees that the phase transi-
tion from the incommensurate to the lock-in phase is al-

ways of first order. This fact agrees with experiment.
The values of the free energy at the commensurate

points seem to be a function of the initial phase n, at
which the numerical minimalization procedure started,
provided thc sllol't I'ull ls used (100 tlnlc steps). Allowlllg
the computer to make at least 1000 time steps, one ob-
serves slow variation of the phase which approaches the
value of the stable phase n, of the commensurate modula-
t1on. Thc short runs then allow oIlc to gct some 1nslght
into the approximate form of the phase dependence of the
free energy F(n, ) and related unstable configuration of

e4(5k) =5e4(k),

for any values of k and aI.
In this case, taking into account Eqs. (3.2), {4.5), and

(5.2), we can rewrite the modulated wave as

the molecules. Under these conditions one finds the fol-
10%1ng.

The common feature of the —,
'

and —,
' lock-in phases is

that their free energies are periodic with one lattice con-
stant (Fig. 10). Examples of those molecular configura-
tions are shown in Figs. 11 and 12. The configuration for
k =0.113 close to the commensurate value k = —,

' =0.111
shows that the pattern of modulation changes systemati-
cally when one travels along the chain. For all commen-
surate values the pattern of displacements is the same for
each period of modulation. At the lock-in phase k= —,

'

and n~=0, c1ght moleculcs have a ncgatlvc pos1tlon. Thc
asymmetric term hap„contributes then remarkably to the
lowering of the free energy, and it is not totally balanced
by the remaining ten molecules having positive position.
The shift of the modulation wave by half a lattice con-
stant reverses the configuration and leads to an increase in
the free energy above the incommensurate value for the
neighboring values of k. One also notices that the config-
urations k = —,', n, =0 and k = —,', n, =1 are similar in
structure. Both correspond to the minimum of the free
cncrgy.

The configuration in the commensurate phase k = —,

shown in Fig. 12, periodic with half a lattice constant
(Fig. 10), exhibits quite different properties. At zero
asymmetric field h the two halves of the period show an
inverse configuration. With increasing II &0, the length of
the first half of the modulation period starts to be dif-
ferent from the second one. This asymmetry increases
with increasing h. It also means that the —,

' lock-in phase
has a permanent dipole moment. Since the zeroth-order
harmonic is nonzero for the —,

'
phase, the spontaneous po-

larization is proportional to the asymmetric field II.

k=-19

I

-OO247- &= Ogpu

" "00045

-0.0$08-
-QM49-
-QOOS-

FIG. 9. Frcc cncI'gy as a functIon of wave vcctoI' for diffclcnt
a~. The values at k =

7 cox'respond to I' of the lock-in phase

with h =0.1,

FIG. 10. Free energy as a function of the phase n, at h =0.1

for 9, —,, and 7 lock-in phases. Dotted lines indicate the level

of the free energy for the incommensurate value of the wave
vector which is close to the relevant commensurate value.
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'~ ~)=-027 k=0113 &~ = 0
05-

g=-027 k = /g
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M27
gg i~
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FIG. 11. Amplitudes cp„for few IDolecules along the chain Bt
h =O. I.

Nonzero values of the zeroth-order harmonic involve in
this case nonzero values of the even harmonics.

The temperature dependence, or rather the a~ depen-
dence, of the modulation wave vector in the presence of
the asymmetric field is given in Fig. 6. Within the accu-
racy of our numerical calculations, the minimum k~ of
the free energy of the truly incommensurate phase does
not depend on the value of the asymmetric field h and is
the same as for h =0. The existing differences are entirely
due to the appearance of the isolated points of the lock-in
phases. In Fig. 6 the wave vector k at some discrete

values of a~ changes drastically from one value of k to a
different one. At these points the absolute minimum of
the free energy switches from one phase to another one.
The steplike behavior of k as a function of a& does not
take into account the fluctuations in the system. To some
extent thc fluctuations might smooth oUt thc calculated
curves. The stepwise behavior of the modulation wave
vector k as a function of temperature or other parame-
ters is a subject of considerable theoretical interest. ' '

The calculations of the modulation wavelength k of
the stable configuration as a function of u~ carried out for
several valUcs of A have given Us thc opportunity to sketch
the phase diagram of the one-dimensional model
[(2.3)—(2.5)]. The phase diagram, shown in Fig. 13, indi-
cates the most stable configuration at a given value of a&,
the temperature, and h, the asymmetric field. The wave
vector of the modulation of the incommensurate regions
of the phase diagrams for any value of h is given by the
solid line of Fig. 6. Different properties of odd and even
lock-in phases are also seen from the phase diagram. The
region of —, and —, phases are much wider than that, of —,.
For larger values of h, the —,

'
phase is consumed by the

nelghbonng lock"I phases.
The Fourier analysis (4.5) of the stable configuration in

the presence of the asymmetric field h leads to results
similar to those obtained for the case h =0. An example
of the harmonics for the incommensurate phase is shown
in Fig. 8. The even harmonics of symmetry r& and odd
harmonics of symmetry r~ are still absent. Now, however,
due to the presence of the asymmetric field h, one ob-
serves the even-order harmonics of symmetry r~. The am-
plitudes of these harmonics are proportional to h and are
small, as can be seen from Fig. 8. The amplitude of the
first-order harmonic g4(k ) of symmetry r& as a function
of a~ shows almost the same behavior as for h =0, Fig. 7.
Some differences appear for the ratios of the third and the
fifth harmonics of symmetry r& to the first one. Discon-
tinuous behavior for h&0 results from transitions to the
different lock-in phases.

The phases e4(jk) of the symmetry r4 have also been
calculated according to (4.7). For the incommensurate
modulation we have found the same results (5.2) as for the
case h =0. Moreover, at the minimum of the free energy
of the commensurate modulation —,', —,', and —,', the calcu-
lated values of the phases agree as well with the previous

FIG. 12. Amplitudes y„for few molecules along the chain at
@I———0.2640, k = 8, and n~=o. FIG. 13. A-AI phase diagram of the model.
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results (5.2) for any set of k, a~ and h &0. The free energy
for the values of the wave vector not equal to —,, —,, or —,

still does not depend on the phase n, . Starting from the
initial conditions in form of the cosine function (3.1) with
k = , b—o,it was easy to generate the ferroelectric phase.

p,(kj)=p, (jk), where j=0,+1,+2, (6.2}

and k = I//. The first harmonics {j=+1)of symmetry ~q

which produce the incommensurate structure should be
characterized by the wave vector k from the positive half

Higher harmonics play the role of a secondary order pa-
rameter. In order to obtain a systematic description of
the free energy in terms of harmonics, we first introduce
the normal modes of the one-dimensional model.

The configuration of the static displacements of the
molecules can be analyzed with the aid of the normal am-
plitudes p„(kj)as follows:

p(„)=gg p„(kf)e„(kJv) exp(2mik Jmb o), (6.1)
k +=1,4l

where kJ is the wave vector labeled by the index j.
The index v=1,4 labels the symmetry of v~(kj) or

~4(k~) of the normal amplitude p,(k~), respectively. The
&„(kj,v) are the polarization vectors.

The summation over kj in (6.1) is restricted to special
discrete values of the wave vectors. It follows from the
assumption that the incommensur'ate modulation i.s a
periodic function with a period l, where l/bo is not neces-
sarily rational. From (6.1}one finds that the only nonzero
values of the normal amplitudes are

of the first Brillouin zone, i.e., 0 & k & ,' b—', where
b'=1/bo. All other harmonics relevant for the analysis
are chosen as a multiple of the first one according to the
relation (6.2). Hence the summation over all kj in (6.1)
must be reduced to the integer indices of the harmonics
only. The summation over j runs from —00 to ce and
from I.—+1 to L for incommensurate and commensu-
rate ITlodulat1ons, rcspcct1vcly. In tlM lattcI' case, I&o 1s
the commensurate period of modulation. Since in
thiourea only harmonics up to fifth order (j =+5) play an
essential role, one can use the same expansion (6.1) with
kj ——jk for incommensurate and commensurate phases.

The polarization vectors of the two symmetries ~, and
'T4 RI'C

e„(jk,&)= ( —1)'" ""exp(2mijkr„),

with v= 1 or 'v=4, respectively. Here again [compare Eq.
(2.2)] r„is 0 or bo/2, depending on whether ~=0 or 1,
I'cspcct1vcly. Thc polanzation vectors Rrc orthonoHl1al-
ized Rnd complete.

The irreducible representations ~&(jk} and ~4(jk) of the
star k7 ——(0,jk,0) of the paraelectric space group Dzz have
a peculiar property. Each of these representations can be
identified with the other one labeled with the wave vector
shifted by a reciprocal-lattice vector b':

~,(jk) =rg(jk+b*) . (6A)

This property, appropriate for the three-dimensional
thiourea crystal as well, is present in our one-dimensional
model.

With the use of the expansion (6.1) and the relation
(6.3), the free energy [(2.3)—(2.5)] can be expressed in
terms of the normal amplitudes:

00

p„(jk)p„(j'k)[1+(—1) ( —1)"+"]0 (jk j' )k5{(j j+')k Mb )—
j,j'= —ao v, v'= l,4

h g g p,(jk)p~(j'k)p (j"k)[1—( —1) +'+
( —1) ]5((j+j'+j")k Mb')—

j,j',j"= —oa v, v', v"

p (jk)p (j'k)p„-(j"k)p„-(j"'k)

X [1+(—1) ( —1) +"+" +' ]C „»(jkj 'kj "k j '"k)

X&((j+j '+j "+j"')k Mb'), —

I'
&~(jk,j'k)=++ g a~S~(jk, v)S~(j'k, v'),

p= —I'
(6 6)

P
C~~~-(jkj'kj "kj"'k)=b+ g P S (jk,v)S (j'k, v')S (j "k,v")S (j"'k,v'"), (6.7)
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and
Bg„(jk)

(6.12b)

Szj(k, v)=1 —( —1)'" "~exp( 2—nijkpbo/2) . (6.8) Be,(jk)
(6.12c)

p,(0)=~2g,(0)cosa„(0)
N 1

g g~(„-)(—)'-"",
m =1 v=0

(6.9a)

The values M =0 and M =+1,+2, . . . correspond to the
normal and umklapp terms, respectively. It is worth
pointing out that all second-, third-, and fourth-order
terms of the free energy (6.5) are in agreement with the in-
variants constructed from relevant basic functions of ~1
and ~4 irreducible representations of star k7 in Kovalev's
notation' of the three-dimensional space group Dz~.
Thus the general form of the free energy for the three-
dimensional crystal of thiourea will be the same. For
displacive phase transitions, as in thiourea, the quantity
fl (jk, —jk) can be treated as a square of the phonon fre-
quency. In the first Brillouin zone ~4 is the soft branch,
but in the second Brillouin zone the role of the branches
interchange and ~1 becomes soft.

Often it is much more convenient to work with the real
quantities rather than with the imaginary ones. In such
an approach the imaginary normal amplitude p„(jk)can
be represented by the real and positive harmonic
g„(jk) & 0 and the phase e„(jk):

An explicit expression of the free energy will be given in
the Appendix.

VII. DISCUSSION OF HARMONICS
AND THEIR PHASES

The expansion (Al) contains those harmonics of sym-
metry ~4 which are the largest and which reproduce all
essential features of the model. The harmonic g&(2k) of
symmetry ~1 is included to indicate other possible cou-
plings and lock-in terms. For our choice of parameters
the numerical calculations showed that the second-order
harmonic is small. It also contributes very little to the
lock-in energies. Therefore, in Eq. (Al) we set gi(2k) =0,
and exclude this harmonic from the forthcoming discus-
sion. Under these circumstances all umklapp terms are of
the third order.

%e start with a discussion of the incommensurate
phase. Now the modulation wavelength l, expressed in the
lattice constant units bp is not equal to any rational num-
ber and the third-order umklapp term does not play any
role. By using the extremum condition (6.12b), we get for
the first harmonic

p,(jk) = g„(jk)exp[ ie,(jk)] —if jk~0, b* . 044(k, —k)
g4(k) =+

3 C4444(k, k, —k, —k)

1/2

(7.1)

and

e,(0)=0 or m.

(6.10)

p (0)=+V2ri„(0).

The two values of e„(0)correspond to two ferroelectric
domains of thiourea. The configuration of the displace-
ments can be expanded over harmonics and phases as

j ()0)v=1,4

)& cos[2m jk (mbo+ r„) E,j(k)] . —

(6.11)

The free energy (6.5) can be expressed by the wave vectors
k of the main modulation, the amplitudes, and the phases
of the harmonics: F =F(k,q„(jk),. . . , e„(jk),. . . ), with
v=1,4 and j=1,2, 3, . . . . The values of this set of pa-
rameters can be found from the conditions of extremum
of the free energy

(6.12a)

(6.9b)

Since the zeroth harmonic q,(0) measures a uniform dis-
placement of the molecules, with no loss of the generality
we can set

eq(jk)=je4(k) qzm. for j =—1,3, . . . . (7.2)

Here qj is either 0 or 1, and this value of qj should be tak-
en which lowers the free energy. One notices that Eq.
(6.12c) imposes no restriction on the phase e4(k) of the
first harmonic. The incommensurate modulation can be
shifted then by any value of the phase, without any varia-
tion of the free energy. In other words, the incommensu-
rate modulation is not pinned. The wave vector k of the
incommensurate modulation at which the free energy (Al)

Here 044(k, —k) (0, while C44q4(k, k, —k, —k) & 0. In ad-
dition, we can express any higher-order harmonic by a
product of lower harmonics. Repeating that process, one
finds that g4(jk)-[n4(k)] if j is odd. This property as-
sures also that at the phase transition from the paraelec-
tric to the incommensurate phase one observes not only
the condensation of the first harmonic, but simultaneous
condensation of all odd harmonics, although the intensity
of the higher harmonics is small.

For even harmonics q4(0), 7)4(2k), . . . , the situation is
different. Lack of terms q4(0), g4(k), gq(2k)g4(k) leads,
according to Eq. (6.12b), to the disappearances of all even
harmonics. The zeroth harmonics q4(0) is proportional to
the spontaneous polarization. ' In the ferroelectric phase
g4(0) is nonzero but vanishes in the incommensurate
phase.

From the condition of the extremum of the free energy
(6.12c) the following relations between the phases of the
incommensurate modulation can be established:



achieves the minimum is described by the extremum con-
dition (6.12a). Remembering that the harmonics r)4(jk)
Rrc only lndcxcd by thc %ave vcctoI' A:, Rnd Using also Eq.
(7.2), one finds

gF(k) 1 BQ«(k, —k) 2 1 BQ«(3k, —3k) z"'"'+
2 ak

energy of phase —, as shown in Fig. 10. For the phase —,
'

there are two possibilities depending upon a choice at the
domain: e&(0)=O, m.. Therefore the free energy of phase —,

'

as a function of the phase n, has two minima as is shown
in Fig. 10.

(7.3)

VIII. CONCLUSIONS

%c hRvc pI'oposcd Rnd studlcd R one-dimensional IIlodcl
of the incommensurate and commensurate phases of crys-
talline thiourea. On the basis of this discrete model we
have carrlcd oUt QUGlcrlcal Rnd analytical cRlculatlons.

Our main numerical results are the following. In ab-
sence of the asymmetric field h, the intermediate phase be-
tween the paraelectric and the ferroelectric phase is truly
incommensurate while there is no trace of a lock-in phase.
The temperature dependence of the incommensurate wave
vcctoI' k~ ls to R large cxtcnt prodUccd by an lnclcaslng
squaring effect of the initially sinusoidal modulation with
lowering temperature. The increase of the squaring is re-
flected in the increase in amplitude of higher harmonics.
Thc lock-1Q commensurate phases occUI only Rt IlonzcIo
asymmetric field h. The —,

' and —,
' lock-in phases are simi-

lar in structure. The —,
' lock-in phase has different

features as follows from the possible existence of two dif-
ferent domains. In the numerical calculations the model
parameters wclc chosen such that thc IDodc with v4 sym-
metry played an essential role. Odd harmonics with this
symmetry were found to be of importance. With the
present choice of parameters, harmonics of r& symmetry
are too small in order to contribute to the lock-in phases
of the model.

In addition to the numerical calculations, we have per-
formed an extensive analytical investigation. This
RQRlysls leads to coIlclUslons that Rrc ln RgI'ccIDcnt %'1th

the results of the numerical calculations. Besides the role
of the amplitudes g,(jk), we could also clarify the role of
the phases e,(jk) in the commensurate and in the incom-
mensurate phases. Hclc again thc conncc'tlon with thc Qu"

Inerical results could be established.
The purpose of the numerical calculations was not to

reproduce the experimental data exactly but to test—in
absence of definite knowledge of the values of the force
parameters a, b, h, a», P» the possibili—ties of the model.
Therefore some quantitative disagreements with the avail-
able experimental data' ' can be noted. First, the numer-
ical results exhibit a large region of the truly incommensu-
I'Rtc phase between thc pRraclcctric Rnd thc 7 lock-ln
phase which is not observed at zero pressure, at least not
in SC(NDz)2. In this respect the phase transition from the
paraelectric to the incommensurate phase can be shifted
down by appropriate changes of the values of the model
parameters (Table I}. Then the squaring effect around the
IDodulatlon %'avc vector 7 %111bc smaller and consequent"

ly the —, lock-in phase will be narrower. Next, the
second-order harmonic of symmetry r4, which is well ob-

this approach when r}~(2k)=0 none of the derl'vatives

depends upon the asymmetric field h, therefore no h

dependence of the wave vector k might be expected.
This effect is confirmed by the numerical calculations in
Sec. V.

Wc next consldcr thc commensurate phRscs. In our
simplified model, in which the second-order harmonic of
symmetry wl can be neglected, the lock-in phases arise be-

cause of the presence of the third-order umklapp terms in
the free-energy expansion (A 1). For particular commen-
surate wave vectors k = —,, —,, —, these terms contribute to
the free energy. The 5 functions ensure that these terms
are present only when the sum of the modulation wave
vectors of the relevant harmonics is equal to the
reciprocal-lattice vector O'. In the lock-in phases —, and

the even harmonics are stiH zero. However, the third-

order UIDklapp term contributes little to odd harmonics.
In the lock-in phase —,

' one finds also a small contribution

to the odd harmonics, the contribution %hich originates
from the third-order umklapp term. The even-order har-
IDonlcs bccoIDc nonzcI'o ln thc lock-ln phase 8 only.

Again from the extremum condition one finds that these
harmonics are proportional to the asymmetric field h.

In the commensurate phases the free energy does de-

pend on the phases e&(jk). Shifting the modulation, how-

ever, by one lattice constant, one arrives at the saIDe value
of the free energy. Studying the conditions of extremum
(6.12c), one finds the phases for which the free energy has
a minimum. Provided h &0 and the fourth-order coeffi-
cients are positive, one obtains for the phase shift n, de-
fined by Eq. (3.2) the following results: n, = 1 and n, =0
for the lock-in phases —,

' and —,', respectively, and n, =0
and n, =l for two possible configurations e4(0}=0 and
eq(0)=m, respectively, of the lock-in phase —,'. One sees

then that the relation (7.2) between phases of different
harmonics is valid not only for incommensurate phases,
but also for commensurate phases at the extremum of the
free energy. If one assumes for the commensurate phase
the validity of (7.2) for any value of eq(jk), then one can
find the phase dependence of the free energy. Substituting
Eqs. (7.2) and (3.2) into the lock-in terms of (Al) and tak-
ing into account g&(2k)=0, one finds the excess of the
free energy. In particular b,F

& &7 is proportional to
h5(7k b) c(onsn), bF&~—9 to h5(9k b*)cos[n(n, +—1)], .
and ~t~s to h5(8k —b*)cos[~(n, + I)] for e&(0)=0, and
to h 5(8k b*)cos(an, }—for e4(0)=n, respectively. .

In each case the free energy as a function of the phase
shift n, is periodic with one lattice constant (n, =2). One
notices, however, that the free energy of phase —,

' is shifted

by half a lattice constant (n~= 1) with respect to the free
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served in the diffraction experiment, is negligibly small in
the numerical results. On the other hand, the third- and
the fifth-order harmonic of symmetry r4 exhibit a too-
large intensity. Again, this defect can be removed by an
appropriate choice of the numerical parameters. Then
however, the fourth-order umklapp terms of the free ener-

gy (Al), which contain the harmonic i)i(2k), will con-
1

tribute to the lock-in energies at phases —,, —,, and —,.
Consequently even in the absence of the asymmetric field
h, the lock-in phases will be present.
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APPENDIX

It is instructive to write explicitly the expansion of the free energy with those essential terms which contain the har-
monics tI4(0), i)4(k), A)4(2k), i)4(3k), and i) &(2k). As the numerical calculations showed, all other harmonics are small
and can be neglected (Fig. 7). Therefore we retain

F= 044(0,0)ri4(0) + —,
'

Q44(k, —k)q4(k) + —,
'

044(2k, —2k)g4(2k) + —,
' Q~(3k, —3k)i)4(3k)

+—,Qii(2k, —2k)gi(2k)+ —', hrig{2k)g4(3k)cos[c~(2k)+2c~(3k)]5(8k b')—
+ —,

'
h I v]g(k) rig(3k)cos[cg(k) +2@4(3k)]+r), (2k)ri4(3k)cos[2c i(2k) +e4(3k) ]I 5(7k b*)—

+ —,
'

h r/4(3k)cos[3E4(3k) ]5(9k b" ) + ——, br/4(k)r/i(2k)cos[2cg(k) —ei(2k) ]

+C~(0,0,0,0)gg(0) +3C4444(0, 0,k, —k)v)g(0) i7~(k) +3C~(0,0,3k, —3k)rig(0)rig(3k)

+3C~~~.(0,k, k, —2k)q~(0)i)g(k)g4(2k)cos[e„{0)]cos[2C4(k)—cg(2k)]

+ , C4444(k, k,——k, —k)g4(k)+ —,C44ii(k, k, 2k, —2—k)q4(k)rii(2k)+

The majority of terms of the expansion (Al) are nor-
mal. These terms occur foi aiiy values of thc wa«vectors
k. Some umklapp terms appear only when the wave vec-
tor takes the commensurate values k =b'l7, b l8, b*l9

Then the umklapp terms give additional contributions to
the free energy and usually produce a stable superstruc-
ture.

'Present address: Institute of Nuclear Physics, ul. Radzi-
kowskiego, PL-31-342, Krakow, Poland.
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