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Symmetry breaking, Ward identities, and the two-fluid model
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We derive several important features of a Bose-condensed system„based on a diagrammatic
analysis at finite temperatures. Firstly, the symmetry-breaking term necessary to describe Bose con-
densation is shown to give a rigorous basis for the fictitious gap argument of Gavoret and Nozieres
(1964). This puts their well-known results on a firm footing. Secondly, in the presence of a moving
condensate with velocity U~, the current carried by the noncondensate atoms is shown to be

(pq —mn, )Uq. The results of this paper are direct consequences of various Ward identities which
have been recently discussed for Hose-condensed systems.

I. INTRODUCTION

Recently, careful analysis of measurements' on the
momentum distribution of atoms in superfluid He have
given reliable estimates of the condensate fraction no
(roughly 15% at T=O K). However, equally strong evi-
dence for the existence of a Bose condensate lies in the
close conncctlon bctwecn thc lattcf and thc charactcristlc
superfluid properties of hquid He, as first discussed with
some generality by Hohenberg and Martin, as well as Bo-
goliubov. ' In this paper, we give rigorous proof of several
important properties of Bose-condensed liquids. Our di-
RgraxnIIlatic calculations show ln R ncw Rnd moI'c tlans-
parent manner how the existence of the broken symmetry
associated with a Bose condensate leads directly to a
description consistent wtih two-fluid hydrodynamics.

Our work is based on the infinite-order, fimte-
teiiipei'atllre field-theoretic aiialysis of Bose-coildeiised
liquids using pI'opcl, lflcduclblc diagrams. This approach
is due to Ma and %'oo and has been extensively developed
by Mong and Gould, and others. ' The gI'eat advantage
of this approach over all other methods is that it ensures
thc colncldcncc of thc slnglc-paftlclc spectrum and thc
density-fluctuation spectrum, which is probably the most
important feature of a Bose-condensed system. We take
care to include explicitly an infinitesimal symmetry-
breaking term, which allows us to describe the Bose-
condensed mode fully quantum mechanically. As we have
Icccntly emphasized, this ls cluclR1 ln thc der lvatlon of
Ward identities in the long-wavelength, zero-frequency
limit. These Ward identities are the basis of the present
papcf.

X„„(g,to) = X„„(Q,to)

e(Q, co)

XJJ(g,to) =Xgg(Q, to)+Xg„(Q,to) XJ„(Q,co),
e(g, to)

(2.1)

e{Q,co) = 1 —V(g)X„„(Q,co) . {2.3)

Here, V(g) is the Fourier transform of the interatomic
potential and XJ, is the irreducible part of the
longitudinal-current-density correlation function. The ix'-

reduclble correlation fuilctioils cail iii turn be split into
improper Rnd pfopcf parts,

(2A)

&an=&I GI ~v+~ne ~

R~w=&I.GI. 4~+~~
PRg JJ ——A pgp, A, +XJJ .

Here, G&„(Q,to) is the Beliaev 2X2 matrix Green's func-
tion defined in terms of irreducible self-energies X&,(Q, co)

(Ju, v=+, —). The summation convention is assumed.
The density (A„) and the longitudinal-current (Az) vertex
functions are unique to a Bose-condensed system (they
vanish if the condensate n, =0).

The key role of the vertex functions is shown by split-
ting ggg directly into pI opcI' RQd lmpf opcI paf ts. '

Calculation shows that the proper part is given by

while the improper part is

We first give a brief summary of how one may write
various correlation functions in terms of irreducible, prop-
er contributions. ' ' These results will be needed later.

The density and longitudinal-current correlation func-
tions can be expressed in terms of their irreduct'tJle parts
(denoted by an overbar) as follows:

XJJ (Q,co)= Ap+Ap ~ Xg„9'~„A„+A„
J

(2.6)



SYMMETRY BREAKING AND THE T%0-FLUID MODEL 3953

and 9&„ is the full Beliaev matrix Green's function.
Equation (2.6) shows explicitly how the vertex functions
directly couple the longitudinal current into the single-
particle fluctuations described by 8'&,. In view of this
and the fact that

A„(Q,co)—= A„', Xg„(Q,~)—: X»,„, (2.9)

where the correlation functions A „' and X z „ involve the

ith component of the momentum current.
It is generally accepted that the easiest way of dealing

with Bose condensation is to introduce into the Hamil-
tonian a syrnrnetry-breaking term ' '

—g(X, )
'» [a0+a 0 —2(XO )

'» ], (2.10)

where g is an infinitesimal positive energy. This allows
one to treat Bose condensation in the usual sense,

(ao) =(Xo)'» ~0,
but at the same time allows us to also keep the operator
nature of ao and a 0 which enables us to take into con-
sideration all nonmacroscopic fluctuations of the conden-
sate. As a result, the equation of continuity is found only
to be modified by terms of order g. The equation of con-
tinuity is no longer satisfied in the usual treatments, '
where the condensed mode is treated as a classical c num-
ber [i.e., if one makes the usual substitution

&0,& 0—+(No)' ]. In this approximation, the equation of
continuity must be imposed in an ad hoc manner.

As discussed elsewhere, ' one can derive a whole series
of exact %ard ldcntltlcs fclatlrlg to various corrclatlorl
functions, which are direct consequences of the equation
of continuity together with the broken-symmetry condi-
tion in Eq. (2.11). Two of these identities are

a)A„= A„+(no—)'»~P 6 „„'+g(no)'» P„, (2.12)

hm X»» ( Q, co =0)= —p~ & hm X»» ( Q, co =0)= —ps,
Q~O Q~0

(2.7)

it has been suggested that Eq. (2.5) can be interpreted
as the "normal-fluid" part, and Eq. (2.6) as the "super-
fluid" part. However, model calculations show that this
division does not have much physical usefulness in that
both the proper and improper parts are strongly affected
by the structure arising from e .

To complete this summary of the dielectric formalism,
we list some important symmetry properties

A p(Q, a) ) = —A q(Q, ri)), —

A„(Q,a)) =A„(Q, —co),
(2.8)

X»„(Q,co) = —X»„(Q,—co) =X ~(Q,co),

P„,(Q, co) = $„„(Q,co) = 9' „„(Q,—a)) .

We also recall the definitions of the longitudinal functions

takes on its physical value, as determined by the condition
(2.11).

For Q=O and m=O, Eq. (2.12) reduces to

(n, )'» P„G,q'+g(no)'» Pq ——0,
ol equivalently~

X++(0,0)—X+ (0,0) =X++(0,0)—X~ (0,0)=P+g' .

(2.14)
This corlcsponds to thc well-knowrl Hugcnholtz-Pines I'e-

lation. However, the fact that the difference between the
diagonal and off-diagonal Beliaev self-energies is given by
P+g instead of P immediately implies ' that there will
be an infinitesimal energy gap in the excitation spectrum
of 9'z„at Q =0 (as well as the other correlation functions
X„„and X»J, since these share the same poles).

The preceding result calls to mind the work of Gavoret
and Nozieres (GN), ' who were able to derive a number of
results for a Bose liquid at T=O K, to all orders in pertur-
bation theory. Their analysis, however, was plagued with
various infrared divergences, which they removed by in-

troducing an energy gap b, at (Q,co)=0. While GN be-
lieved (see p. 369 of Ref. 10) that the correct procedure
should be 6~0 and then (Q,co)—+0, reversing the order of
these limits gave well-defined results without any diver-
gences. All self-energies and vertex functions could be ex-
panded in powers of Q and co in a well-defined way and
GN were able to calculate the long-wavelength poles of
various correlation functions. They proved the following
(at T=O K).

(a) The lowest excited state is longitudinal, i.e., a density
fluctuation. This means that the transverse-current corre-
lation function X»J (Q =0,~=0) vanishes, and so does the
normal-fluid density pz [this follows from Eq. (3.1)].

(b) This long-wavelength fluctuation is a phonon with
the isothermal speed of sound, and is a pole of the
longitudinal-current correlation function as well as the
single-particle Green's functions.

However, GN were not happy with their ad hoc treat-
ment of the infinitesimal energy gap A. What we have
shown here (see also pp. 67 and 68 of Ref. 3) is that the
gap GN introduced is nor fictitious, but is an inevitable
consequence of the symmetry breaking, which, in one way
or the other, one must introduce into the Hamiltonian if
one is to allow for Bose condensation. ' The correct limit-
ing procedure is precisely that used by GN, i.e., (Q, co)—+0
before b,~O. Beginning with GN themselves, this pro-
cedure has been viewed as a major weakness of their
analysis (for a recent example of such criticism, see Ref.
1S). Our present work gives a firm footing to the
infinite-order perturbation results of Ref. 10. Moreover, it
casts some doubt on the results of Nepomnyashchii and
Nepomnyashchii, ' who argued that the removal of the
infrared divergence required that X+ (Q=0,co=0)=0.
For a further discussion of Ref. 15, we refer to Chap. 6 of
Ref. 17.

~X»„—— (X gg +p) (no)' 'P—„A„, — (2.13)
III.

TYCHO-FLUID

MODEL

where p:—sgnv. Wc assume that thc chemical potential p
Around 1963, Martin as well as Pines and Nozieres em-

phasized that one of the most fundamental ways of de-
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fln1ng the normal-fluid dens1ty p~ ar1slng ln the two-Au1d
hydrodynamic description was in terms of the static
transverse-current —current correlation function

limXqq(Q, co=0)= —p~ . (3.1)
Q —+0

With the use of the dielectric formalism, '
Xzz can be

shown to involve the same diagrams as the regular part
(XJJ ) of the longitudinal-current —current correlationEA

function, and thus one has a diagrammatic proof that Eq.
(3.1) is equivalent to'

FIG. 2. Lowest-order diagrams for the excited-atom current

(J )g to fll'st older 111 Q. Llllcs lcprcscllt the slllglc-pal'tlclc

propagators when the condensate is stationary.

hmXgg (Q,el=0)= —p~ .
Q —+0

(3.2)
Q=m vs. This will require a symmetry-breaking term

The usefulness of this last result has been emphasized re-
cently by the authors. " In the present section we shall
combine Eq. (3.2) with the zero-frequency limit of the
Ward identity in Eq. (2.13) to show that the total mass
current density associated with a moving condensate (of
velocity Us ——Q/m) is given by

—g'(no)'r I dr [p(r)e '~''+gt(r)e'O'' —2(no)'~ ],
(3.4)

such that the condensate mode is now described by [com-
pared with Eq. (2.11)]

(3.3)
(q( )& =1(o( )=( )'r' 'o " . (3.5)

where tllc supcrfluld density ls ps =p —p~. Tllls ls R kcy
relation of the two-fluid model of Landau.

Before proceeding, we should comment briefly on Eq.
(3.1). As Pines and Nozieres" have discussed with g~e~t

clarity, Eq. (3.1) is based on considering a superfluid at
rest and describing its linear response to an external trans-
verse probe. The response will involve the elementary ex-
citations of the system in which the condensation is into
the p =0 state. This approach is essentially perturbative
and is less general than one which allows for completely
different forms of the condensate structure, e.g., those
which are only stable in the presence of rotation, such as
vortex follllRtloll. Tllc cIlslllllg RIlalysls ls rigorous wlt11111

this limitation of characterizing superfluidity in terms of
response functions. This means we are restricted to
describing superfluid flow in which the condensate under-

goes uniform translation.
We first show that the zero-frequency vertex function

A& (Q,co=0) is closely related to superfluid flow. Consid-
er He atoms condensed into a state with momentum

The atoms not in the condensate (i.e., with p&Q) also
contribute to the current density according to

( J(r)&g ————(g*(&g)—(& g*)f&g,
2

(3.7)

where p(r)= P(r) —(P—(r)&g. We can write Eq. (3.7) as

(i'(r) &,=—ge'"'(Jk&, ,0
k

(3.8)

wllcrc (Jk &g Is sllowll 111 Flg. 1(a). Eacll vcrtcx still coll-

serves momentum and thus (Jk&p ——0 unless k=O. The
incoming (or outgoing) momentum of the condensate lines

Fol' tllc case of R Illovlng colldcllsatc dcscr1bed by Eq.
(3.5), the diagrams have exactly the same Feynman rules
as for a stationary condensate, except that now all conden-

sate lines have momentum Q. The condensate mode has
an associated current density given by

FIG. 1. (a) Diagrams which contribute to the ith component
of the current J k carried by noncondensate atoms. The double
lines represent the single particle propagator when the conden- .

sate atoms have momentum Q. The jagged lines are the
condensate-atom propagators. (b) Simplest diagram which con-
tributes to (J', )u. {c)Diagram which yidds the current carried
by the condensate atoms.

FIG. 3. Diagrammatic representation of Eq. (3.10). Solid cir-
cles represent a density vertex (n) and solid triangles represent a
current vertex (J).
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changes the momentum of the other lines from the case of
the condensate at rest. An example of this is shown in
Fig. 1(b).

To evaluate the diagrams for &Jo&g to lowest order in

Q, we let all the condensate lines have zero momentum ex-
cept for one. ' (If all condensate lines had zero momen-
turn, we would simply obtain the excited-atom current in
a system with a stationary condensate, which vanishes. )

Enumerating all such diagrams (a simple example is

shown in Fig. 2), we find that the result can be expressed
as

&Jo&g=&Jg&o+&J' g&o, (3.9)

to lowest order in Q. Thus, we only need to evaluate the
Qth Fourier component of the excited-atom current in a
frame of reference in which the condensate is stationary,
except for one condensate propagator (see Fig. 2). Di-
agrammatically one finds (see Fig. 3)

& Jo&g=(no) ~ A+(Q, O) —(no) +XJn(Q 0) A+(Q 0}
(Q,O)

+ A' ( —Q, O) —(no)'i +X J,„(—Q, O) A ( —Q, O)
(Q,O)

(3.10}

where the functions on the right-hand side are evaluated
for a condensate at rest. The quantity (no)' Q;/2 has

been subtracted out from A„'(Q,O), because the diagram
shown in Fig. 1(c) corresponds to the condensate current

Jc given in Eq. (3.6). Taking into account the sym-

metries given in Eq. (2.8}, one sees that Xq„(Q,co=0)=0,
and hence Eq. (3.10) reduces to

&J o&g
——2(no)' A'+(Q, O) —noQ; . (3.11)

Xqq (Q,co=0)= p+(n —o)'~ A+(Q, co=0) . (3.12)

Combining this with the long-wavelength result in Eq.
(3.2},we obtain~

lim A '+(Q, co =0)=—,(p ptt ) . —
g-o + ' 2m(no)'~'

(3.13)

Using this rigorous result in Eq. (3.11),we find

We emphasize that Eq. (3.11}is exact to lowest order in Q.
We next recall that the zero-frequency limit of the

Ward identity in Eq. (2.13) gives

atom current in Eq. (3.6) yields Eq. (3.3) since

& J & =nom vs+(nm —p~) vs ——(p —p~) vs . (3.1S)

Recalling that' p~ ——0 at T=O K, the result in Eq. (3.1S)
proves that the lowest-energy eigenstate of a Bose liquid
with a moving condensate corresponds to the entire liquid
moving uniformly with velocity Us.

Our derivation of Eq. (3.14) shows very clearly that it is
through the interaction-dependent part of the vertex func-

tion Au(Q, co=0) that the condensate atoms of momen-

tum Q=m vs cause the noncondensate atoms to con-
tribute to the total current. We also recall from Eq. (2.6)
that it was A&(Q, co) which determined the characteristic
features of the current response function unique to a
Bose-condensed system. In the work of Bogoliubov, and
Hohenberg and Martin, ps was effectively defined
through the expression (3.3), and then it was shown that
with this definition, one was led to Eq. (3.1). We em-
phasize that our derivation of Eqs. (3.14) and (3.1S) is
quite general and does not require a simple quasiparticle
description to be valid. %ithin the quasiparticle picture,
of course, it is a straightforward exercise to derive Eq.
(3.1S) with pz given by Landau's quasiparticle formula.

&Jo &g =(nm —
piv )

P?2
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