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We use the Ceperley and Alder Green's-function Monte Carlo data for the static form factor,
S(q), of an electron liquid to calculate the static local-field correction, G(q), to the dielectric func-
tion which takes into account short-range electron correlations. The resulting local-field correction
in the long-wavelength limit is obtained by smoothly fitting to the results of Iwamoto and Pines,
which are exact in this limit. We use the G(q) thus obtained to calculate the static and dynamic
form factors, the contribution to the correlation energy from different momentum transfers,
plasmon dispersion, and the plasmon-dispersion coefficient. We compare these theoretical quanti-
ties with the available experimental data, and use the co -sum rule (which we also calculate from the
Monte Carlo data) to discuss the limitations arising from the use of the static local-field correction.

I. INTRODUCTION

This is the second of a planned series of papers' in
which we study the dielectric properties of an electron
liquid by combining the best currently available rnicro-
scopic data on the ground-state properties from the
Green's-function Monte Carlo calculations with exact
sum rules and physical arguments to obtain the self-
consistent fields responsible for the local-field corrections
and particle-hole effective mass. In the first paper' (here-
after referred to as IP) electron-hole configuration and
momentum-space pseudopotentials were introduced to
describe the way in which short-range charge- and spin-
induced correlations between electrons act to modify, at
short distances, the Coulomb interaction between electrons
of parallel and antiparallel spin. Use was made of the in-
terpolation formula given by Vosko, Wilk, and Nusair for
the spin-dependent correlation energy, which these au-
thors obtained from the Green's-function Monte Carlo
data of Ceperley and Alder, to calculate the compressibil-
ity and the static spin susceptibility. The IP pseudopoten-
tials were constructed in such a way that they led to
local-field corrections to the static response functions,
which ensured that these quantities reduced to the Monte
Carlo results in the long-wavelength limit. These pseudo-
potentials provide physical insight into the similarities
among electron liquids, helium liquids in the polarization
potential model, and a dilute hard-sphere Fermi gas.

In the present paper we explore two further ways to ob-
tain local-field corrections for a wide range of momentum
transfers directly from the Monte Carlo data for the
ground state of an electron liquid. Our theory is
phenomenological in the sense that the Monte Carlo cal-
culations may be viewed as very clean "computer experi-
ments, " in which the electron liquid is not disturbed by
solid-state effects. Thus we are able to sort out the effects

of intrinsic electron-electron correlations before including
more complicated effects. The microscopic foundation of
our theory may be found in the Fermi hypernetted chain
(FHNC) theory of quantum liquids and the theory of
correlated basis functions (CBF) as its extension to excit-
ed states. A recent study of the connection between the
random-phase approximation (RPA) and the "chain dia-
grams" in FHNC theory provides the formal basis of the
present study.

Purely microscopic theories for the ground state of
quantum fluids, especially for an electron liquid, are
presently in a quite satisfactory state. It is certainly
premature to make the same statement about excited
states. The broad contact between purely microscopic
theories, based on correlated wave functions' and the more
phenomenological polarization-potential theory, allows
one to alternate conveniently between both pictures. How-
ever, purely microscopic approaches do have the disad-
vantage that one must accept whatever results the
ground-state calculations yield. Even in the relatively
well-understood electron gas case, this is not always satis-
factory. ' Pseudopotentials, such as the ones introduced
by Aldrich and Pines for 'He, or by IP for electron
liquids, have the distinctive advantage that the "effective
interactions" used there may be adjusted to the empirical
data, while the structure of the microscopic theory is
maintained.

In the present paper we carry through a minimum pro-
gram in this direction. We show how local pseudopoten-
tials may be constructed which reproduce the static form
factors in the density and spin channels, obtained "empiri-
cally" by Monte Carlo simulations. Multipair excitations
are, in this study, not taken explicitly into account. We
use the co -sum rule to demonstrate the shortcomings of
theories which do not take these into account.

In carrying out our program, we use the "mean spheri-

29 3936 1984 The American Physical Society



THEORY OF ELECTRON LIQUIDS. II. STATIC. . .

cal approximation, ""which allows us to express pseudo-
potentials in a closed form in terms of the static form fac-
tors. This mean spherical approximation (MSA) is dis-
cussed and tested in Sec. II.

Using the MSA, we calculate, in Sec. III, the spin-
symmetric and spin-antisymmetric local-field corrections,
and compare these with the results of the IP polarization-
potential theory. %e also calculate the corresponding
quantity from the c0 -sum rule, and discuss the role played
by multipair excitations in the latter. In Sec. IV we calcu-
late the static form factor with various local-field correc-
tions and determine as well the contributions to the corre-
lation energy from different momentum transfers. In Sec.
V we study the plasmon-dispersion relation and the
dynamic form factor and compare these quantities with
experimental data. A discussion and overview are given in
Sec. VI.

and from Eq. (2.1),

X (q, tu)

1 (4—~e /q +fq)X (q, co)

X (q, ai)

1 —u (q) [1—6 (q) ]X (q, cu )
(2.5b)

u', tt(q) =
z +fq = u (q) [1—6 (q)],I' (2.6)

Here, f» describes a potential designed to take into ac-
count the modification in the restoring force brought
about by electron correlations which act to prevent elec-
trons from sampling the full effect of the Coulomb in-
teraction at short distances. It is therefore att~acti~e.
When combined with the bare potential u (q)=4ne/q. , it
leads fo an effective potential:

II. RESPONSE FUNCTIONS AND THE
MEAN SPHERICAL APPROXIMATION

where the dimensionless function of q„

6 (q) = f~/u (q—), (2.7)

In examining the dielectric properties of an electron
liquid it is useful to introduce two response functions
the 1lnear density-density response function X(q,co), which
describes the response of the system to an external longi-
tudinal field, and the screened response function X„(q,cu),

which describes the response to the sum of an external
longitudinal field and the induced polarization field. By
definition, these response functions are related through

is called the static local field co-rrection
From the linear-response function, one obtains the

dynamic form factor S(q, tu) via the fluctuation-
dissipation theorem:

S(q, co) = — ImX(q, to), co & 02A

(2.8b)
X,.(q, co)

X(q, ~u) =
1 —(4me /q )X„(q,iu)

Then, the dielectric function may be written as

e(q, tu)=1—,X„(q,to),4me

=1+, X(q, tu) .1 4me

eqco . q

(2.1)

(2.2a)

where n is the electron number density. The static form
factor is the frequency integral of S(q, cu),

S(q)—:J S (q, co)

2A ~ dN
Im

X (q, ~u)

1 —u', tt(q)X (q, co)

In the Hartree-Pock approximation, the electrons respond
to the external field as free particles. Thus X(q, co) is ap-
proximated by the free-electron (Lindhard) response func-
tion X (q, co) (where HF represents Hartree-Fock):

X""(q,ro) =X'(q, tu),

=1+, X (q, ~) .
eHF(q to)

(2.3b)

X„(q,t0) =X'(q, cu),

4' o
2

(2.4a)

(2.4b)

In order to take electron correlations into account, one
may modify Eq. (2.4a) to

X (q, co)

1 f~X (q,tu)—X (q ai)
(2

1+u(q)6(q)X (q, co)
X„(q,iu) =

In the random-phase approximation, the electrons respond
to the screened field (i.e., the sum of the external field and
the polarization field) as free particles; thus X„(q,~) is ap-
proximated by X (q, tu):

while its frequency integral yields the static spin-
antisymmetric structure factor,

S'(q)= f S'(q, tu) . (2.13)

Thus Eq. (2.9b) allows one to calculate S(q) from a given

In similar fashion, one may introduce the spin-density
response function, X (q, to); the analog of (2.5b) is then

(2.10)
1 f~X (q,co)—

so that the spin-antisymmetric effective potential is

u:tt(q) =f;= u(q)6'(q), —

where 6 (q) is the spin-antisymmetric static local-field
correction. Similarly, the spin-antisymmetric, or spin-
density, dynamic form factor is given by

S'(q, tu) = — ImX (q, tu), cu & 02A
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In IP, configuration-space pseudopotentials, f"(r) and
f"(r), were introduced to describe the way in which elec-
tron correlations modify the Coulomb interaction at short
distances. The quantities f~ and fz were taken to be the
spin-symmetric and spin-antisymmetric combinations of
the corresponding momentum-space pseudopotentials,

f'=-, (f"+f")
& (fft ffL)

(2.14a)

(2.14b)

and a simple Yukawa form was adopted for f(r), so that

4n.e 2

q +q«
4m.e

2+ 2

(2.15a)

(2.15b)

The screening wave vectors q«and q„were then chosen
so that in the long-wavelength limit the static density-
density linear response function X(q, O) and static spin sus-
ceptibility X (q, O) reduced to the exact limiting values cal-
culated by Vosko, Wilk, and Nusair from the Monte Carlo
calculations of Ceperley and Alder. The local-field
corrections obtained by IP are thus

q +q«q +q»
(2.16a)

q +q» q +q»
(2.16b)

and their long-wavelength limits,

lim Gyp(q) =—1 q q

q 0 2 q» q»
r

lim Gqp(q) =-@ 1 q q
~0 2 q«q»

(2.17a)

(2.17b)

are exact, in that with the choices, Eq. (2.17), one is
guaranteed, via Eqs. (2.5a) and (2.10), to obtain the Monte
Carlo values of the compressibility and spin susceptibility.

The choice, Eqs. (2.16), for the local-field correction is
but one of many possible choices. In the following section
we consider two alternative choices. One choice, which
we denote by Go(q) and Go(q), is made such that when
one makes it and subsequently carries out the frequency
integral, Eqs. (2.9a) and (2.13), one obtains the Monte Car-
lo values of S(q) and S'(q). In this approach the deter-
mination of Go(q) and Go(q) may be considerably simpli-
fied with the aid of the mean spherical approximation
(MSA), which is sometimes known as the "fluid dynamic"
or "collective" approximation. "'"'

The essence of the MSA is, as we will show in Appen-
dix A, to approximate the propagator for the particle-hole
excitations in the Lindhard function X (q, co), by one with
a single pole. A very thorough discussion of the MSA
may be found in the recent work of Bishop and
Luhrmann. " It should be intuitively clear that such an
approximation is justified whenever the low-lying excita-
tions within the system are dominated by a collective

mode. As shown in Appendix A, with the aid of the
MSA one can carry out the integration in Eq. (2.9b) in
closed form, and thereby obtain'

Sp(q)
S(q)=

I 1+(4mn/A q )U',ff(q)[Sp(q)] ]
'~ (2.18)

where S~(q) is the static form factor in the Hartree-Fock
approximation

r

3

S~(q) = 4 qF

1, q)2qF

1

16 qF

3

q (2qF
(2.19)

lim S(q) =1— [1—Go(q)]+
8amne

q- A2q4
(2.22)

This is consistent with the large-q behavior of S(q) de-
rived from the fluctuation-dissipation theorem [Eq. (2.9b)]
by using the dielectric function of the form (2.2a) with
(2.5a). ' On the other hand, from the definition of the
pair correlation function g (r),

g (r) —1= g [S(q)—1]e' q' ',
nV

q

(2.23)

where qF is the Fermi wave number. The MSA is the
underlying approximation in variational theories of quan-
tum fluids. It not only renders the above-mentioned fre-
quency integral trivial, but in fact simplifies purely micro-
scopic treatments of quantum liquids such that vast
classes of diagrams can be easily summed. It is worth
pointing out here that Eq. (2.18) gives in fact an excellent
approximation to the static form factor if the effective in-
teraction U,fr(q) is repulsive, while it gives a poor approxi-
mation for an attractive effective interaction. ' This is,
for example, the case in the spin channel in liquid He.

The accuracy of the MSA may be tested by comparing,
for a given u', rf(q), the static form factor obtained via the
MSA, Eq. (2.18), with one obtained by the frequency in-

tegral (2.9b), where Xo(q, co) is given by the Lindhard func-
tion, Eq. (2.4a). We shall see that the MSA is, for the (ef-
fective) interactions used in the electron gas, typically ac-
curte within an error of —1%.

Generalizing the MSA (2.18) to spin-antisymmetric in-

teractions one obtains

SF(q)
S'(q) = 2irz'

[ I+(4mn/fi q )u,'fr(q)[Sz(q)]2] '~~

where U',rr is given by Eq. (2.11).
Finally, we note that the MSA expression for S(q) [Eq.

(2.18)] is exact in both the long- and short-wavelength
limits: For small q, Eq. (2.18) reduces to

= Rq'
lim S(q) = (2.21)
q —+0 2m N&

where co~ =(4mne /m )'~. is the plasma frequency. This is
the correct form of the plasmon contribution to S(q); sin-

gle pair and multipair contributions are proportional to q
and q, respectively, in this limit. '

For large q, Eq. (2.18) becomes
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one obtams

lim S(q) =1— g'(0),
~ac

(2.24)

where g'(0) is the derivative of the pair correlation furic-
tion at zero interparticle distance. From the analysis of
the s-wave Schrodinger equation in the r~0+ limit it is
known that'

CX

Q.
M

I.O—

g'(0) =g(0)/ug, (2.25}

where as is the Bohr radius. Thus from Eqs. (2.22),
(2.24), and (2.25},one obtains

lim Go(q)=1 —g(0) . (2.26)

This is the correct behavior of G(q) for large q. '

0.5

III. LOCAL-FIELD CORRECTIONS AND
THE u -SUM RULE

A. Local-6cld corf'cctions

Conventional approaches to the electron liquid problein
take the route of developing a theory for the local-field
corrections ' and using the functions G(q),G'(q) to cal-
culate the dynamic and static form factors. Now that the
static form factor of the electron liquid is known quite ac-
curately from the variational and Green's-function
Monte Carlo ' calculations, one may take the opposite
route and calculate G (q) and G'(q) from the Monte Carlo
data. In the present paper we shall take the latter ap-
proach. The calculation could, in principle, be performed
by solving Eq. (2.9b) for U',rr(q), and a corresponding
equation for U,'rr(q). However, the MSA allows one to
simplify this procedure: It yields directly an algebraic ex-
pression for the local-field corrections in terms of the
known static form factors:

FIG. 1. Local-field correction Go(q) for r, =1, 2, and 5. For
large q, Eq. (3.1) with the Monte Carlo values for S(q) was used,
while for small q the polarization-potential model (Ref. 1) was
used. The arrows indicate the points of smooth fit. The lower
curves show the local-field correction in the polarization-
potential model, Gqp(q) (Ref. 1), for r, =1, 2, and 5.

with the Monte Carlo error bars. Results for Go(q) are
shown in Figs. 1 and 2. In Fig. 1, one finds a peak struc-
ture in Go(q) at q &2' for r, = 1 and 2, which disappears
for r, =5. We also show the quantity (4mne /q )Go(q) for
P's = l~ 2~ and 5 ln Flg. 3.

In calculating Go(q) [or Go(q)] we have placed em-

phasis on the low-frequency end of the spectrum of
S(q,co), since Go(q) is determined from S(q) via the MSA;
as we shall see, when one substitutes Go(q) in the expres-
sion Eq. (2.9b) and carries out the integral therein, one re-
covers S(q) to a high degree of accuracy. This approach

G,(q) =1-
16&fs gP

1

lS(q)l'
(3.1)

t:SF(q}]' l.2

Go(q)=-g 3K

rs q
E

1 1
(3.2)

(S'(q)]' lS (q) I'

r~= I

l.O- ———r =2s

Here, a=(4/9m. )'~, and r, = 1/aasqr. One difficulty in
this procedure is that the functional relations (3.1) and

(3.2), are very sensitive to small errors in S(q) and S'(q),
respectively, while the Monte Carlo data are not com-

pletely accurate in the regime q & —,'qF. We remedy this
situation by employing at small q the local-field correc-
tions obtained in IP. There, it was shown that the local-
field corrections are determined in the long-wavelength
lilnit by exact boundary conditions derived from the
compressibility and the static spin susceptibility. There-
fore, the accuracy of the IP local-field corrections in this
limit is guaranteed. In other words, the small-momentum
behavior of S(q) is known (see Ref. 1). Therefore, we use
the IP local-fidd corrections in the region where the error
bars of the Monte Carlo data are too large. This is typi-
cally in the regime O~q ~ —,qF. %e note, however, that
the IP local-field corrections are, of course, consistent

0.8-

CT

ao 06-

0.2

0
0

FIG. 2. Spin-antisymmetric local-field correction Go(q) for
r, =1, 2, and 5. The procedure is the same as in Fig. 1 except
that Eq. (3.2) with the Monte Carlo values for S'(q) was used

for large q.
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the exact asymptotic behavior of the dielectric function:

2 4 2
~p ~p tq 4&Euin &tq

lim e(q, ~)=1—
2

—
~ I + 2

&—(q)
a—+ Oo 6) CO CO& fKOp

On the other hand, if one adopts the model for the
screened response function Eq. (2.5b), one finds for the
co -sum rule (I.F denotes local field)

C

&-'&„="" I,'+«E„.&.—"+,'[1-G{q)],

0
0 while the high-frequency expansion of e(q, co) takes the

form

FIG. 3. Plot of (one /q )Gq(q) in units of eV for r, =1, 2,
Bnd 5.

2 4 2
CO~

lim e(q, co)=1— —
4 2 +

C0~ oo CO N CO&

4(E„,„&,t,' —G(q)
p

1S, however, Ilot thc only way onc IIllght Ut1l1zc thc Monte
Carlo data to obtain G(q); an alternate approach is to
determine G (q) from the co -sum rule of Puff and

Mihara, and we consider that now.

B. The u -sum rule

The linear-response function X(q,co) may be expanded
in the high-frequency limit as

lim X{q,co}= + +(~'&
(3.3)

The frequency moments

(3.4)

may be calculated exactly by using the commutator alge-
bra of the Hamiltonian and the density operator. The
first moment yields the f-sum rule,

(3.5a)

while the third moment may be written in the form
r

2

(a) & = tq+4(Ek;„&—+cop[1 —I{q)], (3.5b)

where tq fig /2m, (E——k;„& is the expectation value of the
kinetic energy per particle for an interacting system, and

I(q)= —— g E(k, q)(k q/q')[S(
~ q —k

) ) —1],
k ('&q, O)

(3.6)

with

q'k + q (q —k)

/q —kf'
With these frequency moments, Eqs. (3.3) and (2.2b) yield

(3.9b)

Here, (Ek;„&o——3lri qp/10m is the kinetic energy Per Parti-
cle of a noninteracting system. On comparing Eqs. (3.5b)
and (3.9a) we see. that we may choose a local-field correc-
tion GI(q) which, when employed in Eq. (3.9a), will satis-

fy the co sum rule, Eq. (3.5b); it is

GI(q) =I(q) — I ((EI„„&—(Ek;„&O) . (3.10)
2g

mug

Therefore, it is of interest to calculate (Ek;„& and to deter-
mine the function I(q) from the Monte Carlo values for
S(q) through Eq. (3.6) in order to compare Gs(q) with
Go(q) in the Monte Carlo p/us polarization potential
modd (MC + PPM).

In Table I we list the values of the relative difference in
the kinetic energies,

fI —= (E„,„&/(E„,„&,—1, (3.1 1)

from the Monte Carlo results, ' while in Appendix 8 we
calculate this quantity in the high-density limit. %'ith Eq.
(3.11) one may rewrite Eq. (3.10) as

O 2

GI (q) =I(q)—12 EF 4
5 Wp qF

=I{q)— ' 4.2.713 q

r, QF
(3.12)

The values of I(q) which have beep used in calculating
G3(q) are also given in Table II, while in Fig. 4(a) we com-
pare G3(q) and Go(q) for several values of r, and, in Fig.
4(b), compare I(q) wltll foul IIlodel calcula'tlolls of G(q}.
In Figs. 4(a) and 4(b) we have also indicated the values of
1 —g(0) and —,

'
[1—g(0)] from the Monte Carlo calcula-

tion of g (r). Here, one should recall the limiting value of
Go(q) [Eq. {2.26)], while Niklasson has shown that, if
one replaces G(q) by a frequency-dependent function
G(q, co) in Eqs. (2.5a),
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TABLE I. Mean kinetic energy per particle of an interacting system, (E(,;„),calculated from the
ground-state energy per particle, Ep!X (Ceperley and Alder, Ref. 4), and the mean potential energy per
particle ( V~, ) {Ceperley, Ref. 24), for r, = 1, 2, 5, and 10. Also listed are the mean kinetic energy per
particle for a noninteracting system, (Ek;„)0——, E—F, and the relative difference,

5s =(Ek;„)/(Ei„„)o—1. The energies are in units of rydbergs. The digits in parentheses indicate the
error in the last decimal place of the Monte Carlo values.

1

2
5

10

Ep/E

1.174(1)
0.0041(4)

—0.1512(1)
—0.10675(5)

«...)

—1.1157(8)
—0.5986(8)
—0.2654(1)
—0.142 53(4)

(Ek;. )

2.290
0.6027
0.1142
0.035 78

( Ekin )0

2.2099
0.552 47
0.088 39
0.022 099

0.036
0.091
0.292
0.619

lim G(q, co) = —,[1—g(0)],
q~ oo

(3.13) I.O—
rs=

where we note that the function I(q) has the same limit
for large q.

From Figs 4(a) and 4(b), one observes the following.
(1) There is a large difference between Go(q) and G3(q)

for all values of r, between 1 and 5. The value of I(q) is
about half of that of Go(q) for the same r, . I(q) and

Go(q) become close only for very small values of q
( «qF).

(2) I(q) is a monotonically increasing function of q;
there is no peak structure near q=2qF as found in Go(q)
for r, =1 and 2.

(3) For large values of q, where the second term on the
right-hand side of Eq. (3.10) becomes appreciable, G3(q)
takes on negative values.

(4) Go(q) approaches 1 —g(0), whereas I(q) goes to
—', [1—g(0)] for large q.

0.5—

D
O

-0.5
0

(a)

q/q

rs=2 &~-g(0)

~ rs- I

s= s [I—g(o)]
rs" ~

Pathak and Vashishta (PV) obtained a local-field I.O-

TABLE II. Function I(q) [Eq. (3.6}] in the co' sum rule [Eq.
(3.5b)] calculated from Ceperley's Monte Carlo data for the stat-
ic form factor (Ref. 24). 0.5-
q /qF

0.125
0.250
0.375
0.500
0.625
0.750
0.875
1.000
1.125
1.250
1.375
1.500
1.625
1.750
1.875
2.000
2.125
2.250
2.375
2.500

0.0028
0.0110
0.0243
0.0421
0.0635
0.0876
0.1135
0.1404
0.1673
0.1937
0.2187
0.2421
0.2634
0.2825
0.2994
0.3142
0.3270
0.3382
0.3480
0.3566

I"s 2

0.0030
0.0119
0.0263
0.0457
0.0693
0.0961
0.1252
0.1556
0.1864
0.2166
0.2457
0.2730
0.2981
0.3208
0.3410
0.3587
0.3743
0.3878
0.3996
0.4100

r, =5

0.0033
0.0133
0.0297
0.0518
0.0791
0.1105
0.1452
0.1821
0.2200
0.2580
0.2950
0.3302
0.3629
0.3926
0.4191
0.4425
0.4628
0.4805
0.4959
0.5092

0—

—0.5
0

q/q

FIG. 4. (a) Comparison of local-field corrections Gp(q) from
Eq. (3.1) and G3(q) from the co'-sum rule [Eq. (3.10)], for r, =1,
2, and S. Also shown are the values of 1 —g(0) and 3 [1—g(0)],
where g(0) is the Monte Carlo value of the pair correlation
function at zero interparticle separation (Ref. 24). (b) Compar-
ison of local-field corrections in different theories for r, =2.
The Gp(q) is from Eq. (3.1); G&p(q), from Ref. 1; Gpv(q), by
Pathak and Vashishta (Ref. 26); and G3(q) from Eq. (3.10). The
I(q) is from Eq. (3.6). The values of 1 —g{0) and 3 [1—g(0)]
are also shown.



correction Gpv(q) and a static form factor which satisfy
self-consistently both the m -sum rule and the
flUctllatloll-dlsslpatloll tllcol'clll. Howcvcl, lll tllcll' calcu-
lation the difference between (El;„) and (Ek;„)Q was
neglected, and I{q) was treated as being identical to the
local-field correction. As we have seen such a treatment is
not justified: Even at small r, (-1) a few percent relative
difference between (Ek;„) and (Eq;„)0 causes a signifi-
cant deviation of GI(q) from I(q) at large q ( »qp).

A proof that one cannot, with a static local-field correc-
tloll, satisfy slIIlllltallcoUsly thc comprcsslblllty sUnl llllc
and the m -sum rule has been given by Vaishya and Gup-
ta; for a recent simple version of this proof, see Iwamo-
to. s The properties of the dynamic local-field correction
have bccn stud1ed by Kuglcr.

The difference between Go(q), which was chosen to
yield agreement with S(q), and G3(q), which was chosen
to yield aglcclIlcIlt wltll thc co -sunl rlllc, fUmlsllcs R IIlcR-
sure of the importance of multipair excitations. Because
these lie, on the average, at greater energies than the single
pair or plasmon energies, they make a much larger relative
contribution to the co -sum rule than to S(q). In the
small-q limit, their contribution to both quantities is of or-
der q (cf. Ref. 12), as is the contribution coming from
G(q).

In both of the above model calculations of G(q), mul-
tlpMf cxcltatlons a1c not taken cxpllc1tly 1nto account; 1n
the MC+ PPM approach, one distorts the local-field
correction, and hence the pair plus plasmon spectrum, in
such a way as to yield the correct S(q), while with GI(q),
onc 1s distort1ng thc pMI' plus plasmon spcctluIIl 1n such a
way as to obtain the correct value of (co ). Since, as not-
ed above, even in the long-wavelength limit, the contribu-
tions from multipair excitations to S(q) and (co ) are of
the same order of magnitude as the modifications in the
single pair plus plasmon part brought about by G(q), the
two calculations of G(q) could not be expected to agree.
Put another way, neither local-field correction is correct;
the "true" local-field correction must be such as to allow
rooln for multipair excitations [through an appropriate
modification of X(q, co)] to contribute to both S(q) and
(co ); it may be expected to lie between Go(q) and Gs(q),
as is the case for G,p(q).

In this connection, it is appropriate to refer to the study
by Bolas, Aravind, and Singwi, who use perturbation
theory to calculate the next higher-order terms beyond the
RPA (the self-energy correction and the vertex correction
to lowest-order proper polarization part). The resulting
dielectric function involves a frequency-dependent local-
flcld col'I'cctloll. Howcvcl', lt sRtlsf les tllc co -sllIIl I'lllc
only to lowest order, in that they find an expression of the
form Eq. (3.8), in which (E„;„)is replaced by (Ej,;„)0,
and I(q) by its Hartree-Fock value.

IV. STATIC FORM I"ACTOR AND
CORRELATION ENERGY

For a given choice of G{q), it is straightforward to cal-
culate the static form factor S(q) from Eqs. (2.6) and
(2.9b). If, moreover, one knows the dependence of G(q)
upon r, it is likewise straightforward to calculate the con-

tribution to the correlation energy arising from a given
momentum transfer, and hence the overall correlation en-
ergy. In this section we give the results of such calcula-
tions for three different local-field corrections: Go(q),
Glp(q), and the Hubbard local-field correction,

2&e

q +qp
(4.1)

and compare them with the Monte Carlo results as well as
with the RPA.

A. Static form factor

Our calculation of S(q) with Eq. (2.9b) and Go(q)
serves as a test of the accuracy of the MSA, since the fre-
qllcllcy llltcgl"Rl lll Eq. (2.9b) ls carrlcd Gilt llslllg tllc Llll-
dhard function, Xo(q, co), wlllle the values of Go(q) were
arrived at by making the MSA, and joining those results
Rt sIIIR 11 q to Glp (q) . We find the calculated values of
S(q) bRscd oil Go(q) Rgl'cc to wlthln 1% with tllc Molltc
Carlo {MC) result SMC(q) at the three densities (r, =1, 2,
and 5) studied. In Figs. 5(a)—5(c), we compare these re-
sults with Slp(q), the static structure factor calculated us-
lllg Glp(q), RIlC1 Wltll SRpA(q), tllC RPA ICSUlt [Wlllcll cor-
respond to G(q) =0]. We have also calculated SH(q), the
static form factor using GH(q), [Eq. (4.1)], and find
SH(q) Slp(q) for all values of q and r, investigated.

We comment briefly on our results.
(1) For q (0.6qF, we find Slp(q)=SRpA(q)=SMc(q);

for these wave vectors plasmons at cop are the dominant
excitation, and all three calculations are consistent with
the exact long-wavelength result,

lim S(q) =
g ~0 2' Q)&

(4.2)

Irlq
2 o 2n-NS q, N (4.3)

We found that this quantity is unity within 0.02% for
0&q &2'.

(2) For 0.6' (q (qp, Slp(q) =SMc(q), while SRpA (q)
is distinctly lower.

(3) For q &qp, SMC(q) lies somewhat above Slp(q); as
one goes to larger r„ their relative difference increases,
and is -8% for q =2qF and r, =5. SRpA(q) continues to
be lower than either for q g 2.5q

(4) To the extent that Glp(q) pl'ovldes an acculate ac-
count of local-field corrections within the framework of a
more general theory which includes multipair excitations
explicitly, the difference between Slp(q) and SMc(q) pro-
vides a direct measure of the contribution made by mul-
tipair excitations to S(q).

In Fig. 6 we separate S(q) into two contributions: a
plasmon contribution and the single-pair plus multipaiI
contributions. This figure illustrates how the plasmon
contribution exhausts the total S(q) at small q. Finally,
we have made a numerical check of the f-sum rule by cal-
culating
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I.2

l.o-
rs= l

B. Correlation energy

The interaction energy in the ground state is defined
s12

0.8

S(q)

0.6

0.4

0.2

0
0

l.2

q/q

(4.4)

Upon making use of the fluctuation-dissipation theorem
[Eq. (2.8b)] and the definition of S(q) [Eq. (2.9a)], one
may write

E;„,= gE;„,(q)= —g A' f Im +
2m e(q, co) q'

q q

(4.5)

A theorem due to Pauli' allows one to write the ground-
state energy as a sum of the free-particle kinetic energy
and the coupling-constant integral of the interaction ener-

gy:

I.O

(b) r =2s
Ep ———,X3

2p7l
+ f E;„,(k), (4.6)

0.8

S(q)

0.6

where E;„,(A,) is the interaction energy when the strength
of the coupling constant is A, rather than e . The correla-
tion energy is defined as the difference between the true
ground-state energy and the ground-state energy in the
Hartree-Fock approximation. Thus from Eqs. (4.5) and
(4.6),

0.4

0.2

0
0

l.2

IO-

0.8

S(q)

0.6

04

0.2

0
0

(c) rs

q/qF

q/q

dg
Ecorr = Eco-(q)

O'F

dA, ~ dco I
Im

2m e(q, co; A, )
q

FHF(q, CO;A, )

l.2

I.O-

0.8

S(q)

0.6
p(q)

0.4

0.2

(4.7a)

(4.7b)

FIG. 5. (a) Comparison of the static form factors obtained
from the three types of local-field corrections (MC+ PPM,
PPM, and RPA; see text) through the fluctuation-dissipation
theorem for r, =1. The initial Monte Carlo values for S(q) are
indistinguishably close to the curve MC + PPM. (b) Same as (a)
for r, =2. (c) Same as (a) for r, =5.

q/q

FIG. 6. Plasmon (pl) and the single-pair plus multipair
(sp + mp) contributions to the static form factor for r, =2.
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(1) E„(q) in these units decreases initially from 0
with increasing q [one may easily verify from Eq. (4.8)
that E„(q)starts in these units as —S~(q)]. After reach-
ing a minimum it heals back to 0 for q & 2qF. Both mag-
nitude and the location of the minimum increase for in-

creasing p'~.

(2) The minima of E„„(q) (the Hubbard approxima-
tion) are shallower than those of E,'„,(q) (MC+ PPM)
(where IKP represents Iwamoto, Krotscheck, and Pines),
while the former are slow in healing back to 0 for large

q ( & 3').
(3) E,'„,{q) in the polarization-potential model is

quite close to E,', (q) up to q=q~ for l(r, &5. As the
was case for S(g), we may attribute the difference between

E,'„,(q) and E,'„,(q) for q & qz to the role played by mul-

tipair excitations in determining E«~(q), a role which is
some%'hat morc proQoUnccd 8s Pg Increases~ RQd %'hlch Is
111RX1111u111fol' q 2qF.

(4) As was the case for S(q), E'„„(q)is close to E„„(q)
for all q: For q &2q~, the former is slightly above the
latter.

Finally, we integrate E„„(q) in our Monte Carlo plus
polarization-potential model to obtain the correlation en-

ergy and compare it ~ith the original Monte Carlo data.
We find that in our model E„„/Xreproduces, within the
Rcclll'Rcy of tlM pl'esellt Illlnlel'leal calclllatloll (0.3%,
0.8%, and 1.2% for r, =l, 2, and 5, respectively), the
original Monte Carlo corrclatIon cncrgp.

In this section we present the results of our calculations
of plasmon dispersion and the dynamic form factor using
the local-field corrections Go(q) (Monte Carlo plus
polarization-potential model), G,p(q) (polarization-poten-
tial model), and GH(q) (Hubbard approximation), and
compare these results with the RPA and with experiment.

GA

3

3

G.P.

G,
o G.2 O.5

(q/qF)

FIG. 9. Plot of ~(q) —m(0) in umts of Ep/A vs (q/qp) . The
four curves result froID MC+ PPM, PPM, H, and RPA. The
crosses show experimental data due to Petri and Otto [Ref. 32
for Al (r, =2.07)].

The plasmon-dispersion rdation co=el(q) is given by
the solution of the equation

e(q, nl(q))=0 .

OUr resUlts are shown in Fig. 8. One sees that the three
models for G(q) give almost indistinguishable plasmon-
dispersion curves for r, = 1 and 2. For r, =5, the
MC+ PPM and PPM results are close, while that based
on GH(q) starts to deviate from these two curves at
q =0.2g before it finally merges into the single-pair con-
tlQUUm at g ~0.92$F. The RPA CUIvc 81%'afs lies. above
those with nonvanishing 6{q).

We show the quantity nl(q) ro(0) as—a function of q ln
Figs. 9 and 10 for r, =2 and 5, respectively. In these fig-

l.Q

G.B

G.6

CX'

3
G.4

G
o O.Z OA G.B l.O

FIG. 8. Pl&smon dispcrsioll obtained from the four d1ffcI'cIlt

local-field corrections (MC+ PPM, PPM, H, and RPA) for
P'q = I, 2, a,nd 5 (scc text).

Q
0 GA Q.6

(qlq„)
G.e l.G
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ures we also include the RPA results as well as the experi-
mental values for Al (r, =2.07) by Petri and Otto. The
aglccIIlcnt 1s poor: Thc cxper1mcntal points do not 11c on
any of the theoretical curves (see Sec. V B).

with q=0.8q, (q, being the cutoff wave number at which
the plasmon-dispersion curve merges into the continuum),
they find good agreement between theoretical and experi-
mental values of aH. In Figs. 11 and 12 we plot the
wave-number-dependent plasmon-dispersion coefficient,

8. Plasmon-dispersion coeffirient a(q) = [ro(q) —ro(0)], (5.5)

In comparing the theoretical plasmon dispersion with
experiment it is useful to introduce the plasmon disp-ersion

coefficient:

m t) ro(q)

Qg o

Strum suggests that one use the portion of the plasmon
dispersion for which (q/qz) ~ 1. His reasoning is that for
such wave numbers the plasmon dispersion is well
described as being quadratic in q,

ro(q) =co~+—aq
fi

(5.3)

m B ro(q)AH=
()q2

(5.4)

in the RPA. However, such a restricted wave-number re-
gion makes it difficult to extract the dispersion coefficient
from experiment, especially for the alkali metals (I.i, Na,
and K). For Al, on the other hand, Moiler and Otto
suggest using thc laIgc-wave-nuIIlbcI portion of thc cxpcI-
imental plasmon dispersion, since the influence of the
low-lying interband transitions is pronounced in the
small-wave-number region. On modifying the definition
ofu to

for r, =2 and 5. This quantity is related to the quantity a
introduced in Eq. (5.2) by

a(q=0)=a . (5.6)

Several experimental values for Al (r, =2.07) and K
(r, =4.86) are also shown for comparison with the theoret-
ical values for a(q =0).

In the case of Al the comparison witb experiment is not
straightforward. The plasmon-dispersion coefficient in Al
has been measured experimentally to have two different
values for q(0.3q~ and q)0.3q~."""~ In both
wave-number regions, the dispersion is well described by a
quadratic dependence on q. In the small-wave-number re-
gion (q (0.3qF), a(q) =0.2, while in the large-wave-
number region (q & 0.3'), a(q ) =0.4. In comparing
theoretical values for a(q) with expertment, the small-
wave-number rcg1on seems appropr1ate, s1nce the small-
wave-number expansion is used to obtain the theoretical
values. On the other hand, the solid-state effects due to
low-lying interband transitions are expected to modify the
plasI11011 dtsperston 111 sllc11 a regloI1. ' As fol the
large-wave-number region, where such effects are expected
to bc small, the higher-order terms in the expansion are no
longer negligible. For K, the theoretical values based on
both Go(q) and GIP(q) are in good agreement with exPeri-
mcnt.

0.5
1

3

~ 0.4

E
lll

CX

& 0&

0.2
O. I

I

0.5

FIG. 11. Wave-number-dependent plasmon dispersion coeffi-
cient [Eq. (5.5)] for r, =2. Four theoretical curves (MC + PPM,
PPM, H, and RPA) as well as experimental values for Al
(r, =2.07) at q=0 [a(0)] are shown. Experimental results are
due to Sueoka (Ref. 35, open diamond), Kunz (Ref. 38, open cir-
cle with error bar), Kloos (Ref. 39 solid circle with error bar),
Hohberger, Otto, and Petri (Ref. 36, open triangle), Petri and
Otto (Ref. 32, solid triangle), Gibbons et al. (Ref. 37, open circle
without error bar), and Krane (Ref. 40; cross for high q, solid di-
amond for low g).

C. Dynamic form factor

The dynamic form factor S(q, ro) may be calculated
from Eqs. (2.5b) and (2.8a). %'e show the results of our
model calculations of S(q, ro) based on Go(q), G,p(q), and
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I

0.8 ].0

FIG. 12. Same as Fig. 11 for r, =5. Experimental results for
K (r, =4.86) are due to Kunz (Ref. 38, open circle) and Kloos
(Ref. 39, solid circle).
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(Ref. 43) for several values of momentum transfer. We
observe the following.

(1) None of the theoretical curves contain the double-
peak structure which is found experimentally for
q/q~ =1A6 and 1.76. It would seem physically reasonable
to attribute this doUblc-peak structUrc to thc multipair cx-
citations, since we have argued that these begin to play an
important role for q & qr, and since, moreover, such exci-
tations are known to play an important role at such wave
vectors for He. This explanation is consonant with two
others which have recently been put forward: The influ-
ence of the dynamic screening" and the nonanalytical
structure of the self-energy, ' since each of these
represents a specific way of incorporating explicitly the
contribution of multipair excitations to S(q,co). Because
no explicit contribution of multipair excitations is includ-
ed in the response function, Eq. (2.5b), it is scarcely
surprising that a double-peak structure is not found for
S(q,co).

(2) As mentioned earlier, the peak positions of S(q, to)
in MC+ PPM are shifted towards lower values of energy
transfer (%co/Eg ) compared with those in the RPA. How-
ever, the peaks in the experimental curves occur at still
lower values of energy transfer. Green, Lowy, and Szy-
rnanski suggest that, due to a systematic error in the m

calibration in the experiment, the experimental peaks may
appear to be lo~er than they actually are.

VI. DISCUSSION

We have seen that to the extent that the density-density
response function may be written in the form Eq. (2.5b),
once one adopts an expression for 6(q) it is straightfor-
ward to calculate S(q) by using the fluctuation-dissipation
theorem, Eq. (2.9b). If one has, moreover, a second rela-
tion between 6(q) and S(q), one can carry out a self-
consistent calculation of 6(q). The first attempt at such
a self-consistent calculation was the theory of Singwi
et a/. ; in their theory, the Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) equations were truncated by
assuming a form for the two-particle correlation function,
which led to a dielectric function of a form similar to Eq.
(2.2a) with Eq. (2.5a), and 6 (q) is given as a functional of
S(q). On the other hand, Pathak and Vashishta used the
co -sum rule to establish a relation between 6 (q) and S(q)
[Eq. (3.6) in which I(q) is regarded as being identical to
6(q)]. The calculation of 60(q) presented in Sec. III may
likewise be classified as a self-consistent one, since the
mean spherical approximation [Eqs. (2.18) and (2.20)] pro-
vides the necessary relations between S(q) and 6(q), and
S'(q) and 6'(q). However, it differs from the previous
theories in several ways. We list the characteristic differ-
ences.

(1) Self-conststency: Go(q), obtained by Eq. (3.1) from
the Monte Carlo data for S(q), reproduces the initial input
S(q) through the fiuctuation-dissipation theorem [Eq.
(2.9b)] within errors of less than 1%. We note that the,

use of the MSA in our calculation is merely a matter of
convenience in numerical calculations.

(2) Compressibility sum rule and the static spin suscep-
tibility: In the long-wavelength region, where the avail-

able Monte Carlo data have substantial error bars, the
polarization-potential Inodel developed in paper I was
used to obtain 6 (q) and 6'(q). This guarantees the long-
wavelength behavior of the dielectric function and the
static spin susceptibility function. The dielectric function
satisfies the compressibility sum rule exactly, while the
spin susceptibility has a correct long-wavelength behavior.
In other words, the long-wavelength limits of the dielec-
tric function and the spin susceptibility function are ad-

justed to the compressibility and the static spin suscepti-
bility calculated from the Monte Carlo data for the spin-
dependent correlation energy.

(3) Positivity of the pair correlation function g(r): The
Monte Carlo method allows one to calculate g (r) directly;
g(r) is then used to obtain S(q). The problem of negative

g (r) does not exist.
We have already noted that Go(q) differs significantly

from the function 63(q), which is constructed so that the
calculated S(q, to) will satisfy the ro -sum rule. These
functions should be identical if the form (2.5a) were exact.
We argue that the numerical values for the function I(q)
we have obtained [Table II and Fig. 4(b)] are quite accu-
rate in the light of the reliability of the Monte Carlo data
for S(q). Thus 63(q) from these values of I(q) in Eq.
(3.10), if it is used in place of 60(q) to calculate S(q), can-
not reproduce the Monte Carlo S(q). We conclude there-
fore that the inconsistency stems from the form of the
screened response function [Eq. {2.5a)]. In other words, as
long as one adopts Eq. (2.5a) as a form of the screened
response function, such an inconsistency is unavoidable.
One obvious reason is the use of the static local-field
correction in Eq. (2.5a); i.e., to obtain a theory which
yields both S{q) and satisfies the co -sum rule, it is essen-
tial that one take multipair excitations explicitly into ac-
count.

By comparing the results of calculations based on

6&p(q) with the Monte Carlo results for S(q) and E„„(q),
we conclude that for q &qz, multipair excitations do not
make an appreciable contribution to either of these quanti-
ties (nor is their contributin to (co ) substantive). On the
other hand, for qz&q &2.5qF, it is important to take
them into account explicitly in X(q, to), since only in that
way can one hope to carry out consistent calculations of
S(q) and t, ra ), as well as to obtain the observed double-

peak structure of S(q,co).
There is an interesting object lesson to be learned from

our calculations based on 60(q). Although we are able to
calculate correctly S(q) and E„(q), to satisfy the f-sum
rule, and to obtain good agreement with experiment for
plasmon dispersion, the response function, Eq. (2.5b), is
not the correct one—as one finds out when one either
compares theory with experiment for S(q,co) or examines
the (i0 )-sum rule. In the next planned paper in this
series we discuss phenomenological expression for X(q, t0)
which do not suffer from this defect. We shall discuss the
extent to which one can construct a g(q, to) which satisfies
the f-sum rule, yields both S(q) and (c0 ), and leads to a
two-peak structure for S(q,co).

Wc have focused ouI attcntlon ln this papel on calcula-
tions of 6(q) and of S(q,co); thus after presenting our re-
sults for 60(q), we do not attempt an analysis of their ac-
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curacy. If, following Goodman and Sjolander, one con-
siders the co -sum rule for the spin-fluctuation spectral
density, S (q, co), one finds that it is impossible to satisfy
this sum rule with Go(q). The physical reason for this
discrepancy is, again, the role played by multipair excita-
tions. As noted by Goodman and Sjolander, multipair ex-
citations play an even more important role in S'(q, co),
since these contribute terms of order q in all the relevant
sum rules.

In summary, we have examined the consequences of the
screened response function (2.5a) by making full use of the
reliable Monte Carlo data. In a sense we have established
a beginning for a new generation of many-body theories,
which take full advantage of the possibility today of per-
forming virtually exact computation of ground-state prop-

erties, and utilize the input from those computations in
studies of excited states.
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APPENDIX A: MEAN SPHERICAL APPROXIMATION

In this appendix we describe the "mean spherical approximation" (MSA) and derive the expression for the static form
factor within this approximation. The MSA amounts to the replacement of the hole-state sum of the single-particle
propagator by a judiciously weighted collective propagator. In a formal representation, one may phrase the MSA in the
form of Ref. 11,

H= .'
where the average ( . ) of a function of a particle and a hole momentum f(p, h) is defined as

Xe«F —
I

h
I )e(

I
h+ q I

—qF)f(h+ q h)

(y(p, h))(q)= "

g e(q~ —
~

h
~

)8(
~

h —q ~

—q~)

(Al)

(A2)

In the approximation (A2) the free-electron-gas response
function g (q, co) reduces to the simple form

SMsp, (q, co) =2irSp(q)5(co Qq ), —
where

(A5)

Qq iiiq /2m'(q), —— (A6)

a result equivalent to Eq. (A3).
For the interacting electron liquid, in the local-field ap-

proximation, application of the MSA yields

0 liq /2m

co —[fiq /2mSF(q)]

i.e., the single pair continuum is approximated by a collec-
tive mode with an energy A' q /2mS+(q).

In other words, the MSA is equivalent to making the
free fermion equivalent of the Feynman calculation of the
excitation spectrum of He, in that one assumes that a sin-
gle collective mode, of frequency

Qz fiq /2mS(q)——
exhausts the f-sum rule and yields the static structure fac-
tor in suitable approximation. Thus for a noninteracting
electron gas, one has

iiq Uerr q (Qp)p

= [co~ [ I —G(q)]+ [fiqz/2mS+(q)]'j '~' .

and S(q) is given by Eq. (2.18). The corresponding ex-
pression for X(q,co) is

nq /2m
&Msdq ~)=

2 2 2 2co —[iriq /2m'(q)] (nq /m)—U',rr(q)

It should be obvious that the form (A9) for the response
function is adequate only if a subsequent frequency in-
tegral is performed. To find the local-field correction
such that one obtains the correct static form factor, one
simply equates Eq. (A8) with Eq. (A4); the resulting
"best" local-field correction is then

A'q'
Go(q) =1+

4m'cop [SF(q)]' [S(q)]
I

from which Eq. (3.1) directly follows.
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APPENDIX 8: KINETIC ENERGY
OF AN INTERACTING EI.ECTRON GAS

IN THE HIGH-DENSITY LIMIT

In this appendix we calculate the kinetic energy per par-
ticle of an interacting electron gas at high densities. For
small r„ the ground-state energy per particle of an elec-
tron gas in Ry has been calculated to be

Eo 3 1 3 1 2+ (1—ln2)lnr,
5 ~2r2 2m ar,
—0.094—0.013r,lnr, +O(r, )

2.2099 0.9163 +0.062 181
r~ rg

—0.094—0.013r,lnr, +O(r, ) . (8lb)

The use of the virial theorem gives the kinetic energy per
particle as

d Eo
(Ek;„)= —„r,drs

From Eqs. (81) and (82) one obtains

+0.032—0.062 18»r,
2.2099

r,

+0.026r, lnr, +0.013r, +O(r, ) (83)

in Ry. The first term on the right-hand side of Eq. (83) is
the kinetic energy per particle of a noninteracting electron
gas. Thus the relative difference of the kinetic energies
[Eq. (3.1 1)] is

5' ——0.014r, —0.028 14r, Inr, +0.012r, lnr,

+0.0059rs +O(r, ),

where the last term on the right-hand side of Eq. (84) in-
dicates the uncertainty in terms of the r, parameter due to
the lack of calculation of the ground-state energy to order
r, [Eq. (81)t. Neglecting this term one can evaluate 5z to
be 1 4X 10 (r, =0.01), 7.7g 10 (r, =0.1), and 8.1

)&10 3 (r, =0.5), while for r, = 1, one has, from Table I,
5» ——3.6X10 . By keeping the first two terms on the
right-hand side of Eq. (84), Eq. (3.12) becomes

Gs(q)=I(q) —(0.038—0.076 lnr, )r, (q/qr)

This expression demonstrates the limiting behavior Gq(q)
~I(q) as r, ~0
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