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The polarization-potential theory developed by Aldrich and Pines for helium liquids is extended
to electron liquids. Configuration-space pseudopotentials are introduced to describe the modifica-
tions in electron interaction at short distances brought about by charge- and spin-induced correla-
tions. The results obtained for the compressibility and spin susceptibility by Vosko, Wilk, and
Nusair from Monte Carlo calculations are combined with simple physical arguments to obtain new
expressions for the wave-vector-dependent dielectric function and spin susceptibility, which reduce
in the long-wavelength limit to the Monte Carlo results. The relative effectiveness of charge- and
spin-induced correlations is calculated as a function of electron density, and results are compared
with previous calculations for electron liquids and with the corresponding results for the helium

liquids.

I. INTRODUCTION

After almost 50 years of microscopic calculations, elec-
tron liquids continue to be a fruitful field of investiga-
tion.! While there now exist a number of satisfactory cal-
culations of the ground-state energy, spin susceptibility,
and of the static pair correlation function, many of them
carried out during the past decade, there is at present no
satisfactory understanding of the elementary excitation
spectrum or static dielectric function in the region of me-
tallic densities where the dimensionless coupling constant
rg lies in the strong-coupling range, 2 <r; <5.5.

It is perhaps not surprising that this is the case. First,
the influence of band structure poses problems for the in-
terpretation of electron-energy loss and x-ray scattering
‘experiments, while it is difficult to design an experiment
which measures accurately the wave-vector dependence of
the static dielectric function in metals. Second, for wave
numbers comparable to or larger than g, the Fermi wave
number, multipair excitations (which correspond to excit-
ing at least two quasiparticles and quasiholes from the
Fermi sphere) begin to play an important role for both the
dynamic and static dielectric functions. It is, however,
difficult to calculate with confidence the strength and
characteristic energies of this part of the spectrum. Third,
it is likely that as the coupling constant increases so does
the effective mass of the electrons, yet to date no satisfac-
tory calculations which take this into account for either
the static or dynamic dielectric function have been carried
out. Moreover, while there exist a variety of calculations
of the local-field correction to the dielectric function, this
quantity is not directly measurable, and no simple cri-
terion exists which permits one to disentangle local-field
corrections from, for example, multipair contributions to
the static or dynamic polarizability.

In the present series of papers we seek to address the
above theoretical problems in a number of ways. Our
basic approach, which is closely related to the
polarization-potential theory of Aldrich and Pines,?? is to
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combine the results of recent accurate Green’s-function
Monte Carlo calculations of the ground-state energy, and
pair correlation functions* with exact sum rules and phys-
ical arguments to obtain the self-consistent fields, which
determine the local-field corrections and the backflow re-
sponsible for the wave-vector-dependent particle-hole ef-
fective mass. We introduce a phenomenological spectral
density for the multipair excitations and show how mode-
mode coupling between the single-pair—plasmon branch
of the spectrum and the multipair branch influences the
plasmon dispersion. Because the approach we use is
essentially identical to that employed by Aldrich and
Pines in their treatment of elementary excitations in *He
and *He, it is straightforward to compare and contrast the
results obtained for the electron and helium liquids.

In this first paper we introduce electron-hole
configuration-space and momentum-space pseudopoten-
tials to describe the way in which short-range charge- and
spin-induced correlations between electrons act to modify,
at short distances, the influence of the Coulomb potential
between electrons of parallel and antiparallel spin. Where
the electron effective mass m*=m (i.e., no backflow), we
show that the spatial integral of these pseudopotentials is
determined by the compressibility and spin susceptibility
which are in turn known from the Monte Carlo calcula-
tions. Hence for a given choice of the shape (in either
configuration space or momentum space), the pseudopo-
tential is determined uniquely. In this way we arrive at a
simple physical picture for the static local-field correction
to the dielectric function, one which facilitates compar-
ison of the present and previous calculations.

In the second paper’ in this series we use the mean
spherical (or hydrodynamic) approximation to calculate
the local-field correction from the variational calculations
of the static form factor S(g) and the correlation energy.
We develop an interpolation procedure which enables us
to pass smoothly from the low momentum transfer region,
where, for example, the pseudopotentials developed in the
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present paper provide a more accurate account of S(q)
than do the Monte Carlo calculations, to the region of
wave vectors ( > gp) where the latter calculations are reli-

able; we use this procedure to calculate the ground-state
energy as well, and we compare our results with those of a

calculation using our polarization potentials.

In a planned third paper® of the present series we con-
sider the role played by multipair excitations and back-
flow. We use the o3-sum rule to examine constraints on
their spectral density and discuss the wave-vector depen-
dence of the interplay between multipair excitations and
the single-pair—plasmon branch in determining both S(q)
and the static dielectric function. We introduce a simple
model for multipair excitations and use this to calculate
the plasmon dispersion. In the fourth paper, we use sum-
rule arguments to place limits on the importance of
effective-mass corrections arising from backflow, and
present as well a microscopic calculation of the electron
self-energy.

The outline of the present paper is as follows. In Sec. II
we define the polarization potentials and pseudopotentials
and relate these to the response function for the electron
liquid. We give in Sec. III the input parameters from
Monte Carlo calculations required to determine the
electron-hole pseudopotentials. In Sec. IV we give the re-
sulting effective potentials for two choices of shape of the
short-range electron-hole pseudopotential: a Yukawa
form and a dielectric form. In Sec. V we compare our re-
sults with previous calculations of local-field corrections.
In Sec. VI we present the nonlocal spin susceptibility. In
Sec. VII we give a brief summary of principal results and
conclusions. We give in the Appendixes expressions for
the polarization potentials in the high-density limit and
for a neutral hard-sphere Fermi gas, and present as well a
discussion of local-field corrections.

II. POLARIZATION POTENTIALS
AND PSEUDOPOTENTIALS

The dielectric function of an electron liquid may be
written in the form (sc denotes screened)
2
eg0)=1— T ¥ (gw) , @.1)
q

where X .(g,0) describes the response of the electrons to
the sum of an external longitudinal field, ¢.(q,®) [Which
couples to the density fluctuation p(g,®)], and the induced

polarization field,

2
Bou(g,0)= 4:5 (plgy)) .

(2.2)

If one takes for X (q,w) the free-electron (Lindhard)
response function, X%g,®), one obtains the usual random-
phase approximation (RPA) expression for e(g,0), in
which all effects of the Coulomb interaction are described
by the polarization field, Eq. (2.2).” As is well known, the
RPA is valid in the very-high-density limit, r; << 1, where
r, is the interelectron spacing measured in units of the
Bohr radius. As one goes to metallic (2<r;<5.5) and
lower densities, an expression of the form (2.2) no longer
provides an accurate description of the consequences of
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electron interaction, primarily because it fails to take into
account the short-range (in space) correlations which act
to keep electrons from feeling the full consequences of the
field, (2.2). An approximate way to take these latter
correlations into account is to modify the expression (2.2)
to read

4rre?
s

boilg,0)= (p(g,0)) , 2.3)

where f;{p(g,w)) is a frequency-independent phenomeno-

logical pseudopotential. To the extent that the charac-

teristic frequencies associated with the short-range corre-

lations are large compared to the frequencies for which

(2.3) is applied, modeling their influence by a static field™
should provide a reasonable approximation. If one further

assumes that the response of the electrons to the sum of

the external field and the modified polarization field, Eq.

(2.3), is given by the Lindhard function, one finds

X%g,0)
1—-£iX%q,0)

The dielectric response of the electron liquid is a spin-
symmetric response to an external field that couples to the
density fluctuations. The system response to an external
field that couples to spin-density fluctuations is given by
the wave-number- and frequency-dependent paramagnetic
(spin-antisymmetric) response function X p(g,w). By anal-
ogy with (2.3), we take electron interaction into account
by calculating the system response to the external field
plus a spin polarization field,

bro(g,0)=fo(g,0)) ,

where (o(g,w)) is the induced spin-density fluctuation.
On making the further approximation that the system
responds as a gas of free electrons to the sum of the exter-
nal field and the local field, (2.5), we obtain

X’(g,0)
1—fx%g,0)

The expressions (2.3)—(2.6) are the analog, for charged-
particle systems, of the scalar-polarization potentials in-
troduced by Pines and Aldrich?3 to treat the consequences
of short-range correlations in neutral quantum liquids. As
is the case with the neutral fermion systems, the polariza-
tion potentials, (2.3) and (2.5), may be given a simple
physical interpretation as spin-symmetric (and -antisym-
metric) combinations of effective interactions between
electrons of parallel and antiparallel spin,

4rre?

Xslg,0)= 2.4)

(2.5)

Xp(go)=—p3 (2.6)

Vi'=—7—+f;", (2.7)

q

2

V;*=i‘§§—+f;* : 2.8)

Thus one has

2
Vi=igevih=2" 4 g, 29)
q

Vi=s (V' —vih=f2, (2.10)
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where
fi=5+50, (2.11)
(2.12)

=403 1.

To make explicit the link to the polarization potential ap-
proach to neutral Fermi liquids, we note that the spin-
coherent and incoherent response functions of the electron
liquid take the form

X%g,0)
1-V9%%q,0)

where the potentials V¢ are given by Egs. (2.9) and (2.10).

Expressions of the form (2.4) and (2.6) are found in
many approximate microscopic theories; the potentials f,
and f; are interpreted as local-field corrections to the
RPA.8-17 The requirement that the response of the sys-
tem to a static long-wavelength perturbation (a uniform
compression) must give the correct compressibility pro-
vides a limit on the long-wavelength behavior of €(g,0)
(Ref. 7) and hence f;. The static long-wavelength limit of
the dielectric function is given by

2

(0]
i =1 £, .
‘}l_rg)e(q,O) + 24 (2.14)

XS g,0)= (2.13)

where wp=(47me2/m)l/ 2 is the plasma frequency and s,
the isothermal sound velocity, is related to the compressi-
bility by

k=1/mns? . (2.15)

From Egs. (2.1), (2.4), and (2.14) one obtains the condition

lim fi=fo=[V/N%0)l(ko/k—1) (2.16)
q—
on making use of the result
lim X,o(,0)= ——— . (2.17)
q—0 ms
Here
Noo)=2 I (2.18)
2 Ep

is the free-particle density of states, ¥ is the volume,
Ep=#%q}/2m, and ko=1/mns} is the free-particle
compressibility, with so=7igy/V3m. It is convenient to
introduce the dimensionless quantity

Fs=f$N%0)/V . (2.19)
Then, Eq. (2.16) becomes
F=ky/k—1. (2.20)

From Eq. (2.6) one obtains a similar constraint on f7,

lim f7=f§=[V/NYO)IXp/Xp—1), (2.21)
q—

where

Xp=lin})Xp(q,O) (2.22)
q—

and
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X3=— lim w5x%g,0) (2.23)
q—-)

is the free-electron spin susceptibility. It is also con-
venient to define

Fe=f§N%0)/V . (2.24)
Then Eq. (2.21) becomes
Fo=X3/Xp—1. (2.25)

Equations (2.20) and (2.25) serve as boundary conditions
on the pseudopotentials f," and f,', which determine the
effective interactions between electrons of parallel and
antiparallel spin. The parameters F* and F° resemble, but
are not identical to, the parameters F§ and F§ which, to-
gether with the effective-mass parameter F}, describe the
influence of electron interaction on « and Xp in Landau
Fermi-liquid theory.!® In the present calculation the in-
teracting electron density of states N(0), and hence Fi,
appear nowhere because in (2.4) and (2.6) the free-electron
response function enters. In Landau theory expressions of
the form (2.4) and (2.6) are found; however, X%q,) is re-
placed by a long-wavelength Lindhard response function
for particles and holes of effective mass m*. The relation-
ship between our parameters and the corresponding Lan-
dau parameters is thus F**=Fg® /(14 F}/3).

Finally we note that the dielectric function (2.1) with
the screened response function of the form (2.4) satisfies

the f-sum rule’

2
. a)p
lim e(g,0)=1——". (2.26)
W—> 00 @
An analysis of the > sum rule is given in the second pa-
per.

III. INPUT PARAMETERS

Before constructing the polarization potentials we dis-
cuss the input parameters which determine their long-
wavelength limit. We determine the compressibility, and
hence F*, with the aid of an interpolation formula for the
correlation energy derived by Vosko, Wilk, and Nusair
(VWN).' Their formula is based on the results of recent
Monte Carlo calculations by Ceperley and Alder.* The
compressibility may be calculated from the correlation en-
ergy by the thermodynamic relation

d> 2.d
drs2 re drg

2
Ko a a
R
K T 6

E cor(15)
N ’

(3.1

where a=(4/97)'/3, N is the total number of electrons,
and r;=1/aqrap, with ag the Bohr radius. In Table I we
list the VWN compressibility for different values of r; and
compare it with the results of various microscopic
theories. We see that the latter are in quite good agree-
ment with the Monte Carlo results. Put another way, the
calculated values of the compressibility are not sensitive to
the particular methods of approximation used to calculate
the correlation energy.

The VWN results, as well as those of other theories,
lead to a compressibility which increases with r, and be-
comes infinite in the vicinity of »;=5.2, after which it be-
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TABLE 1. Compressibility ratio (ko/k) for several values of r; calculated from correlation energy in

various theories.

rs VWN? HF® RPA° H¢ NP® STLSf vse LB" ur

1 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83
2 0.64 0.67 0.64 0.65 0.65 0.64 0.64 0.64 0.64
3 0.45 0.50 0.45 0.46 0.46 0.45 0.43 0.45 0.46
4 0.26 0.34 0.24 0.26 0.27 0.25 0.21 0.25 0.26
5 0.05 0.17 0.03 0.06 0.07 0.05 —0.03 0.05 0.05
6 —0.16 0.005 —0.19 —0.15 —-0.15  —0.17 —0.29 —0.15

2Present calculation based on the interpolation formula for correlation energy by Vosko et al. (Ref. 19).

*Hartree-Fock approximation.
‘Random-phase approximation.
dHubbard (Ref. 8).

®Noziéres and Pines (Ref. 20).
fSingwi et al. (Ref. 9).
8Vashishta and Singwi (Ref. 15).
"L owy and Brown (Ref. 16).
iUtsumi and Ichimaru (Ref. 14).

comes negative. In the actual Monte Carlo calculations,
however, one assumes that the background of positive ions
(in which the electrons are impressed) is infinitely rigid;
hence no charge inhomogeneity will develop, and the sys-
tem will remain stable. Of course, for an actual metal, at
these densities [e.g., Cs (r,=5.56)], the positive ions are
not rigid, and charge-density waves could in principle
develop to stabilize the system.

VWN have used the Monte Carlo calculations of Ceper-
ley and Alder for the correlation energy of a ferromagnet-
ic electron liquid* to obtain an interpolation formula for
the spin-dependent correlation energy. We use their “fit”
(in Table 6 of Ref. 19) to the spin stiffness in order to cal-
culate the paramagnetic spin susceptibility. The VWN re-
sults for the paramagnetic spin susceptibility are given for
different values of 7, in Table II, while these are compared
with other theories'"2!~2 and experiment?* for r,=3.22
(Li) and »,=3.96 (Na) in Table III. From Table III one
sees that the VWN values for the susceptibility are con-
sistent with experiment. We use these values of the
paramagnetic spin susceptibility to determine the static
long-wavelength limit of the spin-antisymmetric polariza-
tion potential. The values of F* and F?, together with

F'=F'yF® (3.2)

and
F'=F"—F°, (3.3)

calculated from Egs. (2.20) and (2.25), are listed in Table
IV and plotted in Fig. 1 for 0<r; <20.

IV. POLARIZATION-POTENTIAL PARAMETERS

The general form of the pseudopotentials, (2.7) and
(2.8), which describe the effective interaction between elec-
trons of parallel and antiparallel spin, may be obtained by
simple physical arguments. As we have noted earlier, the
major physical effects that f;' and f,' are designed to
take into account are the short-range correlations that
prevent electrons of parallel (antiparallel) spin from sam-

pling the full consequences of the Coulomb restoring force
at short distances. These pseudopotentials must therefore
be attractive (microscopically they describe particle-hole
interactions) and, apart from the possible consequences of
dielectric screening (see below), may be expected to have a
range which is comparable to the interparticle spacing.
Since short-range correlations of necessity involve com-
paratively high frequencies, a description of their conse-
quences by a static field may be expected to be valid for
frequencies, for example, w < Ep /#.

Consider, for example, the Fourier transform of V',
(2.8);

2 - —
V”(r):-l—z 477';3 +fq11 el T
4 T4
2
=T+f“(r) . (4.1)

For small r, as a result of the Pauli principle, we might
expect that £'(r) will cancel the r ~! singularity in V''(#);
for large r, its effects are likely small. A simple form for
S () which meets these criteria is

F1(r)=—(e*/rexp(—g 1) , (4.2a)

TABLE II. Paramagnetic spin susceptibility for several
values of r; calculated from spin-dependent correlation energy.
s Xp/XP Xp (1076)°
1 1.15 2.99
2 1.31 1.69
3 1.46 1.26
4 1.62 1.05
5 1.79 0.93
6 1.98 0.85

3% =2.59x10"%,! in cgs units is the noninteracting value.
°In cgs units.
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TABLE III. Comparison of the paramagnetic spin susceptibility (X 10° in cgs units) in different
theories with experiment for r;=3.22 (Li) and 7,=3.96 (Na).

L m,/m?* H* NP¢ SSTL! VWN* Expt.f
Li 3.22 1.66 2.62 2.09 1.76 1.99 1.98+0.04
Na 3.96 1.00 0.97 0.84 0.86 1.06 1.07+0.03

2The cyclotron mass ratio due to Ham (Ref. 21).
PRice (Ref. 23).

“Silverstein (Ref. 22) as corrected by Rice (Ref. 23).

dSingwi, Sjolander, Tosi, and Land (Ref. 11).

“Present calculation based on the interpolation formula for spin-dependent correlation energy by Vosko

et al. (Ref. 19).
fKushida, Murphy, and Hanabusa (Ref. 24).

where q,,, the inverse correlation (screening) length for
this “exchange” hole around a given electron may be ex-
pected to be ~grp~7rq ! where r, is the interelectron spac-
ing. The corresponding expression for f'(r) is

P =—(e/r)exp(—q,,r) . (4.2b)
With the form (4.2) we find

lirr(l) V''(r)=e’q,; , (4.3a)

r—

lim Vi ri=e’q,, , (4.3b)

r—

while for large r these effective potentials are essentially
unchanged from their Coulomb values. On making use of
Eqgs. (4.2) we find

2

q°+4q5
2
T ... A (4.4b)
q°+qx5,

We further note that the spatial integrals of the pseudo-
potentials, f''(r) and f''(r), are determined by the
compressibility and spin susceptibility. More specifically,
one has

= [ d* f1(n=F"v/N%0), (4.52)
= [ d’ frin=F"v/N%0). (4.5b)

Thus for pseudopotentials which may be characterized by
a single parameter (e.g., ¢,; and g,,), once the form of the
pseudopotential is chosen, its wave-number dependence is
uniquely determined. With our Yukawa pseudopotentials,
Eqgs. (4.2), on making use of Egs. (4.5) we find

g11/qrr=(—1/F )%, (4.62)
g1 /qer=(—1/F,)"/*, (4.6b)

where qpr=(6mne?/E)!/? is the Fermi-Thomas wave
number. We list the ratios q,; /9F1, 41, /9FT> 911 /qF, and
g,,/qr in Table V, and show V''(r) and V'!(r) in Fig. 2
for r,=1, 5, and 20. From Table V and Fig. 2 one sees
the following.

(i) For a given r;, the inequality, V'(r =0) > V''(r =0)
holds.

(ii) For a given ry, as r increases V'"*(r) goes over more
rapidly to Coulomb behavior than does V''(r).

(iii) V''(r) is almost independent of r;, while ¥'"(r) for
grr <2 decreases with increasing 7;. An equivalent state-
ment is that g,,/qr is nearly independent of r;, while
q:,/qF decreases rapidly with increasing r;.

These results possess a simple physical interpretation.
The short-range correlations between antiparallel spin
electrons, which determine g,,, provide a measure of what
the “unaided,” short-range part of the Coulomb interac-
tion accomplishes in creating a “correlation hole” around
a given electron; this hole reduces the effectiveness of the
very short-range part of the interaction, and cancels the

TABLE IV. Polarization potentials in the long-wavelength limit calculated from the compressibility
and the paramagnetic spin susceptibility.

rs Fs Fa FTT FN
1 —0.17 —0.13 —0.31 —0.04
2 —0.36 —0.23 —0.59 —0.12
3 —0.55 —0.32 —0.86 —0.23
4 —0.74 —0.38 —1.13 —0.36
5 —0.95 —0.44 —1.39 —0.51
10 —2.03 —0.65° —2.68 —1.38
15 —3.18 —0.73% —3.91 —2.45
20 —4.40 —0.77° —5.17 —3.63

Interpolated from the values of F* at =35, 10, and 20.
YExtrapolated from the values of F*at r;=1,2,...,5.
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5

[¢] 5 10 15 20

FIG. 1. Polarization potentials in the long-wavelength limit.
The dashed straight line indicates the Hartree-Fock value,
FHF)= —(a/m)r,.

r~! singularity near the origin. For parallel spin elec-

trons, on the other hand, it is the combined effect of the
Pauli principle and Coulomb correlations which keeps
electrons apart. As a result, near the origin, the strength
of the effective interaction between parallel spin electrons
is weaker than that between antiparallel spin electrons,
while the range of the “exchange plus correlation hole,”
which modifies the interaction between electrons of paral-
lel spin, is greater than that of the correlation hole, which
modifies the interaction between antiparallel spin elec-
trons.

V''(r) is almost independent of density because the
Pauli principle is quite effective in keeping electrons
apart; thus the influence of the short-range Coulomb
correlations on V''(r) is small, and could, in fact, be
neglected in first approximation. The weak density
dependence of V''(r) reflects the fact that the higher the
density, the more effective is the Pauli principle in keep-
ing electrons of parallel spin apart. The opposite (and
strong) density dependence of V'!(r) reflects the fact that
the lower the density, the more effective are the short-
range Coulomb correlations in keeping electrons apart.
As one might expect, since the coupling constant which
characterizes the importance of Coulomb interactions is
proportional to rg, the relative importance of Coulomb
correlations increases with r; (i.e., with decreasing electron
density). Thus at ;=35 (or 20) the ratio of the correlation
hole around an electron to the interparticle spacing,
qr/4q;,, is considerably larger than at r,=1. Put another
way, at these lower densities, Coulomb correlations are

TABLE V. Effective wave number of polarization potential.s.

rs q11/9FtT q1./qFT qwm/qF q+./qr
1 1.81 5.06 1.47 4.12
2 1.30 2.87 1.50 3.30
3 1.08 2.08 1.52 2.93
4 0.94 1.66 1.53 2.71
5 0.85 1.41 1.54 2.56
10 0.61 0.85 1.57 2.19
15 0.51 0.64 1.60 2.02
20 0.44 0.53 1.60 1.91
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V=11
4

VMrg=5)

V(r)/eaqF

v:[[rs=2§]
Vs =20]
VP lrs=5]
V=1

FIG. 2. Effective interactions between electrons of parallel
and antiparallel spin, ¥''(r) and V'!(r), in units of e’qy for
rs=1, 5, and 20. The dashed curve shows the bare Coulomb po-
tential ',

considerably more effective in keeping electrons of anti-
parallel spin apart, thereby preventing them from sam-
pling the consequences of the very-short-range part of the
Coulomb interaction. In general, as r, increases, V''(r)
approaches more nearly to ¥''(r); in the very-low-density
limit (rg >>20), Coulomb correlations may be expected to
dominate exchange correlations, and V'™ (r)=V"'(r).

It is instructive to consider the high-density limit,
rs << 1. We show in Appendix A that in this limit one has

g1y =V2qp[ 1+ (ar, /4m)Inr,—1.49)+ - - - 1712 | (4.7a)
gy, =2V2qp[lary /m)(2. 716 —Inr)+ - - - 1712, (4.7b)

Thus in the high-density limit the ratio of the exchange
hole to the interparticle spacing goes to a constant, while
the strength of the interaction between parallel spins takes
on the value (given in Ry)

5.43

s

V'(r=0)=V2e’qp= 4.8)
On the other hand, the radius of the correlation hole
shrinks to O; in this limit, then, the role of Coulomb-
induced correlations between electrons of antiparallel spin
is negligible, and the short-range part of their interaction
goes as »~! to very nearly the origin. In this limit one
has, moreover,

M"__ 47Te2

LR

1
¢ =0,

(4.9)

(4.10)
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2
_2me” 4.11)

9*+245

The result, Eq. (4.9), is just the Hubbard local-field ap-
proximation, as modified by Geldart and Vosko.”> We
thus see that the modified Hubbard local-field correction,
involving as it does only short-range correlations between
electrons of parallel spin, is exact in the high-density lim-
it, and that in fact Eq. (4.9) provides a good first approxi-
mation to f," for metallic electron densities. On the other
hand, by the time one reaches the onset of metallic densi-
ties (r; <2), Coulomb correlations between electrons of
antiparallel spin play a significant role, and must be taken
into account if one seeks a quantitative account of the
dielectric function and dynamic form factor.

It is likewise illuminating to compare these results with
the corresponding calculations of Aldrich and Pines® for
liquid *He and with the results obtained for a dilute hard-
sphere Fermi gas.?® In the case of liquid *He, Aldrich and
Pines find f1*(r=0)> f""(r =0).2” This means that a pair
of 3He particles with antiparallel spin interacts more
strongly than that with parallel spin. In addition, the
range of f''(r) (r,; in Ref. 3) is longer than that of f'(r)
(ry, in Ref. 3) in liquid *He. Thus in both the electron
and helium liquids the Pauli principle acts to enhance the
role of short-range correlations resulting from particle in-
teraction in keeping particles of parallel spin apart and
reducing the effectiveness of the very short-range part of
the interaction. Moreover, in both liquids, as one in-
creases the density, the effective interaction between parti-
cles of antiparallel spin at short distances increases, be-
cause short-range correlations become less effective in
keeping particles apart.

There is, however, an important difference between the
electron liquids and the ‘He liquid; in the latter, at all den-
sities, the radius of the “correlation hole” is close to that
of the “correlation plus exchange hole,” while
V' (r=0)—V'"(r=0) is small compared to either
V' (r =0) or V''(r=0). In other words, for liquid *He,
the influence of the Pauli principle is small compared to
that of the direct particle interactions, and may, in fact, be
neglected to first approximation. [As a result, the effec-
tive interaction between “He quasiparticles in liquid “He is
very close to that of *He quasiparticles (of either spin) in
liquid *He at the same density.] In contrast, as we have
just seen, for parallel spin electrons at all densities it is the
Pauli principle which plays the dominant role, with parti-
cle interaction a small correction.

The dilute hard-sphere gas, considered in Appendix B,
resembles the electron liquids. The dimensionless volume
integral of the effective interaction between antiparallel
spin F' is proportional to agr; this quantity thus provides
a measure of particle correlations alone in keeping parti-
cles apart, and so reducing the overall effectiveness of the
interaction, which becomes, in this limit, a weak contact
potential. On the other hand, the dimensionless volume
integral of the interaction between parallel spin particles is
is proportional to (agp)*. Pauli principle correlations thus
are so effective in keeping particles of parallel spin apart
that their net interaction is negligible compared to that be-
tween antiparallel spin particles.

fi=fi=-
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The form we have proposed for the pseudopotentials,
S1(r) and f'4(r), is not unique. For example, pseudopo-
tentials which have a low-g behavior identical to Egs. (4.4)
but a somewhat different large-g behavior are

Tt 4’ﬂ'ez
=—— 4.
f (a0 (4.12a)
~ 4qre?
= e (4.12b)

Bl qze”(q,O) ’

where the screening factors €,; and €, are given by their
static RPA value for densities which correspond to

411 =4qFr and q,, =gp, respectively:

2
g1t

e,,(q,0)=1+;2—F(q,0) , (4.13a)
2
qn
e“(q,0)=1+?2—F(q,O) , (4.13b)
where
2
1 4r q q +2qr :
F(@O)=—+—|1—|—"—| [In|—— . (4.14)
2 2 quF ] 9-29r

For small ¢, F(q,0)=1, and one recovers Egs. (4.4); the
behavior of ;' and £, is, however, modified at larger g.
This “dielectric” form of the pseudopotential is likewise
uniquely determined by the Monte Carlo calculations of
the compressibility and spin susceptibility; however, as
may be seen in Fig. 3 the short-range character of the re-
sulting effective interactions is somewhat different. The
overall physical picture we have presented for the Yukawa
pseudopotentials is, of course, maintained; the differences
between the Yukawa and dielectric pseudopotentials is one
of detail, a comparatively small quantitative difference,
not a qualitative one.

V. LOCAL-FIELD CORRECTIONS

It is instructive to compare our results for f; with pre-
vious calculations.>® %1325 To do so we introduce the
local-field correction

rg =4
1o - r:=2 from Eq'm{zl—
//’
///
7 —_
// ,”\ -
Cs 7l //’/EC\-M'A
S sl 74 ~ =7 g0
. A /,/
Ol
el
A
//
//
| | | ]
% [ 2 3 4
a/qg

FIG. 3. Comparison of the local-field corrections, defined by
Eq. (5.1), calculated with the Yukawa [Eq. (4.4)] and dielectric
[Eq. (4.12)] polarization potentials for ;=2 (dashed curves) and
4 (solid curves).
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q2 5
G(q) 477e2fq . (5.1)
The physical interpretation of G (g) and some of its prop-
erties are considered in Appendix C. Various forms of
G (q) have been proposed. Among these, we may distin-
guish three general types of local-field corrections.

(i) Hubbard: G(q) in the Hubbard approximation® as
well as the modification proposed by Geldart and Vosko?
is r, independent as a function of q/qr. G(q) increases
monotonically as a function of q /gr and levels off at large
q (>>qp) with a limiting value +.

(ii) Self-consistent schemes: Singwi and his co-workers
have developed several self-consistent schemes in calculat-
ing the local-field correction. In their original theory® the
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) equa-
tions were truncated by assuming a form for the two-
particle correlation function, which led to a dielectric
function with a form similar to Eq. (2.1) and Eq. (2.4)
with G (g) expressed as a function of the static form factor
S(q). On the other hand, for a given G(g), S(g) may be
uniquely determined by the dielectric function via the
fluctuation-dissipation theorem. Thus this link gives a
method of calculating G (q) self-consistently. The G(q)
thus obtained, including later variations, is similar to
Hubbard’s for g <<gp, but rises above + for large
q (>qr). Our G(q) has a similar behavior.

(iii) G(q)s with a peak structure at g~2qp: Geldart
and Taylor,12 Toigo and Woodruff,!? and recently Lantto
et al.?® obtained a local-field correction with a marked
peak structure near g=2qp. This is a characteristic
feature of the Hartree-Fock approximation. Utsumi and
Ichimaru'* incorporate this peak structure in their choice
of G(q). However, whether such a peak structure survives
after higher-order terms in perturbation theory are con-
sidered is not known at present and under debate.!

In Fig. 4 we compare our calculated values of G(q)
with these representative calculations of G (g); those by
Hubbard® (H), Singwi, Tosi, Land, and Sjlander’® (STLS),
Geldart and Vosko® (GV), Vashishta and Singwi'® (VS),
and Utsumi and Ichimaru'* (UI-ID. In Fig. 5 we show the

LUI-TO rg=4
1.0~ k VSr=4
/"/ e T re=20
N ./'/ rs=4
= // rg=|
z S,
© o5k S s STLS
./_, /A/ /—/__./—-/_“_, e ._G—V._— p—
R o
- Iz //
L7 =
= 1 l 1 J
% | 2 3 4
a’/9g

FIG. 4. Comparison of local-field corrections. Our G(q) is
shown for r;=1, 4, and 20 (solid curves). The G(q)’s due to
Hubbard (H: Ref. 8), Singwi, Tosi, Land, and Sjolander (STLS:
Ref. 9), and Geldart and Vosko (GV: Ref. 25) are r; indepen-
dent. The G(gq)’s due to Vashishta and Singwi (VS: Ref. 15) and
Utsumi and Ichimara (UI-II: Ref. 14) are shown for r;=4.
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static dielectric function €(g,0) in our polarization-
potential model [Egs. (2.4) and (4.4)], and compare it with
that in RPA for r,=2 and 4. We see that our Yukawa
model for f*(r) leads to results for G (g) which are close to
that obtained by Geldart and Vosko for small r; ( <1) and
at small wave numbers (¢ <gr). For g >>gp, ours lie be-
tween those of STLS and Vashishta and Singwi. While
G(q) is useful for the purpose of comparing different
theoretical calculations of dielectric response, it is not a
directly observable quantity; what is, in principle, observ-
able is €(q,0) and/or €(g,w). However, as noted in the In-
troduction, there are two reasons why one would expect
the values of €(q,0) or e(g,®) to depart (perhaps appreci-
ably) from those calculated using our values (or any oth-
ers) of the local-field correction:

(i) Electrons in general may be expected to possess an
effective mass, and the particle-hole excitations will, in
general, be characterized by a g-dependent effective mass

*
mg.

(ii) Multipair excitations may contribute in an essential
way to X.(g,®) and hence to €(q,w) and €(q,0).

We could incorporate the first class of corrections into our
calculations by introducing an effective mass m;' into
X%gq,w); however, in the absence of accurate microscopic
calculations or reliable experimental measurements of m; ,
it does not seem worthwhile to do so at this stage. We
consider this question further in a planned paper®, at
which time we also take up the question of how, at least
phenomenologically, one can incorporate multipair excita-
tions into the theory.

Finally we comment on the high-q behavior of G (g). It
is known that the form of the dielectric function (2.1) with
(2.4) leads to the relation?®—3!

lim G(g)=1—g(0), (5.2)

g—

where g (0) is the value of the pair correlation function at
zero interparticle separation. This condition, however,
does not provide as powerful a constraint as the compres-

| Present calculation
‘l ———RPA
|
10— |
|
=} ‘.
=
w
5_
rg =2
o I | 1 1
(¢} | 2 3 4

a/qg
FIG. 5. Static dielectric function €(g,0) in our polarization-
potential model [Eqgs. (2.4) and (4.4) (solid curves)] and in RPA
(dashed curves) for r;=2 and 4.
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sibility sum rule does at ¢g—0. This is because it is in the
form 1— fX*( %(g,w) that the Lindhard function is modified
[Eq. (2.4)]. Namely, the function | f; | (<G (g)/q*) drops
rapidly (o«q~?) for large ¢ (>>gp). In particular, since
X%g,0) g2 for ®=0 and large g, the static screening
property is insensitive to the values of G(g) at ¢ >>¢p.

VI. NONLOCAL SPIN SUSCEPTIBILITY

It is straightforward to use the pseudopotentials derived
in the preceding section to calculate the nonlocal static
spin susceptibility. According to Egs. (2.6) and (2.21) it is
given by

x%q,0)
Xp(q,0)=—u3Xq,0)=—pi—=-L——  (6.1)
rP\q KB q 1B 1——f:xﬂ(q,o)

where fy, the spin-antisymmetric electron-hole pseudopo-
tential, is given in Eq. (2.12). In the long-wavelength limit
this equation becomes

usN%0)/V
14 F*°

We give in Fig. 6 a plot of —nfy for several values of r;
to bring out the wave-vector dependence of fq for our
choice of pseudopotential, while in Fig. 7 we give our re-
sults for Xp(g,0)/X p for some values of ;.

We note that the ¢ dependence of our fj is chosen such
that it is consistent with experimental values at g—O0.
Thus this provides an exact boundary condition for con-
sistency check in other theories. Singwi and his co-
workers have calculated f7 [I(g) in their notation.]'®!!
We compare our f; with the one in their second version n
in Fig. 6. We find that the ¢ dependence of our fq is,
roughly speaking, similar to theirs in Ref. 11, which is a
marked improvement over their first version (Ref. 10).
However, note some discrepancies between their values of

f¢ and ours at g—0.

limOXp(q,O)EXp= (6.2)

Present calculation
— —— SSTL

-nfg (eV)

a/ag

FIG. 6. Spin-antisymmetric pseudopotential f§ for r,=1, 2,
4, and 10. The solid curves represent our calculations and the
dashed curves those of Singwi, Sjélander, Tosi, and Land (Ref.

1.
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Present calculation
———RPA rg=2

Xp(q,O)/)(P

a/qg

FIG. 7. Static spin susceptibility Xp(g,0) in our model [Egs.
(2.6) and (4.4)] for r,=2, 4, 10, and 20 (solid curves), and in the

RPA (dashed curve) for r,=2. The functions are normalized by

their values at ¢ =0 (Xp).

VII. DISCUSSION

In the approach presented here, what is new to the cal-
culation of the response functions of electron liquids (the
dielectric function and spin susceptibility) is the introduc-
tion of simple configuration-space pseudopotentials to
describe the modification in electron interaction at short
distances brought about by charge- and spin-induced
correlations. The advantages of the present approach are
perhaps fourfold.

(i) It provides a simple (built-in) way of sorting out the
role of charge-induced correlations from spin-induced (i.e.,
Pauli-principle-induced) correlations because one distin-
guishes at the outset between the interaction of parallel
and antiparallel spin electrons.

(i) It provides a simple way to incorporate in the
relevant response functions the results of recent “exact”
Monte Carlo calculations of static liquid properties.

(iii) It provides a useful tool for the many-body theor-
ists who are interested in comparing the consequences of
particle interaction in quite different systems.

(iv) It provides a simple physical perspective on previ-
ous calculations of the response functions of electron
liquids.

On the other hand, the theory is phenomenological; it is
consequently difficult to assess its validity at finite wave
vectors, a question to which we return in the following pa-
pers in this series. The interested reader can perhaps take
encouragement from the fact that although the various
local-field corrections differ appreciably from one another
(see Fig. 4), the corresponding static dielectric functions
do not, while our expression for the nonlocal spin-density
response function should provide a simple useful input
into calculations of those metallic properties which in-
volve this quantity.
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APPENDIX A: POLARIZATION-POTENTIAL
PARAMETERS IN THE HIGH-DENSITY LIMIT

In this appendix we derive the polarization-potential pa-
rameters in the high-density limit by using the analytic ex-
pressions for the compressibility and the spin susceptibili-
ty in the random-phase approximation (RPA). Within the
RPA the correlation energy per particle has been calculat-
ed to be32—3

Eco]r:rjl = ;22—( 1—1n2)lnr, —0.094
+0.0187Inrg+ - - - . (A1)
From Eq. (3.1) the compressibility ratio is
o _ 1— g—rs - —17( 1—In2)a?r2—0.006a%r Inr,
Krpa ™ s
—0.003ar3+ - - - (A2)

On the other hand, the paramagnetic spin susceptibility
ratio in the RPA is®%%7

2
X2 a 1

ar
m 2

Qarg

0.306—In

XRrpPA T

+ (A3)

Then using Egs. (A2) and (A3) in (2.20), (2.25), (3.2), (3.3),
and (4.6), one obtains in the long-wavelength limit

172
a

1+ )

g =V"2qp

7y
T

](—1.49+1nrs)+ e

(A4)

ar

91y =2‘/24F

-172
](2.716—1nrs)+ ] .
T

(A5)

At this point the meaning of the Hubbard approximation
becomes clear. The scheme used by Hubbard as modified
by Geldart and Vosko?® corresponds to taking

qn=V2qr, (A6)

(A7)

gy =00

in the long-wavelength limit.
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These expressions are obtained from Egs. (A4) and (AS)
by taking the high-density limit. Thus our scheme
reduces to that of Hubbard in the long-wavelength limit at
high densities, the latter of which in turn correctly repro-
duces the RPA results for compressibility and spin sus-
ceptibility.

APPENDIX B: COMPARISON WITH THE LANDAU
PARAMETERS OF A DILUTE HARD-SPHERE
) FERMI GAS

It is instructive to compare the polarization potentials
of an electron liquid and those of *He with the Landau pa-
rameters of a dilute hard-sphere Fermi gas. As we shall
see, there is a close similarity among the effective interac-
tions of these systems.

From the expression for the Landau quasiparticle in-
teraction,?® one easily obtains the following Landau pa-
rameters for a dilute hard-sphere Fermi gas:

F%:iaqp 1+—4—(2+ln2)aqp , (B1)
T 37
.2 4
Fo—_——-"aqp 1+—(1—1n2)aqp N (B2)
T 3
Fi == (72— 1)(agp)? (B3)
S
Fi=— 5 (24 1m2)ags)?, (B4)
S
from which
Fi ==2-(2In2+1)(agp)? (B5)
3T
Fit =Yage |14 2ag |, (B6)
o m
FI'=2% 22— 1)(agp)?, (BY)
S
F}'=—2_(81n2+ 1)(ags)? . (B8)
S

Therefore, one sees that F}' > F{'. Namely, a quasiparti-
cle pair with antiparallel spin interacts more strongly than
a quasiparticle pair with parallel spin. Although these re-
sults are valid only in the weak-coupling region (aqr << 1),
these features essentially reflect the Pauli principle, which
reduces the particle interaction with parallel spins by
keeping the two particles away from each other. There-
fore, this simple model system demonstrates a common
feature among the Fermi systems which we have men-
tioned in Sec. IV.

APPENDIX C: THE STATIC LOCAL-FIELD
CORRECTION

The influence of static local-field corrections on the
dielectric function of an electron liquid is frequently ex-
pressed in the form

v(gX%q,0)
14+0(q)G (@X%g,w)

elq0)=1— (C1
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where v(g)=4me?/q* and G(q) is the static local-field
correction, which is related to f; by

q2
Glg)=——"2—f. C2
@=—-151 (€2

The corresponding expression for the density-density
response function then takes the form

X%g,»)
1—(4me?/q*+ f3)X%g,0)

_ X%q,0) _
1—(4me®/q*)[1—G(g)]X%q,w)

It is instructive to develop a physical interpretation for
G (q) analogous to that presented for f;. Equation (C2)
may be written in the configuration space as

V2fS(r)=4we?G(r) ,

where G () is the Fourier transform of G(g). From Eq.
(C4) it is apparent that the pseudopotential () can be re-
garded as arising from a ‘“‘screening” charge, eG (r), and
that the effective potential,

X(gq,0)=

(C3)

(C4)

Veg(r)=v(r)+f(r) (C5)
can be regarded as the solution of
V2V g(r) = —4dme*[8(r)— G ()] . (C6)

From this perspective a simple physical interpretation of

the high-g limit for G (g) obtained by Shaw and Kimball,

Eq. (5.2),” % emerges. The high-¢ limit of the Fourier
transform Eq. (C6) is thus

2 2

lim V%= lim i’ff—[l—c;(q)]= 4”5

9= g q

g

(C7)

g(0) .
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We see that the physical content of their result is that at
small distances the charge responsible for the net effective
spin-symmetric interaction is given by the pair correlation
function at the origin, g (0).

We have given above the spin-symmetric form of equa-
tions which obviously hold for the effective interaction be-
tween both parallel and antiparallel spin electrons. Thus
one can define

2
q tt

G'"(gq)=— , (C8a)
1 4me?”?
t q2 t
G"(g)=— ) (C8b)
1 4me??
so that
2
vi=2" 6y, (C9a)
q
2
de (C9b)

Equation (C7) is separately satisfied for V' and V", ac-
cording to

2
lim ¥'=4"¢g11(0), (C102)
g—w q
2
lim ¥}'=2"g14(0) (C10b)
q

where g''(r) is the pair correlation function for electrons
of parallel spin, g"*(r) that for electrons of antiparallel
spin, and

g(N=1lg"(r+g"n)]. (C11)
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