PHYSICAL REVIEW B

VOLUME 29, NUMBER 7

1 APRIL 1984

Elementary-flux-pinning potential in type-II superconductors

E. V. Thuneberg
Research Institute for Theoretical Physics, Siltavuorenpenger 20C, SF-00170 Helsinki, Finland *
and Nordisk Institut for Teoretisk Atomfysik (NORDITA), Blegdamsvej 17, DK-2100 Copenhagen @, Denmark

J. Kurkijarvi
Department of Technical Physics and Low Temperature Laboratory, Helsinki University of Technology,
SF-02150 Espoo, Finland

D. Rainer
Physikalisches Institut der Universitdt Bayreuth, Universitdtsstrasse 30, D-8580 Bayreuth, West Germany
(Received 31 October 1983)

Flux pinning brought about by quasiparticle scattering off small-spatial-extent defects is studied
using the quasiclassical method. The theory as applied to the pinning problem is presented in detail
and an efficient method is given for solving the transportlike equation of the theory numerically.
The pinning potential of a model impurity with hard-sphere—scattering phase shifts is computed
over the entire temperature range in a pure superconductor with the Ginzburg-Landau parameter
k=0.9. The pinning energies arising from quasiparticle scattering turn out to be up to 2 orders of
magnitude larger than those predicted by the traditional theory for small-spatial-extent pinning

centers.

1. INTRODUCTION

Flux pinning is of great practical importance since it
determines the critical current of a type-II superconductor
in a magnetic field. As soon as the flux-line lattice begins
to move, pushed by a current through the sample, an elec-
tric field arises leading to dissipation. Flux lines tend to
stick to various defects of the metal lattice such as impuri-
ties, dislocations, grain boundaries, voids, etc.

It is hard to set up a general quantitative theory of the
maximum current that leaves the flux lattice stationary in
the background of imperfections of some given distribu-
tion. The problem has two separate aspects. First, one
has to know the interaction between a flux line and a sin-
gle defect which is often called the elementary pinning
force. Second, it is a complicated matter to decide how
the elementary pinning forces add up to a holding force
on the elastic flux lattice accommodating itself to the
presence of the impurities. The latter dilemma is referred
to as the summation problem,'~? and its nature is well il-
lustrated by the rather trivial observation that a random
distribution of defects does not pin a rigid-vortex lattice at
all whatever the elementary pinning potential.

In this paper we address ourselves to the elementary
pinning force. We show that there is a strong pinning
mechanism* brought about by quasiparticle scattering off
the pinning center. Traditionally, it is assumed that a
void or similar defects pin because they prohibit supercon-
ducting condensation in their locality. Hence a void at-
tracts normal regions such as a vortex core in order to
avoid the loss of condensation energy.>® Elementary pin-
ning energies from this source are on the order of the con-
densation energy density %,U,ch times the volume of the
pinning center +7d?, and a more sophisticated calculation
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can only supply a multiplicative factor not much different
from unity. The quasiparticle scattering effect con-
sidered in this paper pins stronger by 1 or 2 orders of
magnitude in the case of small defects, d <<&,. The phys-
ical basis of the new mechanism is a nonlocal effect that a
scattering center has on Cooper pairs in its immediate en-
vironment. A scattering center helps a superconductor to
sustain deformations of the order parameter up to dis-
tances on the order of the zero-temperature coherence
length &, Hence it is energetically advantageous for a re-
gion where the order parameter varies strongly, e.g., a vor-
tex core, to coincide with a scattering center. In the case
of small impurities of size d, in particular, the new mecha-
nism leads to elementary pinning energies proportional to
wHZE.d?, larger by the factor £y/d than the pH2d? from
the excluded volume effect.

It is clear that accurate information is needed on the
elementary pinning force in order to experimentally test a
summation theory. It has been a long-standing puzzle
that no summation theory has been able to account for the
relatively high critical currents measured.! The present
calculation removes that difficulty and we hope that hav-
ing brought the small-defect elementary pinning force
under control will make possible definite quantitative
comparisons of summation theories®’ with experiment.®

The quasiparticle scattering mechanism of pinning is
not contained in the conventional Ginzburg-Landau
theory for small defects. (For large defects the application
of the proper boundary condition on the surface of the de-
fect would automatically include the present effect. Then
it would not be the largest contribution.) Evaluating the
small defect pinning potential, we apply the quasiclassical
method.>!® The quasiclassical method is equivalent to the
WKB method of quantum mechanics. It is an improve-
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ment on the old BCS-Gorkov theory in the same sense as
ray tracing is an improvement on the full problem of the
wave equation. In the latter the unnecessary information
on the scale of the wavelength of light is eliminated before
attacking the problem. The propagation of light rays
through surfaces can then be described simply in terms of
indices of refraction. In superconductivity, experimental-
ly interesting length scales are on the order of the BCS
coherence length £&,. Any information on the scale of k!
included in the theory is unnecessary and indeed unjusti-
fied in the BCS framework. The present calculation
would not be feasible without this essential simplification
of the BCS-Gorkov method. We use Eilenberger’s® for-
mulation of the quasiclassical method in terms of &-
integrated Green’s functions. The scattering properties of
the defect are described in terms of scattering phase shifts,
and those of the hard sphere are used as an illustration.
There are no temperature restrictions on the validity of
the theory.

The work reported here builds on the previous work of
Pesch and Kramer who computed the order parameter
A(R) and the vector potential A(R) around a vortex in a
superconductor.!! All our numerical results are for a pure
superconductor with the Ginzburg-Landau parameter
k=0.9 chosen by the above authors. The theory discussed
here can be applied to the calculation of the free-energy
change brought about by a defect in any surrounding self-
consistent conflguratlon of A(R) and A(R) to leading or-
der in d2/&). We can thus compute exactly, for small im-
purities, the free energy of an entire dilute distribution of
impurities in a given A(R) and A(R). One could then try
and solve the full summation problem in the presence of a
random distribution of defects and a current by making
an ansatz for the distortion of the vortex lattice, calculat-
1ng the order parameter and vector potential field belong-
ing to it without the impurities, then evaluating the
change in free energy brought about by the presence of the
impurities, and finally looking for the best ansatz. It
seems too tedious, however, to have to do the full self-
consistent A(R) and A(R) calculation from scratch for
every tested bending and twisting of the vortex lattice.
We therefore formulate an approximate but adequate set
of simple rules for estimating the pinning potential of a
defect at a given distance from a vortex line as a function
of the temperature, temperature-independent coherence
length, and the scattering properties of the defect. If the
vortex lattice is not too dense and not too violently bent,
this potential energy between a single vortex line and a
single scattering center is not a bad starting point for cal-
culating the optimum distortion of a vortex lattice torn
between the pinning potential and the elastic deformation
energy.

This paper is organized as follows. Section II intro-
duces the quasiclassical theory as needed in the present
context. The properties of the solutions of the transport-
like equation are the subject of Sec. III in view of comput-
ing the Green’s function numerically in an efficient
fashion. Two simple examples are given of the quasiclas-
sical method at work. Section IV is an account of our nu-
merical procedures. Our results are given in Sec. V, and
we compare them with experiment and discuss some gen-

matrix of quasiparticle excitations.
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eralization thereof in Sec. VI. Preliminary reports of
pa‘l;tls2 of the present results have been published previous-
ly.

II. QUASICLASSICAL FORMALISM

In the quasiclassical formalism, Green’s functions ap-
pear in what is called the £-integrated form,

A = +Ec A N =2
gk, R;e,)= f_EC d&; G (kk,Rse,) (1)
where &, =#ivp(k —kp) is the normal-state quasiparticle
energy near the Fermi surface, and the caret denotes a
2X2 Nambu matrix. § may be considered as the density
The 2X2 matrix
structure comes from the particle-hole degrees of freedom
which form a two-dimensional Hilbert space. The sym-
bols 7, 75, and T3 refer to the three Pauli matrices in the
particle-hole space, and €, =(2n + 1)wkp T are the Matsu-
bara frequencies. The integral in (1) is cut off at an ener-
gy E. which is much larger than energies associated with
the superfluid state k3 T,, but much smaller than the Fer-
mi energy Er. The cutoff obviously shall appear in no
physical quantities. It is in fact essential to the quasiclas-
sical theory that there be the large gray area between the
superfluid energies and the Fermi energy where the cutoff
can be placed. The remaining variables in the quasiclassi-
cal Green’s function, in addition to the Matsubara fre-
quencies (energy variable), are the average position R of
an excitation and the direction k of its wave vector
(momentum).

In order for the quasiclassical Green’s function to be
useful at all, the equation of motion satisfied by the con-
ventional Green’s functions (Dyson’s equation) has to be
converted into an equation for the quasiclassical quanti-
ties. This has been achieved by Eilenberger,” and Larkin
and Ovchinnikov.!'® We will first outline their scheme,
which aims at the averaged properties of a superconductor
with a random distribution of impurities, and then gen-
eralize it to describe local properties of a superconductor
near a selected impurity (the pinning center).

The starting point is a Dyson equation together with a
prescription for calculating the self energy S as a func-
tion of the Green’s function.

(@ lmp—f)§=T R (2a)
$=3(G). (2b)

Here (’?\0 is the free-electron Green s function in the pres-
ence of the magnetlc field, and Vlmp is the impurity poten-
tial. Go and V,mp are to be understood as renormalized
quantities which contain all high-energy and short-
distance correlations that remain unchanged in the super-
conducting transition. Impunty averaging of Eq. (2a)
leads to the replacement V,mp—+2,mp

The self-energy can be expressed in terms of quasiclassi-
cal Green’s functions by standard arguments based on the
slow momentum variation of interaction and impurity
vertices. The elimination of G from Dyson’s equation (2a)
in favor of the quasiclassical § can be carried out with the
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aid of the so-called “left-right trick.” The trick consists
of subtracting, from Eq. (2a), the equivalent equation

After impurity averaging, one can neglect the weak k
dependence of the factors Gy 0 ‘—z,mp—z Hence §k in-
A . A tegration of the difference only affects the factors G and
GGyl— Vimp—2)=1. (2c)  turns them into quasiclassical g. These steps lead to
|

A=

?3—8(§)-6imp(f(\,§;en )’g\imt(k’R;en )

i€, +UF-§‘ ]? K(ﬁ)

+iﬁvFI€-§ﬁ§imt(l€\,ﬁ;en)=0 . (3a)

We have called the Green’s function g}, for intermediate, anticipating the effect of the separate pinning defect. All
self-energies can be taken at the Fermi surface; we denote the Fermi-surface limit of S by &. Information has clearly
been lost with the subtraction, and Eilenberger showed with his elegant operator trick that the essential part of it can be
recovered through the normalization condition

gk, Re,)=—(mh)? . a

The square of the Green’s function indicates matrix multiplication, and it is easy to see that the square is indeed con-
served in Eq. (3a), the transportlike equation for the quasiclassical Green’s function. The impurity self-energy which ap-
pears in Eq. (3a) is given as

aimp(ig’ﬁ;en) tlmp(k k R en) ’ (4a)
where n is the density of impurities and ?imp(fc\ ,I?,ﬁ;
The equation for #;,, is

€,) is the forward-scattering limit of the single-impurity ¢ matrix.

A N~ A

27,1 ~
o NGO [k

"Rie,)=v(k,k)+ 0k, K" )Eimt (K ", R; €, imp (K ", K ", Rse,) . (4b)

A very popular approximation in the theory of superconductivity is to truncate (4b) to second order in v (Born approxi-
mation). This yields

~ A = U do A~ A~
oimp(k,R;en)=n§ f d2q:1~6(fc\,q)gimt(q,R;e,,) . (4c)
do/d( is the differential scattering cross section. We have dropped the irrevelant flI'St order term in v.

The order parameter or the off-diagonal self-energy Al R)—l[TZReA(R)—l—TIImA )], and the vector potential in Eq.
(3a) must obey the self-consmtency conditions

A_. T dk1 PPN ~
(mszwks z f7;7mwmxmmnﬂhn, (5a)
cVxB A~

o _Nw——lgwf—ﬂwkmmghm%n, (5b)

[

pinning center at R=T. ﬁimp comprises the potentials of
all other impurities. It is easy to see, in terms of the
-graphs in Fig. 1, that the full Green’s function now obeys

where B=V X A.
Equations (3)—(5) are a closed set, and they are also the
ones that Pesch and Kramer!! used in calculating the or-

der parameter and the vector potential around a single
vortex. The important fact to notice about Eq. (3a) is that
it is a first-order ordinary differential equation, and hence
it is quite easy to solve numerically.

The pinning impurity will now be introduced as a kind
of additional boundary condition, or source term, in the
transportlike equation. We will treat the pinning impurity
separately from the rest, and average over the positions of
all impurities except the priviledged one. This procedure
is correct in the limit of long mean free path (kpl >>1) as
long as the pinning impurity is uncorrelated with the rest
of the impurities. A set of mutually correlated impurities,
such as a cluster of impurities or vacancies, have to be
treated as a single defect in our scheme. There appears

then a potential term ¥ in the Hamiltonian describing the

the equation
G=G+Gin VG, (6)

where G imt 18 the Green’s function discussed above (except
for the fact, of course, that the exact full Green’s function
appears in the self-energy equation). We want to express
the scattering by our special pinning center via a t-matrix
equation. This leads to the following set of equations:

(G5 = Pimp— )G =T, (72)
$=3(6), (7b)
T=P+VGimT, (70)
G=Gin+GimuT G, - (7d)
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FIG. 1. Typical graph [labeled (b)] contributing to the

Green’s function G with self-energy insertions, impurity poten-
tials, and localized potentials as shown in (a). Giy is the
Green’s function with all orders and combinations of the self-

energy insertion $ and ﬁmp included.

Knowing @imt, the ¢ matrix can be calculated from Eq.
(7c) and the exact Green’s function from Eq. (7d).

Impurity averaging in the new set of equations proceeds
as before with the additional observation that cross-
linking diagrams between Vip, and V [Fig. 2(b)] can be
neglected, with phase-space arguments similar to those
leading to the discarding of the usual diagrams of the type
of Fig. 2(a). Similar considerations apply to cross-linking
impurity scattering and self-energy insertions.

The defect scattering potential ¥ is to be understood
again as being a phenomenological potential which, in
principle, can be measured in the normal state of the met-
al and which varies slowly with the magnitude of the
wave vector in the vicinity of the Fermi surface. The -
matrix equation, Eq. (7c), can therefore be simply §&-
integrated as it stands, the quasiclassical ¢ matrix and the

AA A PN

HE ke =0k k") +
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FIG. 2. Cross-linking diagrams between (a) two impurity po-
tentials, (b) between an impurity potential and the special pin-
ning potential, and (d) between an impurity potential and a self-
energy insertion. Diagram (b) is to be compared with the non-
cross-linking diagram (c). The momentum variables of each line
are shown in (b) and (c). In (b) there is the additional require-
ment with respect to (c) that f—?]’—{-?i’ shall be in the thin shell
around the Fermi surface.

quasiclassical scattering potential being those of the nor-
mal state at the Fermi surface. Because of the pointlike
nature (d << &) of the defect, the ¢ matrix depends on g,

only at the site of the defect, R= T,

A

N [ d% s (PR A D
- [ o VK i K R=Tre, K K ) (8)

If one wishes to consider a larger defect, methods for solving for the ¢ matrix for scattering off a surface are given by

Buchholtz and Rainer.!?

Equation (7d) can be £-integrated with the same left-right trick as above, and the result is identical with the exception

of the source term on the right-hand side of the equation,

A

eyt & BAR) Jg_a(ﬁ)_aim,,u:,ﬁ;en ) 66 Fe,)

A > AA A A

+iﬁvFl€'_V¢_'§(k’R;En)=[t( ,k;En ))é\imt(k)f’;en )]8(§—?) .

9)

The extra term causes a jump in the Green’s function at the site of the defect.
Formally, one should require self-consistency according to Egs. (5) in order for the theory to be complete. As we are
interested in the free energy to lowest order in d?/£3 only, we do not have to require self-consistency of §. The free ener-

gy due to the presence of the defect is then given as

kpT (1 +
SUD=NO0)—— [ dr 3
n

7

00 2A A —> A -
J 2K [ @R wfog (R RsensMBy(R)] (10)
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as explained in Appendix A. Here 8g=g —g;,; must be
evaluated at the order parameter A(R)=AA,(R) and vec-
tor potential Kb(l—i), where the subscript b means order
parameter and vector potential in the absence of the de-
fect.

The procedure of calculating the free energy of a defect
then consists of first computing g, from Eq. (3) starting
with some given self-consistent order parameter and vec-
tor potential field. The next step is solving the z-matrix
equation, Eq. (8), and calculating the commutator to get
the source term on the right-hand side of Eq. (9). Equa-
tion (9) then delivers g, and therefore 8g, with which the
free-energy change can be calculated according to Eq.
(10).

The scattering properties of the defect enter via the po-
tential v (k,k’). It is natural to introduce a decomposition
in spherical harmonics (for simplicity we consider isotro-
pic systems with spherical defects) and scattering phase
shifts §; (of the normal state at the Fermi surface),

(6, K= S v Y)Yk, (11)

Lm

where v;=—[4/N(0)]tand; and Y{”(Ig ) are the spherical
harmonics. In the absence of information on the proper-
ties of a pinning defect, we use the hard-sphere phase
shifts as a model,

Jitkgd /2)

n 1=W, (12)

where j; and n; are the Bessel and the Neumann functions
of order I, and d is the diameter of the hard sphere. It
turns out that at temperatures not too close to zero the
phase shifts enter into the pinning potential through a
particular combination, the transport (subscript tr) cross
section, which is given by

ou=3T 3 (14 Dsin(8,—8,,1) . (13)
kF 1=0

III. PROPERTIES OF THE SOLUTIONS

We note that the transportlike equation, comprised of
Egs. (3a) and (9), is a first-order ordinary differential
equation along ‘“trajectories” in the direction of the wave
vector k. The Matsubara frequencies and the four param-
eters necessary to specify a trajectory are parameters of
the equation. In the case of an impure superconductor,
the impurity self-energy couples the equations for the dif-
ferent trajectories. From now on we will only consider the
pure superconductor, making the problem diagonal in all
the parameters. The impure case needs somewhat more
numerical effort and is so far unsolved.

It is shown in detail in Appendix B that the solution of
the transportlike equation (3a) in a constant gap AR)=A
and a vanishing vector potential is given as

~
ifn?:;—A

(€2+ A2 {14

g=—mh

and it is also shown that the equation has two additional
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solutions, one exponentially growing and the other ex-
ponentially vanishing along the trajectory in the direction
of the wave vector. The latter two solutions are given in
Eq. (B4b).

Unbounded (exploding) solutions exist also when the
gap varies in space. The physical solution is bounded, and
special care is necessary in any numerical approach in or-
der to avoid the admixture of unphysical exploding solu-
tions. If one starts integrating the quasiclassical differen-
tial equations with some initial condition, the numerical
solution is likely to blow up. Our numerical routine is
tailored to take advantage of this. We construct the phys-
ical solution out of the numerically much easier accessible
exploding solutions. The transportlike equation (3a) has
the property that matrix multiplying any two of its solu-
tions gives another solution. A simple example is the
square of the physical solution which is proportional to
the T matrix, and hence a trivial solution of (3a). One can
show further that the physical solution is proportional to
the commutator of two specially chosen exploding solu-
tions. If we parametrize the position along the quasiclas-
sical trajectory by x the special solutions are characterized
by their limiting behaviors at x —+ . One of them van-
ishes (exponentially) at x — + o« and explodes (exponen-
tially) at x — — 0, while the other does the converse. The
commutator of these solutions is bounded at x — + o0 be-
cause the exponential decay and the exponential growth
cancel. On the other hand, the only bounded solutions
that exist are linear combinations of the physical solution
and the unit matrix. Since the commutator has no unit
component it must be proportional to the physical solu-
tion. In order to find the two exploding solutions numeri-
cally we integrate the transportlike equations along the
trajectory towards the R point of interest, starting from
each side of the point. If the starting points lie in an
asymptotic region of constant order parameter, one can
begin with the (analytically known) solution which van-
ishes in the appropriate direction, generating the exact ex-
ploding solutions. In practice one does not have to make
sure that the exploding solutions are strictly vanishing in
the reverse directions. It is sufficient to set out with some
£ at a number of factors #vp /(€2 +A%| A|?)'/? away from
R. The numerical result at R will then be dominated by
the wanted solution because of its exponential growth in
the direction the integration proceeds. The success of this
method reflects the fact that superconducting system “for-
gets” in space over distances much larger than the coher-
ence length.

The method of solution for gj;; outlined above has the
additional nice feature of giving directly the quantity 88
The source term on the right-hand side of Eq. (9) forces a
jump in the Green’s function at the location of the defect.
The extra bits in the function g constituting the jump have
to be the solutions decaying one toward the left and the
other toward the right. These are precisely the ones calcu-
lated above. The matrix giving the jump at the locality of
the defect fixes uniquely the two constant coefficients

. multiplying the decaying solutions to give the correct 88

appearing in Eq. (10).
As an illustration we shall calculate the free energy due
to a defect in two simple cases. The details are given in
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Appendix B. The first is the constant order parameter.
The function g, is then given by Eq. (14). The t-matrix
equation, Eq. (8), together with Eq. (3b), reveals immedi-
ately that the ¢ matrix can only have components propor-
tional to g, and the unit matrix, and the commutator on
the right-hand side of Eq. (9) vanishes. We obtain a van-
ishing 8g'; the impurity causes no change in the free ener-
gy of the system in accordance with Anderson’s
theorem.!*

The second simple case is a model vortex with a vanish-
ing core radius. The order parameter is then given by

Alp,h,z)=Ae'? , (15)

where p, ¥, and z are the cylindrical coordinates, i.e., the
vortex is parallel to the z axis at p=0. We calculate the
pinning energy for a defect sitting directly at the vortex
core. Then k' -K:O, since the only trajectories needed are
those passing through the core. The order parameter is
constant on both sides of the defect and the diverging
solutions are given by Egs. (B5) and (B6). Considering
only s-wave scattering, solving the ¢ matrix is trivial, and a
straightforward application of the procedure described
above leads to

A sin80
2%k, T

(16)

80(7¥=0)= —2ky T Incosh [

This result actually gives correctly the order of magni-
tude of the full pinning potential at not too high tempera-
tures. One should observe that the result is negative, i.e.,
quasiparticle scattering brings about pinning. One can try
and give a physical interpretation of the effect by noticing
that the jump in the Green’s function relaxes the require-
ment that the order parameter vanish at the core of the
vortex. Equations (3) and (9) can be thought of as describ-
ing the propagation of whatever entities are described by
the (anomalous) Green’s function through the vortex core.
At the vortex core there is the impossible requirement of
the entities having to change their phase abruptly by 7.
Thus the vortex core leads to locally varying phases by
Green’s functions, or those entities, over a distance on the
order of &, around a vortex. According to the BCS gap
equation, such a state of affairs reduces A(R) or costs the
system condensation energy. When a defect is added at
the vortex core the entities are scattered to new directions
where the phase change is less and the phase mismatch
smaller. This physical picture explains quite nicely the or-
der of magnitude of the effect, coherence length times the
area, rather than the volume. Basically we are talking
about the well-known effect that makes the coherence
length of a dirty superconductor short. Scattering helps a
superconductor to sustain changes in its order parameter.

IV. NUMERICAL SOLUTION

In general, a numerical calculation is required for the
elementary pinning potential. Acccording to what was
said in Sec. III, we only have to calculate, on both sides,
the solution diverging toward the defect along the trajec-
tory. The simplest numerical integration methods, such
as the Runge-Kutta method, are adequate. As mentioned
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in the preceding section, it suffices to start the integration
a few factors hvp/(e,,+7&2]Al2)1/ 2 away with, say, the
constant-A solution diverging in the relevant direction.
This means a few &, at worst, for small A and n =0. The
exploding solutions are enough to give us g, at the de-
fect. The final Green’s function will look like

Gime+cii (17)

on the left-hand side of the impurity, and

&imi+6,8r (18)
on the right-hand side, where &) and &, are the diverging
functions coming from the left- and from the right-hand
side with g, given, apart from normalization, as the
commutator of the two. For a pointlike impurity the in-
tegration over R in Eq. (10) just turns out to be another
integration along the trajectory, and it can be carried out
simultaneously with the integration of the differential
equations for the diverging solutions. The constants c;
and ¢, must be determined after solving the -matrix equa-
tion since they are determined by the jump. At the end
those coefficients will multiply the integrals already
stored. For each n and A, several trajectories were calcu-
lated to obtain the spherical harmonics decomposmon of
g,mt(k T;€,,A) and for the final integration over k in Eq.
(10).
For the ¢ matrix we write

HEE 6, M= 3 3 trml e, IR (R, (19)
LmI'm’

and the ~matix equation, Eq. (8), then reduces to the ma-

trix equation

2 Apmim (€n ’)")z;ml’m'(fn M) =8p18y,

ILm

vmrl, (20

with the coefficient matrix given by

/i\lml'm’(en,l)= SI’I'SM’M'TLV"ﬁ(O—)‘UI
% Lff’iy, R (B R=Tre,) Y1 (E) .

(21)

As a result of the reflection symmetry of g, with respect
to the plane through the defect and perpendicular to the
vortex line, Alm,m and t,mlm vanish if I +m +1'4+m’ is
odd, and Eq. (20) splits into two equations, one for I +m
even, the other for / +m odd. The ¢t matrix can then be
calculated by inverting the two matrices 4. The larger
complex square matrix to be inverted has the dimension
(I 4+1)(I +2), which leads to a 30X 30 matrix for / =4.
The t matrix and g, then give the commutator which
fixes the jump of g at the defect, and this again determines
the coefficients ¢; and ¢, of the integrals of A, and Ag,
calculated previously. Finally everything has to be repeat-
ed for a number of n and A. The sum with respect to n
converges as 1/n* and usually clearly less than ten n’s are
needed for an accurate extrapolation. Both the #n sum and
the A integration grow more difficult at low temperatures.
The contribution to 8€) apparently has an infinite slope at
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A=0 at T =0. For temperatures larger than 0.17T,, five A
points were sufficient. Below that temperature our nu-
merical computation is no longer trustworty’y._>

We took the self-consistent A(R) and A(R) from the
published data by Pesch and Kramer,!! extrapolating
A(R) according to A ,—cexp(c,R)/V'R. For the impur-
ity at a distance r from the vortex, we needed the vector
potential as well, which we extrapolated according to
fic /2eR +csexp(csR)/V'R. The extrapolation affects the
result at the 10% level.

V. RESULTS

We now turn to the results of the numerical calculation
for a pure superconductor, Ginzburg-Landau parameter
«=0.9, with a single vortex and a single impurity. In Fig.
3 the pinning potential with the defect right at the vortex
is depicted as a function of the temperature for four dif-
ferent descriptions of the defect in terms of phase shifts.
The zero-core vortex model is also given with s-wave uni-
tary scattering and in the Born approximation. The re-
sults are normalized with the quantity £yo,N(0)A3/2.
One sees that the pinning potential is proportional to &,
multiplied by the area of the defect, rather than the
volume of the defect, as in the old excluded volume effect.
The second noteworthy feature of Fig. 3 is that the result
is not affected by how the impurity is described in detail,
apart from the unphysical divergence at T =0 of the Born

T T
\ I6Q(r=0.t)!
\ &0, NOA/2
\

0~ tr

00 t1.0

FIG. 3. Pinning energy as a function of the reduced tempera-
ture ¢ (equal to T/T,), the full curves for the s-wave unitary
scattering (curve U), weak scattering (krd /2 << 1) (curve W),
and two different hard-sphere radii, kyd /2=1.0 (curve 1) and
kyd /2=4 (curve 4). The dashed curves represent the zero-core-
diameter model with the same symbols as defined above.
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approximation (if the scale had been chosen proportional
to V/o rather than o, there would be no divergence). The
zero-core vortex model differs from the others but is
nevertheless a guide to the order of magnitude of the po-
tential. The almost coinciding curves have been calculat-
ed for a real vortex in the Born approximation (curve W),
and for three different sets of hard-sphere shifts reflecting
the different radii krd /2=1 (curve 1), kpd /2=4 (curve
4), and for the s-wave unitary limit §,=7/2 (curve U ).

The region T ~T,, in particular, is determined by the
transport cross section alone, and the individual phase
shifts have some influence at low temperatures, just as in
an analogous case in *He.!>!® This is also evident in Fig.
4 where the pinning potential at T=0 is displayed as a
function of kpd/2, remembering that each d implies its
own set of phase shifts. For kpd/2>1, the potential
varies practically no more as a function kzd /2, and all the
curves for different temperatures accumulate at 8{/nor-
malization = 7.3 when T~T,. This practically agrees
with the result (7.4) of the Ginzburg-Landau calculation
(Figs. 5—7) based on the data of Pesch and Kramer!'! at
T =0.9T,. Thus the pinning potential scales, as a func-
tion of temperature, roughly as (1—T /T, )%

Figures 5—7 display the pinning potential as a function
of the distance of the defect from the vortex core at three
different temperatures, ¢t =0.6, 0.4, and 0.2 (+ =T/T,).
Again, in each picture, the three different descriptions of
the defect in terms of phase shifts mentioned above are
displayed. In addition, there is a dashed line in each fig-
ure, identical in every one in terms of the scaling chosen
in the picture. The dashed line is the prediction of the
theory near the transition temperature. It can be calculat-
ed analytically.!” For temperatures that are not too low
the high-temperature theory agrees amazingly well with

16 T T

16Q(r=0,t)|
&0, N(0) A /2 (1-t) -

Il |

4 6

kd/2 8

FIG. 4. Pinning energy normalized with £uo N (0)A2
(1—1)*/2 as a function of the hard-sphere diameter d at three
different temperatures, ¢t =0.2, 0.4, and 0.6. Curves near T ac-
cumulate at the constant 7.3.
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1.[0 Y1-tr/& 15

- 5Q(r, t=06)

€40, NIO)AT/2(1-t)’

1 L

FIG. 5. Pinning potential as a function of the distance of the
defect from the vortex core. The high-temperature approxima-
tion is drawn as a dashed line. The symbols labeling the curves
are the same as in Fig. 3.

the full numerical results, implying that there is a nice
“law of corresponding states” in terms of o,,, (1—¢)?, and
&y/(1—1)'2. Such a law is a handy tool comparing mea-
surements with statistical summation theories. At the
lowest temperatures the individual phase shifts play an in-
creasingly important role. The hard-sphere phase shifts
leads to a steeper potential at low temperatures than the
high-temperature theory. The slope of the potential, giv-
ing the pinning force, reaches its maximum closer to the
vortex and the maximum is higher by the factor 1.7 at our
lowest temperature shown, ¢t =0.2.

Returning to Fig. 3, one might make the observation
that the pinning potential has a finite slope at T =0, i.e.,
the entropy is finite at 7'=0 which implies an unphysical

° 05 10 Vi—tr/g 15
T T
— 4 - ” -
60 (r, t=0.4) U -
L£.0, N(0)AG/2(1-t) . -

_"0 1
FIG. 6. Same as Fig. 5 at t =0.4.,
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FIG. 7. Same as Fig. 5 at t =0.2.

degenerate ground state. In the zero-core-diameter model
one can calculate the entropy at T =0 as
—d8Q/dT = —kgln4. This result is an artifact of the
quasiclassical theory: The quasiparticle bound states!®
around a vortex core at the tiny energy ~A2/Ej are put
to exactly zero energy and counted as belonging to the
ground state. The quasiclassical calculation is therefore
only valid at temperatures larger than T7?/Tp~10"*T,.
The pinning potential curves should flatten out below that
temperature. This point is closely related to the fact that
both the A integral and the k integral become more critical
at low temperatures. There is a divergency in £, at zero
energy from the low-energy bound states. Computation is
difficult already at ¢t =0.05, and reliable results below that
temperature would require a closer study of the problem.
We in fact extrapolated the curves below ¢ =0.2 in Fig. 3.

VI. DISCUSSION AND COMPARISON
WITH EXPERIMENT

The results presented in the preceding section are,
strictly speaking, for an isolated unbent vortex line. As
already stressed in the Introduction, the present method of
calculation is not restricted to this special case. The pin-
ning energy can be calculated for an arbitrary field of

A(R) and A(R).
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In the presence of several defects with large separations
on the atomic scale k', the pinning potentials can be
simply summed. If the quasiparticle mean free path ! due
to scattering from these defects falls below ~&,, however,
the averaged effect of the defects has to be taken into ac-
count in the impurity 'self-energy (4a). The difficult part
of the multiple-defect problem is in the distortion of the
vortex lattice, i.e., what shape the order parameter and
vector potential fields take in the presence of the defects.

When the density of identical defects or impurities
grows, the pinning potential of a single impurity is expect-
ed to grow smaller,!” overwhelmed by the large amount of
background scattering. The additional scattering renders
the benefit of sticking to a given impurity smaller. There-
fore the pinning potential decays as a function of the im-
purity parameter a=0.882&,/] according to some power
of 1/a. The numerical calculation is difficult, as ex-
plained in Sec. III. The maximum dissipationless current
of the superconductor depends critically on the distribu-
tion of the scattering centers, clustering being the decisive
factor.

As to comparing our results with experiments, there
seems to have been a problem about the pinning strength
of small defects being too small,! as was already pointed
out in the Introduction. More specifically, there are at
least two experiments with small defects'>?° to which the
present theory should apply. Both suggest elementary
pinning energies on the order we predict. Furthermore,
Kerchner et al.'’ also find decreasing pinning with de-
creasing purity of the sample, in accordance with our ex-
pectation. There are experiments which suggest the oppo-
site trend, however; see Ref. 19.

Only pointlike defects have been considered in detail in
this paper. It is certainly legitimate, however, to some-
what generalize the physical picture according to which
condensation energy lost in a vortex is partly recovered in
a volume £ud? around a scattering center. If the defect is
an entire line of scattering centers such as that represented
by a dislocation, the vortex line tends to stick to such a
line with an energy per unit of length proportional to the
coherence length £, times the scattering strength of the
line (strength per unit length). For a plane of scattering
centers, such as a grain boundary, the energy per unit
length of a sticking vortex line would go as £;. This last
prediction is in conflict with the result reported by

kTN (0) [

Q- 'Qnorm:: #

n=-—c0

~a B—
SER: 3g 2~ Da)”
+@(kRien))+ [ dR——— .
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Zerweck®! and Yetter et al.?? that pinning should vanish
at the clean limit.

APPENDIX A

The starting point of the derivation of the free-energy
expression, Eq. (10), is the general free-energy functional
of Luttinger and Ward® supplemented by the magnetic
field energy,*

QG2 VM) =—TrASG +In(—G '+ P+A3)]
(B—B, )?
+x¢(G + [dR———, @D
8
where Tr stands for
kpT +e
Tr[ - |=—2 f k [@Rwf--1, A2
# n= (2m)

and the Green’s functlon G, the self-energy s, and the
extemal potential Vmay depend on the wave vector K, po-
sition R, and the Matsubara frequency €,. Ba is the exter-
nal magnetic field. An additional parameter A has been
introduced in Eq. (Al). The true energy corresponds to
=1. ¢(G\ ) is defined diagrammatically so_that 5¢6/8G
shall give the skeleton-diagram expansion of Z,
8¢(G)=Tr[25G] . (A3)
Thls property makes the free-energy functlonal stationary
in G. On the other hand, Q is stationary in $ as well be-
cause of Dyson’s equation,
G=(Gg'=P-13)". (A4)
The goal of the present exercise is a free-energy functional
which depends only on quasiclassical quantities such as §
and A. This can be achieved straightforwardly for the
first term and the third term on the right-hand side of Eq.
(Al). The logarithmic term can be handled by differen-
tiating with respect to A, after which the whole expression
is directly & integrable, and then reintegrating over A. The
result is the quasiclassical free-energy functional,

+ o0 T . R . . .
S [ d:—trz[—G(k,R;en)ﬁ(k,R;e,,)+ [ drg(k,R;en, M5 (K, Rse,)

(AS5)

This functlonal is stationary at the physical solutlons with respect to vanatlons of the vector potential A(R) the self-
energy 0(k,R; ;€,), and the Green’s function g(k,R;e,). We emphasize that g(K,R;e,,A) (Ref. 25) is a functional of &.
The functional dependence is defined by the quasiclassical equations (9), (8), (3), and (4), with & (6= A in our case) mul-

tiplied by A. g(k R; ;€,,A) contains explicitly the effects of the pr1v11eged defect and the random impurities.

It is often convenient to eliminate the Green’s function g(k R; ;€,) by its statlonanty condition, the BCS gap equation
(5a). The free-energy functional then reduces to the functional used by Eilenberger:**
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0O = 5 — [ @R | AR
k TN(O o (B—B,)?
2 TR S f -fdMMg,,qumﬂ+fdm—7;L— (A6)
n=—c
|
This result is very general and correct to all orders in E=g1T1+8:7+8373 (B1)

d?/ §0 In the present context we are only interested in the
free energy to lowest order in d 2/§0 The stationarity of
Q with respect to A(R) and A(R) implies that any first-
order changes in A(R) and A(R) show up as second-order
corrections in Q. §Q=Q(¥)—Q(¥V =0) may be evaluated
with the unperturbed A(R) and A(R). In the subtraction
only the second term in (A6) survives, and one obtains our
formula (10) for the pinning energy.

APPENDIX B

In order to gain insight into the properties of the
quasiclassical equations, here we shall explicitly write out,
in matrix form, the coupled linear differential equations
for the coefficients g; in

0 ie,,-{-ﬁvplé\-x
c
d 8 e
ﬁUFE g2 |=2X -—ie,,——:ka'A 0
83 —iA, iA

In order to understand some general properties of the
solutions, we notice that there is a gauge for each trajecto-
ry which eliminates the vector potential from the coeffi-
cient matrix. Taking the order parameter to be constant
in space, the eigenvalues of the Hermitian coefficient ma-
trix are 0, 2a, and —2a with a=(e2 +A}+A3)!/2. The
corresponding eigenvectors,

A
&m=ﬁéx Ay |

_En

(B4a)

iAza—f—iAle,,
+Aja+iAsE, o TPx o ,
i(AT+43)

(B4b)

+(x)=

are then a constant solution, an exponentially growing
solution and an exponentially decaying solution. The con-
stant solution has been normalized according to Eq. (3b),
and it is clearly the physical solution. The normalization,
according to Eq. (3b), of g, and g_ is equal to zero. In
the general case the coefficient matrix varies with the
coordinate along the trajectory.

—iA;

and study the properties of the solution in the two gap
configurations mentioned in Sec. III, the constant gap and
the zero-core model of a vortex. The gap matrix is writ-
ten as

A=i(AF+AR), (B2)
where A| and A, are the imaginary and real parts of the
complex gap. The function g3 is the diagonal part of the
Green’s function in Nambu space; it is the only nonvan-
ishing component of g in the normal state. The com-
ponents g; and g, correspond to the anomalous part of
the Green’s function in the superfluid state.

Working out the commutators of the transportlike
equation leads to the three coupled first-order differential
equations (x =k -R)

iA,

g1
8 |- (B3)

83

- It is easy to verify that the commutator of the matrix
solutions g, and g_ [Eq. (B4b)] gives the constant solu-
tion, Eq. (B4a). It is equally easy to understand that the ¢
matrix arising from a constant and isotropic gy, com-
mutes with g, leading to no change in free energy from
a defect in a constant-gap superconductor.

Another pinning problem which can be worked out in
closed form is the zero-core vortex model with an s-wave
scattering defect. We only need to consider trajectories in
a single plane in which the vortex lies. The order parame-
ter changes its phase abruptly by 7 at the vortex on all
trajectories, but has its full amplitude everywhere. Let us
call the part of the trajectory before hitting the vortex the
left-hand side. Let the gap components on the left-hand
side be —A; and —A,. Then the purely diverging solu-
tion coming from the left-hand side is

+A2a——iA1€,,

+2ax /fvp

—Aja—ilE, |e when x <0 . (B5)

~i(A3+A3)

On the right-hand side the gap parameters have the oppo-
site sign, and the diverging solution coming from the
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right-hand side (or converging toward the right-hand side)
is
-+ Aza + iA 1€n
—A 1a “+ i A2€ n |€
i(A1+43)

—2ax /fvg

when x >0 . (B6)

The commutator of the two corresponding Nambu ma-
trices gives the intermediate solution at the defect,
—A,

h
gim(x =0)=—"-| A,

n

(B7)

—ia

It may be an instructive exercise to verify Eq. (B7) by
writing the Green’s functions on the left- and right-hand
sides as sums of the constant solution in each order pa-
rameter and solutions (B5) and (B6), respectively, multi-
plied with unknown coeffficients. Fitting the two at the
vortex gives Eq. (B7).

It is now trivial to calculate the t-matrix for an s-wave
scatterer (v(lé\,lé\')=v0/4ﬂ=—[I/n'N(O)]tanSo). We
find, from, Eq. (8), that

vo 1—i[N(0)/41vo(€2 + A2+ A2)%, /e,

f=— ,
47 14 {[N(0)/4]vy(€2 + AT+ A2 /e, }
(B8)
and the commutator [;: &im:] gives
)

A Zih a sin 8() ~

t, Eime]= A (B9)
[, &im] N(0) € +(A2+A2)sin%5,

As the jump will “heal” exponentially on both sides of the
vortex (see Fig. 8 for a symbolic representation of what

3923

FIG. 8. Schematic plot of the intermediate Green’s function
(dotted line) and the Green’s function in the presence of the de-
fect at the vortex core (solid line) in the zero-core-diameter
model. The gap has been chosen real, making g, real and g, and
g3 purely imaginary. Observe the jump of the anomalous
Green’s function g, at the defect.

happens at the vortex), the integration of Eq. (10) over
space results in

# (A% + A2)sin25,
N(0) € +(A2+A2)sin?s,
(B10)

[ dx try(8g8)=—2

and
MAZ+ AD)sin?5,
€2 + A2 A+ AD)sin2g,

1 +
89.:—2kBTfO r 3 , (BI1)

h=—o00

which is easily integrated to give Eq. (16).

*Present address.

IE. J. Kramer, J. Nucl. Mater. 72, 5 (1978).

2A. M. Campbell and J. E. Evetts, Adv. Phys. 21, 199 (1972).

3E. H. Brandt, J. Phys. (Paris) Collog. 39, C6-1426 (1978).

4E. V. Thuneberg, J. Kurkijirvi, and D. Rainer, Phys. Rev. Lett.
48, 1853 (1982).

SH. Ullmaier, in Irreversible Properties of Type II Superconduc-
tors, Vol. 76 of Springer Tracts in Modern Physics, edited by
G. Hohler (Springer, New York, 1975), p. 1.

6A. 1. Larkin and Yu. N. Ovchinnikov, J. Low. Temp. Phys. 34,
409 (1979).

"H. R. Kerchner, J. Low Temp. Phys. 50, 337 (1983).

8E. H. Brandt, Phys. Rev. Lett. 50, 1599 (1983).

9G. Eilenberger, Z. Phys. 214, 195 (1968).

10A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz.
35, 2262 (1968) [Sov. Phys.—JETP 28, 1200 (1969)].

11w, Pesch and L. Kramer, J. Low Temp. Phys. 15, 367 (1974).

12J, Kurkijirvi, D. Rainer, and E. V. Thuneberg, in Supercon-
ductivity in d- and f-Band Metals, 1982, edited by W. Buckel
and W. Weber (Kernforschungszentrum Karlsruhe,
Karlsruhe, Federal Republic of Germany, 1982). In the fig-

ure of this reference the scale of distances is incorrent; the
unit distance shown in terms of the chosen normalization
should be 0.78.

BL. J. Bucholtz and D. Rainer, Z. Phys. B 35, 151 (1979).

14p. W. Anderson, J. Phys. Chem. Solids 11, 26 (1959).

15D. Rainer and M. Vuorio, J. Phys. C 10, 3093 (1977).

I6E. V. Thuneberg, J. Kurkijarvi, and D. Rainer, J. Phys. C14,
5615 (1981).

E. V. Thuneberg (unpublished).

18C. Caroli, P. G. de Gennes, and J. Martricon, Phys. Lett. 9,
307 (1964).

I9H. R. Kerchner, D. K. Christen, C. E. Klabunde, S. T. Sekula,
and R. R. Coltman, Jr., Phys. Rev. B 27, 5467 (1983).

20G. P. M. van der Mey and P. H. Kes (unpublished).

21G. Zerweck, J. Low Temp. Phys. 42, 1 (1981).

22W. E. Yetter, D. A. Thomas, and E. J. Kramer, Philos. Mag.
B 46, 523 (1982).

23J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960).

24G. Eilenberger, Phys. Rev. 153, 584 (1967).

258k, ,ﬁ;e,,,?») should be carefully distinguished from
gk, R;e,).



