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Strong-magnetic-field behavior of small-particle superconducting composites
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The influence of isolated superconducting inclusions on the magnetoresistance of a normal-metal
host is calculated using a phenomenological current-distortion model. We find a linear enhance-
ment of the magnetoresistance that can be identified with large distortions of the current flow in the
normal-metal region immediately surrounding each inclusion. Our calculations are compared with

existing experimental results.

I. INTRODUCTION

Composite superconductors, consisting of random ar-
rays of superconducting particles embedded in insulating
or normal metal hosts, exhibit a variety of interesting
properties when the volume fraction of superconductor is
below the percolation threshold. Most recent work on
these materials has been performed in zero magnetic field
and has centered on the effects of Josephson coupling be-
tween isolated superconducting grains. For example,
studies of NbN (Ref. 1), HgXe (Ref. 2), and PbZn (Ref. 3)
composites have revealed a rich variety of dimension-
dependent transport effects.

In recent papers Resnick, Garland, and Newrock*
(RGN) showed that random superconducting-normal met-
al (S/N) composites also exhibit interesting transport
behavior in strong magnetic fields. Their principal result
is that the presence of superconducting NbTi grains in a
normal In host increases the magnetoresistance—and con-
sequently the joule dissipation—of the material. Unlike
zero-field transport effects, this high-field behavior is in-
herently classical in nature; the Josephson effect and prox-
imity coupling effects are suppressed completely in strong
magnetic fields. Stroud® has recently proposed that the
high-field resistivity could be explained by a generalized
effective medium theory which takes into consideration
the symmetry and field dependence of the conductivity
tensor of the normal-metal constituent. His calculations
show that the resistivity increases as a linear function of
the superconducting volume fraction, consistent with the
measurements of RGN.

The purpose of this paper is to develop this result,
namely, that the resistivity is a linear function of the su-
perconducting volume fraction, by demonstrating that the
resistivity enhancement may be identified with the distor-
tion of the current density in the normal-metal medium.
A surprising result of our study is that the volume within
which this current distortion occurs is much larger than
the volume of the inclusion which induced the distortion.
This finding is to be contrasted with the zero-field situa-
tion, where current distortion effects are localized to the
immediate volume surrounding the inclusion.

II. PHENOMENOLOGICAL MODEL
FOR S /N COMPOSITES

Our model of a S/N composite is a collection of widely
spaced superconducting spheres embedded in a free-
electron normal metal host. The radii of the spheres are
assumed to be much larger than the electron mean free
path /, the cyclotron radius R., and the superconducting
coherence length £. The first two of these inequalities
permit us to treat current flow in the normal metal as a
hydrodynamic process in which the current at each point
is specified uniquely by the conductivity and the local
electric field. While this assumption makes it possible to
account for sharp field gradients without invoking the
mathematical complexities of nonlocal transport theory, it
also restricts the applicability of our results to bulk
(three-dimensional) superconducting particles in which
fluctuation effects are unimportant.

Finally, we assume that the superconducting particles
are in the extreme type-II limit. In this limit, magnetic
flux readily penetrates the spheres, allowing us to treat
them as classical objects having perfect conductivity. A
result of this assumption is that our model cannot gen-
erate correct current profiles in the interior of the super-
conducting spheres. This is an unimportant liability since
there is no dissipation within the spheres. The current
profiles in the normal metal are not affected by this as-
sumption.

It is reasonable to ask whether our model will yield an
accurate explanation of the experimental results of RGN.
The model cannot produce the correct current distribution
patterns at low fields, characterized by w,7 << 1, where o,
is the cyclotron frequency and 7 is the electron mean
scattering time in the normal metal. In this low-field re-
gime the conductivity of a “real” normal metal departs
significantly from the simple free-electron conductivity we
have assumed. In practice, the magnetic field correspond-
ing to w7 << 1, is also likely to be below H,, of the super-
conducting inclusions. Below H,;, the diamagnetic
screening currents on the surfaces of the inclusions severe-
ly disturb the homogeneous magnetic field distribution as-
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sumed in our calculations. Finally, our model is applic-
able only to the very dilute limit, where the superconduct-
ing volume fraction [f<<]1. In  concentrated
superconducting-normal composites the distortion of the
current flow is much more complicated than our model
predicts because of interactions between the current
streamlines around closely spaced inclusions. As will be
shown below, the boundary between the dilute limit,
where our model is accurate, and the nondilute limit,
where it is not, scales with the magnetic field. At suffi-
ciently strong magnetic fields, therefore, any real sample
will eventually move into the nondilute regime.

The calculations are done in the following manner. We
consider a single, isolated superconducting sphere located
at the origin. The applied magnetic field is parallel to the
7 axis and the injected current is parallel to either the X
axis (transverse case) or £ axis (longitudinal case). We ob-
tain the lines of electric current near the inclusion by solv-
ing Laplace’s equation for the electrostatic potential, ®(r),
using the constitutive equation

J'=0"E; M

where o are components of o(h), the field-dependent
conductivity tensor of the normal metal, given by

vy hy O
olh)=0oq|—hy v 0]. 2)
0 0 1

In the above equation, h =w,7 and y=(1+h>)"!, Ina
strong magnetic field # >> 1, y=1/h? and o, and oy, are
much smaller than o,,. The conductivity tensor thus be-
comes extremely anisotropic at high fields; this anisotropy
is responsible for the unusual features of this problem.
Because of the low transverse conductivity, there is a
marked tendency for a current streamline in the X direc-
tion, if perturbed by an inclusion, to travel a considerable
distance along the higher conductivity £ direction.

The boundary value equation can be obtained from

—VJ'=V,;0%V;®=0.

Because the procedure used to solve this equation is rel-
atively well known,®” we give here only a brief summary.
We first apply a scale transformation to the z coordinate,
z'=z/(1+h)2, which reduces the above differential
equation to Laplace’s equation. In the scaled coordinate
system all characteristic dimensions of the problem paral-
lel to the applied magnetic field are compressed by a fac-
tor approximately equal to 1/h, transforming the spheri-
cal inclusion into an oblate spheroid. We then obtain the
solution to Laplace’s equation in oblate spheroidal coordi-
nates and transform the results back to rectangular coor-
dinates to obtain the potential, electric field, and current
distribution.

There are two boundary conditions: at the normal-
metal—superconductor interface (i.e., the surface of the
superconducting inclusion) the electric potential is zero,
while far from the inclusion the electric potential, or alter-
nately, the current density, is uniform. Although these
boundary conditions uniquely determine the current and
electric field patterns outside the inclusion, they do not

RESNICK, GARLAND, ESPOSITO, AND NEWROCK 29

specify the solution inside. For example, the solutions do
not distinguish between perfectly conducting inclusions
and superconducting inclusions. In the former case the
current density is uniform, while in the latter current
flows within a penetration depth of the surface. We note
also that because the angles between vectors are not
preserved during the scale transformation, the treatment
of the boundary conditions is fairly complicated. Interest-
ed readers can refer to Refs. 6 and 7 for additional de-

tails.®
III. RESULTS OF THE CALCULATIONS
For the transverse magnetoresistance (J=J,, for

r >>R), the electric potential we obtain is

alo . .
®;= —sinb(cosd + A sing)
Oo
coshng
Q1 sinhn)

For the longitudinal case (J=Jy, for r >>R), we obtain

—coshn | . (3)

sinh7
Q,(i sinhg)

In each of the above equations 7,0,¢ are oblate
spheroidal coordinates, defined from the scaled coordinate

system r'=(x',y’,z") by

J,
e L@

o, = Q,(i sinhn)—sinhy

172
Y oo

x'=a cosh sinf cos¢ ,
y'=acoshy sinfsing , (5)
z'=asinhn cos .

In Egs. (3)—(5), Q;(z) is the associated Legendre poly-
nomial of the second kind, a=Rhy'?, sinhn=1/h,
01(2)=(z2—1)(d /dz)Q,(z), and z =i sinhn. The expres-
sions for the currents may be obtained from the potentials
and are summarized in the Appendix.

Computer-generated “maps” of the current lines and
the local joule dissipation for the longitudinal and trans-
verse magnetoresistance are shown in Figs. 1—5. The
computer algorithm first calculates the magnitude and the
direction of the current density at a point far from the in-
clusion in a region where the current density is uniform.
It then calculates the magnitude and direction at a second
point a small step from the first along the direction of the
current. This process is repeated until the entire current
line is mapped out. The procedure is then iterated as
often as necessary to map out all the current lines. The
size of the steps is kept sufficiently small so that the cu-
mulative error is negligible.

Figures 1 and 2 show the computer-generated trajec-
tories in the transverse case (J LH) for several lines and
sheets of electric current. Figure 1(a) shows representative
current trajectories projected onto the X-Z° plane (“side
view”), and Fig. 1(b) shows the same trajectories projected
onto the X£-y plane (“top view”). In both cases h =100.
Figure 2 is an isometric projection of several sheets of
current for A=10. There are a number of interesting
features in these figures. First, the current tends to avoid
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FIG. 1. Computer-generated trajectories for (T 1LH) for lines
of electric current at various distances above superconducting in-
clusion. (a) “side view”: trajectories projected onto the £-£
plane; (b) “top view”: trajectories projected onto the X-§ plane.
In both cases the reduced field 4 =100.

the “shadow” region in the normal metal above and below
the sphere (see the inset in Fig. 2). Second, in strong
fields, significant current distortion extends a distance on
the order of AR on either side of the inclusion, along the
direction of the field. By contrast, in zero field the region
of current distortion is only about 2R. Third, there is a
significant assymmetry to the current flow. In the upper
half-plane, the current sheet divides into two parts. Over
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one hemisphere of the inclusion it veers upward away
from the inclusion, whereas over the other it veers down-
ward toward it (Fig. 2). This division is reversed in the
lower half-plane.

Additionally, those current lines which pass very close
to the sphere are pulled toward it and enter the region
near the equator. (In the limit of an infinitely strong mag-
netic field, the current lines are able to enter the sphere
only at its equator.) Finally, the current which is excluded
from the shadow region is compressed into a thin cylindri-
cal shell which defines the shadow perimeter (Fig. 2, in-
set). It is this region of high current density which is re-
sponsible for most of the magnetoresistance observed by
RGN.

The effects of this high-density region on the magne-
toresistance are illustrated in Fig. 3, which shows several
isometric projections of the dissipation, J-E. In the fig-
ure, the dissipation is shown on the vertical axis while the
X-§ axes specify a particular plane at fixed z above the in-
clusion. Figure 3(a) shows TEforh= 10, 50, and 100 in
the plane z=2, while Fig. 3(b) shows J-E for h=100 at
various distances, z/R =2, 4, 8, and 16, above the sphere.
Although the dissipation is most pronounced in strong
fields, it is clear that even in moderate fields the excess
joule heating is significant. We notice that the largest
field shown, A =100, is readily attainable in a pure metal
at low temperatures.

To obtain the total dissipation in the specimen, we in-
tegrate J-E over the volume of the specimen. For low
volume fraction of superconductor we find that p=(1.3)A,
in agreement with direct calculations from effective medi-
um theory. The transverse magnetoresistivity is thus seen
to be linear in the applied magnetic field, with no satura-
tion as long as the composite stays in the dilute limit.
This result may be compared to the similar geometry for a
void where a linear magnetoresistivity is also seen®’ with
a slope of the same order of magnitude.

Figures 4 and 5 show examples of the current trajec-
tories and local dissipation for the longitudinal case (i.e.,
for the current parallel to the applied magnetic field).
Figure 4 displays several representative trajectories for
current injected in the £-Z plane. For this case, the distor-
tion in the trajectories is largest when the reduced field is
zero. The distortion begins to decrease as the reduced
field approaches one, and continues to decrease, until, for
large h, almost no distortion is discernable.

The distortions of the current patterns are mirrored in
the local joule dissipation. In Fig. S we have plotted JE
in the plane z=2. For zero and low fields, the distortion
produces a large dissipation peak centered over the sphere.
As the applied field increases, this dissipation peak be-
comes progressively smaller, until, at very high fields, it is
barely discernable. Surprisingly, however, the decrease in
the local dissipation does not lead to a decrease in the total
resistance of the specimen. This apparent inconsistency is
resolved by comparing the results for the resistance in the
two extremes of applied field. It is a well-known result of
effective  medium theory9 that in zero field,
p(h=0)=po(1=3f). This equation expresses the idea
that the extra dissipation induced by current bending in
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FIG. 2. Computer-generated isometric projection of several sheets of current for reduced field 2 =10.
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FIG. 4. Current trajectories for the longitudinal case (T ||H)
for several values of the reduced field.
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toward each inclusion is more than compensated by the
resistanceless flow of current in the interior of the in-
clusion. In the very-high-field limit, however, the analo-
gous expression™’ is p(h = o0,f)=po(1—f), a result that
might be anticipated from the absence of high-field distor-
tion in Fig. 4. In this limit, the total resistance is simply
that of a metal with uniform current density and a volume
fraction f of zero resistance inclusions. Although the net
effect of the field is to reduce the current distortion creat-
ed by the inclusions, this reduction increases the resistance
because it results in less total current flow inside the resis-
tanceless regions. This result may be contrasted with the
results for a spherical void, where the current spirals
around the ouside of the void, resulting in the formation
of a high-density current sheet with large dissipation.®

IV. DISCUSSION AND SUMMARY

The free-electron conductivity tensor [Eq. (1)] accurate-
ly reflects the high-field magnetoresistance of simple met-
als (metals which are uncompensated with closed Fermi
surfaces). In the high-field limit (A =w.7>>1), the con-
ductivity parallel to the field is unchanged but the conduc-
tivity perpendicular to the field is reduced by a factor of
1/h2. Tt is well known that in a homogeneous pure metal

FIG. 5. Isometric projection of the dissipation T -E in the neighborhood of the inclusion for the longitudinal case.
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this large anisotropy does not produce any additional dis-
sipation. Therefore, if a superconducting inclusion is
present, the large linear increase in the resistance with
field (for T LH) is solely a result of the current distortion.
In S/N composites, this increase in the resistance more
than compensates for the lowering of the bulk resistivity
caused by the addition of superconductor, and we have the
interesting result that the addition of superconducting ma-
terial to a normal metal increases the resistance.

These results apply only to S/N composites whose con-
centration of inclusions is sufficiently dilute that the
current distortion regions around each inclusion remain
isolated from one another. Because the region of current
distortion increases with increasing magnetic field, howev-
er, the dilute regime is determined both by the volume
fraction of inclusions and by the magnetic field strength.
At sufficiently strong fields, our model fails because the
current distortion regions from adjacent inclusions begin
to overlap. We may estimate this maximum field by not-
ing that current distortions are essentially confined to the
cylindrical shadow of the inclusion (inset, Fig. 2), which
has a volume

7TD3(1+h2)1/2 T3
=" —=Tp%,
2 2 h

where D is the diameter of the inclusion and 2D(1+h2)1/?
is the length of the shadow. In the dilute limit, the in-
crease of the apparent resistivity with field is proportional
to the fraction of the specimen volume over which the
shadow extends. Thus we can set ’

V;,:

NV, ND* 2)1/2

plf,h) « v =y (1+h*)=fh,

where N is the number of inclusions in a specimen of
volume V. The resistance is linear in f and 4 as long as
(NVy/V)<<1. As f or h is increased, so that
(NVs/V) =1, the shadows from different inclusions over-
lap and the volume of the specimen in which the distor-
tions occur no longer increases linearly with the field. Al-
though at this point a departure from linearity might be
expected, it was not observed by RGN, even at fields well
beyond this limit.

We also remark that as f approaches the critical per-
colation fraction f, the extra dissipation (at a fixed field)
reaches a maximum and then decreases, reaching zero
when f=f,. This behavior is a simple volume effect; the
reduction in the resistivity caused by the presence of su-
perconducting material eventually exceeds the increase in
resistivity induced by current distortions. The explicit
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dependence of p on f as f—f, cannot be obtained easily
from our model but has been calculated recently by
Stroud.'®
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APPENDIX: SUMMARY OF SOLUTIONS
FOR ELECTRIC CURRENT DENSITY

In the following expressions, 2, 4, B, S, T; and V are
as defined below:

3 =sinh”7 sin?0 + cosh?y cos®0 ,
A =cos¢+ Bsing ,

B =sing —Bcosd ,

S =sinh7,/Q, (i sinhy,) ,

coshn,
" Ql(isinhy,)
= coslhr/ [Q1( sinhn)Z —2 tanhn sin~20] .
(a) Transverse current injection (JLH):
TAYV Q (i sinhn)
Jo=Jo |l —y————yTB*———n«—— | |
x—0 LRSS coshn

1. -

(i sinhm)
Jy—aapr sy

coshy 2

J,=alyy i457-‘sin6 cosfsechn .

(b) Longitudinal current injection (¥ ||H):

SA sin6 cosO
J.=J, 1720242 SV LOSY
* =V s coshy
sinf cosO

J,=Joy'*SB
y =Jo¥ coshn

b

J.=Jy

. . cos’0
sinh7 Q,(i sinhy)+ 5 .
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FIG. 2. Computer-generated isometric projection of several sheets of current for reduced field » =10.



FIG. 3. Isometric projection of the power dissipated (J-E) in the neighborhood of the inclusion for the transverse case. (a) TE
for various  in the plane z=2; (b) J -E for various z at h = 100.
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FIG. 5. Isometric projection of the dissipation J -E in the neighborhood of the inclusion for the longitudinal case.



