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The properties of fully-spin-polarized 'He ( He') are calculated from first principles within the
Galitskii-Feynman T-matrix and Hartree-Fock approximation with the use of the HFDHE2 pair
potential of Aziz et al. The ground-state energy agrees well with variational calculations, the Lan-

dau parameters with model calculations, and the single-particle energy with results expected from
nuclear matter. Although the total pair interaction in He' is not weaker than that in normal He it

appears to be dominated by the direct part via the pair potential and by the Pauli exclusion repul-

sion with induced interactions playing a minor role. Since the effective mass is = 1 and the Landau
parameters are small, 'He' should respond nearly like an ideal Pauli paramagnet close to full polari-
zation.

I. INTRODUCTION

Spin-polarized quantum systems form an exciting new
area of condensed-matter physics. ' Electron spin-
polarized hydrogen, which is a Bose system, has received
much of the attention. There is a parallel interest in
spin-polarized Fermi systems, both theoretically " and
experimentally. Examples are nuclear spin-polarized
pure He, of interest both in the gas'7'8'3 '3' and
liquid ' ' phases, dilute solutions of He in liquid
He, ' ' ' and electron spin-polarized deuterium D',

which may have a variety of nuclear spin states. '

Much of the theoretical work on spin-polarized Fermi
liquids has focused on fully-spin-polarized liquid He
(Refs. 6—13) which we denote here by He'.

In this paper, we calculate the properties of He' within
a 8rueckner-Hartree-Fock (BHF) approximation.
The aim is twofold. The first is to evaluate the properties
of liquid He' from first principles beginning with the
pair potential between He atoms. For the pair potential
we use the HFDHE2 potential developed by Aziz et al. ,
which presently provides the best overall description of
gaseous helium. The second is to test how well a BHF
theory can describe a fully spin-polarized Fermi fluid such
as He'.

In fact, we use the less-well-known Galitskii-Feynman-
Hartree-Fock (GFHF) theory in which the Galitskii-
Feyntnan (GF) T matrix replaces the Brueckner T ma-
trix. The difference between them is that the GF T ma-
trix includes scattering to both intermediate particle (P)
and hole (H) states symmetrically when two particles in-
teract. The Brueckner T matrix allows scattering to parti-
cle states only. While the numerical difference between
the two is not large, it is important to include scattering to
both I' and H states in order to describe some properties
qualitatively correctly, ' such as the single-particle life-
time near the Fermi surface. Also the GF T matrix fits
naturally into Green-function theory which has provided

the microscopic foundation of Fermi-liquid theory. We
test the GFHF theory by comparing predicted results with
the results of variational, correlated basis function' '
(CBF) and model calculations. ' The present work also
represents the first application of BHF or GFHF theory
to a spin-polarized Fermi liquid. A preliminary report of
this work using the pair potential developed by Beck has
been reported.

To see why a GFHF theory may describe He' well, we
turn to the effective interaction in normal He. This ef-
fective interaction has three strong components of approx-
imately equal importance. ' Firstly, there is the strong
short-range repulsion between pairs of atoms arising from
the steeply repulsive hard core of the bare pair potential.
Secondly, there is repulsion between like spin particles due
to the Pauli exclusion principle. In normal He this
operates between only one-half of the particles. Thirdly,
there are the molecular-field-like interactions between
pairs induced via the excitations in the fluid: the density
and spin-density fluctuations.

Particularly, the interaction induced via the spin-
density fluctuations seems most important in determining
the values of the Landau parameters and the effective
mass m* in normal He. The GFHF theory takes account
of the first and second components but ignores the third
component entirely; that is, it describes pair interactions
via the bare interaction and the pair Fermi statistics and
ignores any many-body terms, which may be viewed as in-
duced interactions.

In He' all spins are aligned so that spin fluctuations
are "frozen out. " This part of the induced interaction
operating via spin fluctuations is therefore absent in He'.
Also, with all spins aligned, the Pauli exclusion principle
operates between all spins. The Fermi statistic correla-
tions therefore increase in relative importance. Since the
wavelength in He' below 1 K is —10 A, this correlation
operates beyond nearest neighbors and, as Lhuillier and
Levesque point out, may simulate many-body, long-range

29 3873 1984 The American Physical Society



3874 HENRY R. GLYDE AND STEPHEN I. HERNADI 29

correlations introducing an almost crystallinelike order.
The remaining interaction induced via density correlations
may be relatively much less important. Since GFHF
theory takes account of the short-range correlations in-
duced via the hard core and the Fermi statistics, it may
provide a reasonable description of He'.

In the next section we outline the elements of the
present GFHF theory. In Sec. III we present results for
the ground-state energy, inverse compressibility, Landau
parameters, and the effective mass. These results are dis-
cussed in Sec. IV.

II. THEORY BACKGROUND

A. GFHF Approximation

In the GFHF theory we begin with X free He atoms
(fermions) in a box of volume Q, Qp Q/——X=n '. Using
the standard Green-function method, we evaluate the
single-particle self-energy X to first order in the interac-
tion between the atoms. This leads to the Hartree-Fock
(HF) approximation which incorporates Fermi statistics.
Next, we evaluate contributions to X from a series of in-
teraction diagrams, the ladder diagrams, which account
for the interaction between pairs of atoms, particularly via
the hard core of the pair potential, to all orders. The con-
tribution of the ladder diagrams to X can be included by
replacing the pair potential in the Hartree-Fock (HF) ap-
proximation by the Galiskii-Feynman T matrix. All
higher-order interactions, chiefly three- and four-body in-
teractions are ignored.

Several choices of the single-particle energy (SPE) are
possible. We choose it as the energy in the single-particle
Green function G i ( l, coi );

e( l,pi, ) =k i /2m+X( l, coi),

(2)

(3)

is the usual HF interaction. Here

r(12,34)= Up(1 —3)+—y Up(1 —5)G2 "(56,Ei2)
Q k

&& I (56,34),

is the GF T matrix. It describes the interaction between a
pair of particles scattering from initial momentum states 1

and 2 to final momentum states 3 and 4 via intermediate
states (either both particle states or both hole states) 5 and
6. Uo is the Fourier transfer of the pair potential. I de-
pends on the initial total energy of the pair, E~2, via the
Fourier transform of the two-body Green function,

(1 —n, )(1 n—6)
G2 "(56,Ei2) =

E&2
—~5 —~6+ ~'9

n5n6

E)2 —c5 —66—l 'g

(5)

where e& ——E(5,co5), n5 ——e(p —e5), and il is a small posi-
tive constant. In (1) only "on-energy-shell" values of I,
EI2 =6~+E'2, are needed. The first term in 62 represents
scattering to two-particle intermediate states above the
Fermi surface (p) and the second term to two-hole inter-
mediate states within the Fermi sea. In BHF theory, only
the first term in G2 is retained. Also, we use a continuous
SPE given by (1) at all momentum in I, which is natural
in the Green-function method, whereas in BHF theory a
single-particle (SP) spectrum having a gap at kF is nor-
mally used. ' A continuous e is needed to characterize
excitations near kz correctly.

In He' with all spins aligned (&) we have only the
spin-triplet interaction I"= I (12,12)—I (12,21). Since
the spin-triplet interaction is symmetric in spin space, it
must be antisymrnetric in configuration space. Hence, if
we expand I" in partial wave components, this expansion
can contain only odd angular momentum (L) components,
r.e.,

I"=2+(2L +1)II =—2ap .

Qdd

(6)

By contrast in normal He, where both spin states (t and
&) are identical and equally weighted, the interaction in (1)
would be

Q I '=I ""+I"—=2I

B. Self-energy

The integration over co2 along the real axis in (2) may be
evaluated via contour integration. For this we need to
know the analytic properties of the one-body Green func-
tion

G i "(k2,p~2) =
1 —Pl 2 712

+
f02 —G2+ l 6 F2—62 —l 6

and of I . 6
&

" has a pole above the real axis at
co2 @2+i5 in ——the hole (n2) term and a pole below the real

=
2 (3ap+a, ),

where I, is the usual spin-symmetric interaction and a,
is the corresponding sum in (6) over even L components.
In He', kz (6' n)', ——eF Akz/2M, ——e~'=@~/m*', and
the density of single spin states per unit volume at the
Fermi surface is

r

dn 1 mkr 3

ir iri 2m~" Qp

where m*' is the effective mass to be determined theoreti-
cally. Otherwise the GFHF theory in He' is identical to
that in normal He. Since I depends upon e and e de-

pends upon I, the T matrix and SPE must be solved itera-
tively until self-consistent. We began the iteration using
the free SPE e& ——k i/2m in I .
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axis at roz ——ez —i5 in the particle (1—nz) term. By for-
mally iterating I in (4) we can show that I' has the same
analytic properties as the full two-body Green function
Gz. A Lehmann representation of Gz shows that it has a
line of poles (cut) just above the real axis for co&+coz & 2p
(corresponding to two-hole excitations) and a line of poles
(cut) just below the real axis (corresponding to two-
particle excitations).

We choose a contour to avoid the cuts in Gz (Wick ro-
tation) as shown in Fig. 1 and consider the integral
(a)z —+z }

3

I, = i — G, (k,z)l (k&z, co|+z)d z

around this contour. Specifically, the path down the ima-
ginary axis must be set to that co&+z=2p, (or z=2p —co~)

to avoid the cuts. The pole in G~ at z=e2+I', 5 will lie
within the contour if ez & 2p, —co& [residue proportional to
6(2p, —ro& —ez)] and that at z =ez —i5 will lie within the
contour if ez & 2p —

col [residue proportional to
1 —8(2p —co& —ez)]. Direct integration then gives

6&+iS

Qx

1

X XX XXXX XXXXXX

T'Ittr'0- PARTICLE
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FIG. 1. Contour used to evaluate integral over co2 in the self-
energy.

ao dy 1 —8(p —Ez) 6(p —&z)
+ + I"(k,z, 2p+iy )—~ 2m iy+2p —co) ez+i5— iy+2p —co) —ez —&'5

(9)

ImX(l, co~) =—g [6(p,—ez) —8(2p —co~ —ez)]

)& ImI"""(k)z, co)+ez), (10)

The first term comes from the residues at the poles in G~

and the second term from the integration down the ima-

ginary axis (z=x+iy) Here .I "" depends upon the rela-
l +

tive momentum k~z ———,(k~ —kz), the c.m. momentum

P =k &+ k2 and the energies as shown.
The first term in (9) has both a real and imaginary part

proportional to the real and imaginary parts of I". The
second term can be shown to be purely real. Hence ImX
comes entirely from the first term of (9),

The real and imaginary parts of X were evaluated directly
from (10) and (11), respectively.

The above Re@(l,e~) is identical to that obtained from

[n, =6(p —e, )]

Res(l, e&) =
5n)

k)E= g +—g I"(k&z,e&+ez)n&nz (12)
2&i 0 1 2

is the GFHF ground-state energy, but rearrangement
terms in the differentiation are ignored. In normal He we
found the rearrangement terms made a negligible contri-
bution to e when the GF T matrix was used.

while the real part has a contribution from both terms.
ImX clearly vanishes at co] ——p and to obtain this behavior
it is necessary to retain the contribution from both the
particle and hole terms of G~. In conventional BHF
theory only the first term of (10) is usually retained.

We have not been able to evaluate the second term of X
satisfactorily. Therefore for ReX we return to the usual
BHF expression. This may be obtained from the GFHF
X in (1) or (9) by ignoring the hole contribution to I "' and
choosing a contour in co2 closed entirely in the upper
half-plane. We then capture only the hole term of G

&
giv-

mg

ReX( l, co~ }=—g 8(p —ez)ReI" (k ~z, co~+ &z) .0 k

III. RESULTS

A. Single-particle and ground-state energies

In Fig. 2 we show the SPE e(k&, e~) in He' at volume
V=35.1 cm /mol, calculated by using the GF T matrix in
(1), (10), and (11). This is the final self-consistent SPE ob-
tained by iterating Eqs. (1), (4), and (5) for the T matrix
and e. The e in Fig. 2 gives a ground-state energy (GSE)
(12) in He' of E= —1.46 K. For comparison we show
some SPE spectra in normal He in Fig. 3.

From Fig. 2 we see Re@ suggests strong binding at
k =0, which rises rapidly to Re@(k~)= —3.7 K at the Fer-
mi surface. If the Hugenholtz —van Hove equality were
satisfied identically, we would have Re@(kF)=E The.



HENRY R. GLYDE AND STEPHEN I. HERNADI

ZQ

&(1 )

(K) 1O

-20'
0

k(A )

FIG. 2. Single-particle energy spectrum e(k) in He' at
0=35.1 cm /mol.

difference between Rem(kF) and E=—1.46 K indicates
outstanding contributions to E or to Re e(k) not included
in the GFHF approximation or errors in the calculation.
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Since Rem(kz) is changing so rapidly with k near kF high
precision in interactions is required to get Rec(kF) precise-
ly (within +0.2 K). Outstanding contributions are more
likely to change Rem(k) rather than E significantly.

Comparing the Ref in Fig. 2 with the corresponding
GF Re@ in normal He shown in Fig. 3, we see that at
k =0 the two e(k) are effectively the same. At k 1 A
(near kF), however, e(k) is significantly higher in He'
than in normal He.

To identify the difference in the interaction between a
pair of atoms in He and He' in the GFHF model we
show the partial wave components I'L, (k, k) of the T
matrix pail interaction ln Fig. 4 for L =0—3 in He. The
components I I (k, k) will be the same in He' and He ex-
cept for a scaling of k~. The first difference between He
and He' is that only the odd-L components exist in the
spin triplet interaction I "=2ao in He" [see Eq. (6)].
However, the odd-L components also dominate the spin-
symmetric interaction I"= —,

' (3a0+a, ) in He which
enters the self-energy X,. Hence the absence of even com-
ponents in He' makes less difference to X than might be
anticipated at first sight.

Secondly, the I I (k, k) appear in X heavily weighted by
a density of states pmportional to k . This means that
I l. (k, k) at high k is elnphasized. Particularly, the s-wave
I o shown in Fig. 4, which is strongly negative at low k
and appears to be important, actually makes rather little
contribution to c(k) =k I'2m+X&(k) in He. Thus e(k) is
dominated by I I in both cases; as has been understood for
normal He a long time. ' The dominant difference ap-
pears to be the absence of I"2 in He" and, in Figs. 2 and 3,
this will be noticed in e(k) at higher k near kz, where e(k)
in He' is higher than in normal He. This appears to ac-
count for the higher GSE in He" than in He, at least in
the GFHF picture.

Ill Flg. 2, wc scc tllRt. ImE'(k) va111S11cs at k=kp, Rs. lt
sllollld, but 1Rpldly becomes 1Rlgc away from kF. Tllls
suggests the quasiparticle lifetime away from the Fermi
surface rapidly becomes short; i.e., a Ime(k) =10 K corre-
sponds to a lifetime -4&&10 ' sec. The Ime(k) we find
is substantially larger than that for He' obtained by
Krotscheck et ai. ,

' who used the CBF method. This is

I0

—I4-
0 0.8

k (A-')
-I 0

FIG. 3. SPE spectra in normal He at 0=36.83 cm /mol:
GF is e(k) calculated using the present Galitskii-Feynman T
matrix, BBG is calculated using the present T matrix but retain-
ing only particle intermediate states (denoted the Brueckner-
Bethe-Goldstone approximation), BG is the Brueckner and
Gamrnel (Ref. 34) self-consistent e(k), and 0 is gstgaard's model
spectrum (Ref. 35).

-20
0.5 2.0

FIG. 4. Partial wave components of the T matrix, I.=0—3 in
normal He at Q =36.83 crn'/mol; (dn. /de)I'I. .



29 FULLY-SPIN-POLARIZED 'He

E (K)
'He

EX

l 1 l

—g—VARIATIONAL
(LHUI L L I ER
-LEVESQUE)

FHF
PRESENT)

go= —1.2 K at Q, =35.1 cm'/mol for 3He'. We believe

the potential of Aziz et al. does give a lower GSE for
He' outside the combined errors in the preliminary and

present calculations.
The fit (13) gives an inverse compressibility (in units of

K)
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FIG. 5. Ground-state energy of He': GFHF, present

Galitskii-Feynman-Hartree-Fock approximation; variational, in-

dicates the variational results of Lhuillier and Levesque (Ref. 6);
He expt. , observed valued for normal He (Ref. 50).

the chief disagreement between the CBF and GFHF ap-
proaches; otherwide the predicted results of the two
methods agree well. The Ime(k) in Fig. 2 agrees very well

in form [i.e., Ime(k) rises rapidly away from k~] with that
deduced from experiment in nuclei.

In Fig. 5 we show the GSE of He' calculated in the
GFHF approximation using the self-consistent I" along
with the variational values obtained by I.huillier and
Levesque (LL). Between 25 and SOcm /mole, the GFHF
energy (given in K) is well described by

E= —1.45+9.0x —14.5x (13)

where x=(Q —Q, )/Q, and Q, =35.7 cm'/mol. This
gives a minimum energy of Eo ———1.45+0.05 K at a
saturation volume Q, =35.7+0.8 cm /mol= 59.25
A /atom (n =16.9)& 10 A ), while LL find a minimum
of Eo —1.S6+0.06 ——K at a saturation volume of
Q, =37.9+0.8 cm jmol=63.0 A /atom. The present
GFHF Ec can be lowered -0.2 K if we set Ime(k) =0, as
is usually done in nuclear matter calculations, throughout
the iterations. Similarly, if we keep only the contributions
to Ime(k) from the hole states (k & kF) only, as was done
in previous GFHF calculations, " Ec is shifted by -0.1

K. Clearly, the agreement between the present GFHF and
the variational GSE results of LL, which both use the
HFDHE2 potential of Aziz et al. , is good. In a prelimi-
nary report, we used the Beck potential and found an

at saturation and a first-sound velocity c& (——mn«)
=220 m/sec. Since «varies a great deal along the GSE
curve, « is not precise (+15%). This (n«) ' agrees well

the value (n«) '=17A obtained by LL. Previously, "us-

ing the Beck potential, we obtained (n«) '=24 K and the
difference between this and (14) reflects the precision to
which (n«) ' is determined. The inverse compressibility
(n«) ' in He is, however, significantly greater than that
observed in normal He [(n«) '=12.1 K].

The fit (13) suggests (n«) ' in He' does not increase as

rapidly with density as it does in He. Also from (13) the
calculated pressure at Qo ——25 cm /mol, where solid He is

expected, is only -15 atm whereas the corresponding soli-
dification pressure in He is 34 atm. However, the pres-
sure and (n«. )

' at Q0=25 cm /mol are not wdl deter-

mined. Since liquid He' cannot exist for 00&Q„ the
predicted existence range is 25 & Qo &36 cm /mol, much
the same as for normal liquid He.

B. I.andau parameters

The Landau parameters represent the interaction be-

tween two particles in momentum states 1 and 2 on the
Fermi surface. In He' only spin-triplet Landau parame-

ters, FJ", exist. In lowest-order approximation, these can
be obtained directly from the GF 1"by using the stan-

dard ' result:

FI —— f d8sin8PL, (cos8)1 "(8) .dn 21 +1
de 2

Since the Landau parameters are "forward scattering" in-

teractions, the diagonal I"(ktk2, k&k2) (k3 ——k~, k4 ——k2)
is used in (15). With

) k&
~

=
~
k2

~

=kz, this diagonal I"
depends only upon the angle 8 between k

&
and k2 given by

k= —,(k& —k2)=csin(8/2) with c.m. momentum P=k&

+k2 ——2kFcos(8/2). The resulting FL"' at three volumes

are listed in Table I along with the effective mass
m" =(1+F) "/3).

The FI" in Table I are generally a factor of 10 smaller
than the FI in He, for two reasons. Firstly, because k~ is
somewhat larger and m*' is considerably smaller, the Fer-

TABLE- I. Lowest-order Landau parameters calculated directly ffoIl1 the Galitskii-Feynman T ma-

trix using Eq. (15).

Volume
(cm'/mol)

30
35
40

—0.46
—0.61
—0.71

—0.55
—0.49
—0.41

—0.12
0.08
0.19

0.63
0.57
0.56

0.56
0.50
0.43

0.11
0.07
0.06

0.82
0.84
0.86



3878 HENRY R. GLYDE AND STEPHEN I. HERNADI

TABLE II. Properties of He' at saturation: m*'=(1+F~'/3); Fp' calculated from the GSE using
(an) '=(2@~'/3)(1+Fp ), the Fermi velocity U~ ——k~/m*' and the first- (cl) and zero- (cp) sound veloci-
ties.

(cm /mol)

35.7 0.84

FI l
0

1.8

(m/sec)

Cp

(m/sec)

220

Cp

(m/sec)

270

'1
dn

(K A3)

0.0027

6E
12

6n16n2

where E is the total energy [F= (dn /dE)f ]. If we use the
GFHF energy (12) for E and differentiate only the explicit
values of n

&
and n2 in (12) we obtain the relation (15). We

can readily obtain a higher order value of Fo' by fully dif-
ferentiating the GFHF E. In this case Fo' is related to the
GFHF ground-state compressiblity by

r

BE
n '0 =(nI~) '=( —,ez')(1+Fo") .

()0
(16)

The value of Fo" obtained from (16) includes the contribu-
tion resulting from the dependence of I'" on particle oc-
cupation. These contributions are often called rearrange-
ment terms because they reflect the dependence of the in-
teraction on the rearrangement of particle occupation
when the density is changed. The difference between Fo'
obtained from (15) and from (16) is a measure of the in-
teraction between a pair of particles induced via density
changes ' (and fluctuations).

In Table II we list Fo' calculated from (16). Comparing
with Table I we see the rearrangement contributions make
Fo' positive, but relative to He (Fo 10.07) (Ref. 44——) Fo'
remains small. Thus we expect the induced interactions
via density excitations to be much smaller in He' than in
He. The higher-order value of Fo" in Table II agrees well

with the value Fo' 1.82 obtained by——Bedell and Quader. '

The Landau parameters in Table I are approximately
twice the values we quoted previously" using the Beck po-
tential. This is because we made an error by a factor of 2
in the density of states in our previous report.

The most dramatic diffrerence between He and He' is
the effective mass m*', which we find is m" =0.84 at sa-
turation. This sets the scale for most other properties.
Also m" tends to decrease slightly with increasing densi-
ty while in He m* increases dramatically with density.
The present value at saturation agrees well with the value
m*"=0.82 obtained by Bedell and @nader, ' who used a
model of both the direct and indirect interactions in He',
which worked well in normal He. Using the CBF

mi energy ez' ——ez'/m" is much larger in He'. The nor-
malizing density of states (dn/de)' in (8) is then a factor
of 5 smaller in He' [e.g. , (dn/de)"=0. 00265 (KA )

compared with (dn/dE) =0 015 (K. A )
' in He, both at

saturation). This reduces the overall magnitude of all the
FL". Also the calculated I'"(0) are smaller in He'.

In Landau theory, the Landau parameters are defined
as

method, Krotschek et at'. calculated a total effective mass
of m*'=0.9 at 0=36.3 cm /mol. On this basis, there is
broad agreement that m*' is close to or somewhat less
than 1 in He'.

C. Effective-mass enhancement

We may also obtain the effective mass from the real
part of the SPE as

m'(k, E)= a~
62k

2.0

lr5
m (k, E)

Or5

0

kF

I

m (k)

k(F)
FIG. 6. The "k mass, " m*(k), and the total effective mass

m*(k, E)=m*(k)m*(E), given by Eq. (17) in 'He" at 0=35
cm /mol.

BX BX1+OE, ' ar, ,
where Tk=A' k /2M. The m*(k, E) is often ' separated
into a "k mass, " m "(k)= [1+(BX/BTk)E] ' and an
"E mass" m*(E)= [1—(BX/BE)k ] with m (k,E)
=m'(k)m*(E). In Fig. 6 we show m*(k) and the total
m (k,E). The m*(k) at k =kF agrees well with the
m*' = ( 1+FI '/3). When the energy dependence of
X(k,E) is included an enhancement of m "(k,E) which is

roughly independent of k, having a maximum value of
m*(k, E)=1.5, is obtained. This enhancement is much
smaller than is found in normal He. ' "' Also, since
spin fluctuations are not possible in He" the enhancement
obtained in the present model must come from density
fluctuations. In this case, the enhancement shown in Fig.
5 is larger than might be expected.



Blaizot and Friman, who studied m' in nuclear
matter, show that the GFHF approximation can overesti-
mate the enhancement of m*(k,E) near kF if the potential
is sufficiently repulsive. For these reasons, while the
present Inodel does predict some enhancement of
m (k,E), its magnitude remains to be clarified. A large
enhancement of m" (k,E) near kz is expected in normal
He (Refs. 47, 54, and 55) and this enhancement has been

proposed as an explanation of the large change in the
specific heat with temperature observed in normal He.

Finally, Using Fo = 1.8 RQd PE =0.84, wc predict a
zero-sound velocity of cu -270 m/sec, while using
m"=1.5 we find this velocity increases to co ——350
m/sec. In this range of Fo' values co is very sensitive to
the value of m"". The co in He' is, in any case, predicted
to be substantially greater than co in He, due chiefly to
the large value of the Fermi velocity in He'.

IV. DISCUSSION

The present results represent the first application of
GFHF theory to a spin-polarized Fermi system. The
good agreement of the GSE with variational results and of
m ' with other values suggests the GFHF theory is a
much better approximation for polarized than for unpo-
larized He. Why should the GFHF theory work better in
He' than in normal He'7

The GFHF theory may be viewed as the first- (and
second-) order approximation in the hole-line expansion.
This is roughly an expansion in the density, but identify-
ing the expansion parameter Ii precisely is difficult. ' lf
x is given by the "wound integral" we would expect this to
be substantially the same in He' and normal He since v
is dominated by the hard-core radius relative to the inter-
particle spacing, which is the same in the two cases. An
estimate of i~ is Ii= I —m*(E) ', where m "(E) is the "E
mass" at re=0.75 k~. From Fig. 6 this gives v=0.3 in
He'. In nuclear rnatter estimates of a range from

it=0. 15—0.25 and there three- and four-body terms are
important. From this view we would not expect the
GFHF theory to work well in He'. %C believe, however,
that the long-range Fermi statistical correlation due to the
Pauh principle, which operates between all pairs in He,
simulate (and therefore reduce the need for additional)
three-body and higher correlations. For example, Lhuil-
lier and Levesque find that adding three-body correla-
tions to their Jastrow function in He' does not lead to a
significant, lowering of the GSE, whereas a significant
lowcflng 1s fouQd 1Q normal Hc.

As noted above the total interaction between particles
may be separated into a direct part, a statistical correla-
tion and an induced part. ' The latter represents the com-
ponent induced via spin fluctuations and density excita-
tions. ' The spin fluctuations do not exist in He'. The

difference between Fo" shown in Tables I and II provides
a measure of the interaction induced via density fluctua-
tions. The Fo' in Table I, obtained directly from the T
matrix via (15), represents the Eo' due to the direct term
(strictly the T-matrix approximation to the direct term).
The Fo' in Table II includes the induced component to
second order (or equivalently the rearrangement terms).
In normal He the first Fu is Fn= —8 and the
second is Fo-7. The corresponding difference in He"
is I"o' ———0.6 and I'o' ——l.8. Clearly, while induced con-
tributions are not negligible in He', they are much small-
er than in normal He.

If induced interactions are relatively small in 'He' this
leaves the direct interaction and statistical correlations. If
the T matrix is a good approximation to the direct part,
which it should be, then we would expect the GFHF
theory to work well in He', lt would be interesting to
test this for other spin-polarized Fermi systems such as

The most recent variational' results which include
three-body and momentum-depepdent correlations find
E=—2.1 K at n=16.2&10 A . Most recent CBF
(Ref. 13) and variational' calculations also now demon-
strate that the GSE of normal He lies below that of He'.
%hile this is also true in the GFHF theory, the GFHF
GSE in normal He is quite unreliable. There also seems a
general consensus that m*' in He' is approximately 1 or
slightly below 1. The present results and those of LL
(Ref. 6) find the inverse compressibility of He' greater
than that of normal He. This additional stiffness comes
from tllc Pauli prillclplc w111cll, as pointed oil t by LL,
tends to localized the atoms as if on a lattice. Since
m*'=1 and all the Landau parameters are small, He'
acts approximately like an ideal noniQtcracting Pauli
paramagnet. In this model thc magnetic susceptibility
will be less near full polarization than in normal He.

VA'th the smaller m ' the zero-sound velocity is also
111ucll lligllcl' tllaII 111 normal Hc, co 270 m/scc llslIlg
m*'=0.84. Because Fo' is small, co is very sensitive to
the value of the effective mass. Thus a measurement of c I
and co would help identify both I'(')' and m*', respectively.
A measurement of the specific heat would also identify
Pl 1Q thc Usual way.
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