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This paper is a study of the percolation problem with long-range correlations in the site or bond
occupations. An extension of the Harris criterion for the relevance of the correlations is derived for
the case that the correlations decay as x ' for large distances x. For a &d the correlations are
relevant if a v —2 &0 (where v is the percolation correlation-length exponent), while for a & d the
correlations are relevant if dv —2 &0. Applying this criterion to the behavior that results when the
correlations are relevant, we argue that the new behavior will have vi,„g 2/a. It is shown that the
correlated bond percolation problem is equivalent to a q-state Potts model with quenched disorder in

the limit q~l. With the use of this result, a renorrnalization-group study of the problem is

presented, expanding in @=6—d and in 6=4—a. In addition to the normal percolation fixed point,
we find a new long-range fixed point. The crossover to this new fixed point follows the extended

Harris criterion, and the fixed point has exponents vl,„g
——2/a (as predicted) and gl,„g——» (6—e).

Finally, several results on the percolation properties of the Ising model at its critical point are
shown to be in agreement with the predictions of this paper.

I. INTRODUCTION

Most previous work on the percolation problem' as-
sumes no spatial correlations for the site or bond occupa-
tions. Renormalization-group (RG) ideas and the analo-

gy with thermal critical phenomena suggest that the criti-
cal properties of all percolation problems with correlations
of sufficiently short range will be the same as those of the
uncorrelated percolation problem. This paper discusses
the effects of correlations on the percolation critical prop-
erties, what range of correlations are in fact relevant, and
what happens when they are.

The work presented here is closely related to a study by
Weinrib and Halperin (hereafter called WH) of the critical
properties of a system with quenched disorder which has
long-range spatial correlations. In that paper we observed
that some of our results apply to the correlated percola-
tion problem, and examined previous investigations of the
percolation properties of spin clusters of the triangular Is-
ing model in light of these results. The present study in-
cludes a more detailed discussion of the percolation results
of WH, including an extension of the analysis of the per-
colation of the Ising model to arbitrary dimension.

In addition, it will be shown that the correlated percola-
tion problem can be formulated in terms of a two-step
process involving correlated occupation probabilities, and
thus that the bond percolation version is equivalent to a
q-state Potts model with correlated quenched coupling-
constant disorder as q~1. This result then serves as the
foundation for a RG study of the correlated percolation
problem.

As in WH, we derive a generalization of the Harris cri-
terion for the correlated percolation problem, which indi-
cates the relevance of the correlations in the bond or site
occupations, i.e., whether the correlations change the per-
colation critical behavior, or not. We find that correla-

tions with correlation function g (r) which fall off at large
distances r faster than r (where d is the spatial dirnen-

sion) are the same (insofar as the critical behavior is con-
cerned) as no spatial correlations at all. Thus it is natural
to consider correlations, which fall off as a power law at
large distances, g(r)-r ' with a &d. Choosing such a
scale-invariant form for the correlation function at large
distances has the additional advantage that it allows for
the possibility of new scaling behavior described by new
fixed points of the RG when the correlations are relevant.

If the correlations are short ranged (or fall off faster
than r ), the normal Harris criterion applies: The
correlations are relevant if dv —2~0, where v is the
correlation-length exponent for the uncorrelated percola-
tion problem. For the percolation problem dv —2 is al-
ways positive, so short-range correlations do not change
the critical behavior. This result is to be expected since
the uncorrelated percolation problem already has nonzero
autocorrelation of site or bond occupations. Thus, the in-
troduction of other short-range correlations should not be
relevant. With a power-law form for the correlation func-
tion g(r) we derive the extended Harris criterion, which
states that the long-range nature of the correlations are
relevant if av —2&0. As in the thermal case considered
in WH, we apply the criterion to the system when the
correlations are relevant in order to argue that the new
correlation-length exponent obeys the scaling law

+long

We now define the problem we wish to consider. For
the sake of definiteness we shall discuss correlated site
percolation; correlated bond percolation can be defined
completely analogously. The site percolation problem can
be defined by site-occupation variables 8; at the sites Ii J

of a regular lattice of dimension d. The t9; take on the
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values j. and 0 corresponding to occupied and vacant sites,
respectively. (For the bond problem, the Ii j label bonds,
and an occupied bond is a conducting one. ) We shall
characterize the system by the site-occupation probability

(1.2)

and the site-occupation correlation function

gg(r)-r (1.4)

The system will percolate, i.e., there will be an infinite
cluster of nearest-neighbor occupied sites, when the site-
occupation probability exceeds the percolation threshold
p . In general p will depend on the correlations as well
as on the geometry of the lattice, but in this paper we
shall concentrate upon the scaling behavior of the system
for p near p*. In particular, the mean size of a cluster of
nearest-neighboI occupied sites diverges at the threshold

So far, we have taken the statistical properties of the
I8; j as given. Now we shall discuss two ways of generat-
ing them with power-law correlations. The first is to take
the site-occupation variables I8; j to be Ising lattice-gas
variables at the critical temperature, T=7;. In this case—(d —2+q& jgg(r)-r , where gT is the usual Ising thermal
critical exponent. If, in addition, the site percolation
problem is also Rt its percolation threshold, then the I8; j
define a correlated percolation problem with
a =d —2+gT. As will be discussed in greater detail in
Sec. V, in two dimensions the Ising thermal and percola-
tion problems are critical at the same point, while for
d &2 the thermal and percolation problems can be made
to be critical at the same point by randomly removing ac-
tive bonds ill dcfllllllg tllc pcl'colRtioll clustcl's. Tllls
problem, the percolation of Ising-spin clusters, has re-
ceived considerable attention. ' In WH we showed that
previous results' on the percolation of the triangular Is-
ing model were in accord with our scaling law v=2/a.
Section V extends this analysis, finding that the scaling
law is consistent with results in other dimensions as well.

A second, more general, approach to generating the
{8;j is a two-step process in which the site or bond oc-
cupations Rrc Imicpcndcntly dctcrmIIlcd by occupation
probabilities which vary from site to site. The occupation
variables can be made to have correlations by introducing
appropriate corIclatIons IIl thc occupRtloIl probabilities.
Random occupation variables with mean p and correlation
function gg(r) are created by placing an occupation proba-

gg(
~
r; —rJ

~

)=(8;8J)'=(8;8J)—(8;)(8J), (1.3)

where ( ) is an average over realizations of the random
variables [8;j. We consider a statistically homogeneous
and isotropic system so that p is the same for all sites and

gg is a function only of the distance
~
r; —r

~

between
the sites at positions r; and rj. In the normal, uncorrelat-
ed percolation problem the correlation function
gg(r)=p(I —p)5„o. This paper is concerned with more
general gg, particularly with ones that fall off as a power
law Rt 1RI'gc distances

blllty p (wltll p; 'E [0,I]) Rt cRch sltc (ol" bond) sllcll tllat
{p;),„=JIand (JI;JIJ );„=gg(

~
r; —rj

~
), where ( ),„ is an

average over the Ip; j. We can then consider the percola-
tion problem defined by

8; =e(JI;—x;),
wllcrc cacll site Is Illdcpclldcntly occilplcd with probab1llty

p; since the Ix; j are independent random variables uni-
formly distributed on the unit interval. Here, 8 is the
unit-step function: e(x)=1 if x ~0 and zero otherwise.
With these definitions the 8; will have the desired statisti-
cal properties. Note that the corI'elated bond percolation
problem can be defined by the same sort of two-step pro-
cess. We define correlated bond probabilities p;J, and
then bond-occupation variables

8;J=8(p;J—x; J)

with the Ix; J j independent random variables on the unit
interval.

Of course, the percolation problem is only completely
defined by specifying all of the higher moments of the
f8; j, and thus of the Ip;j. Since 8;=8; but in general
p;&Ig; the percolation problem is specified by all of the
different-point correlation functions, while to specify the
Ip; j one requires all of the same-point correlation func-
tions as well. However, we only explicitly consider the
two-point correlation function g~ because we believe that
it is the behavior of gg which determines the universality
class of the critical behavior.

For a given realization of the Ip; j the properties of the
correlated percolation problem can be expressed as aver-
ages over an ensemble defined by the tx; j. Then, as for
quenched thermodynamic systems, extensive quantities
can be averaged over the Ip; j to find macroscopic proper-
ties of the system.

In studying the thermal critical phenomena of inhomo-
geneous materials, one distinguishes' ' annealed disorder
(which comes to thermal equilibrium in experimental time
scales), from quenched disorder (which is essentially fixed
for a given sample). While annealed disorder is simply
described by a more complex Hamiltonian which must be
used in calculating thermodynamic quantities, in the case
of quenched disorder one must calculate such quantities
for a given realization of the disorder. Extensive quanti-
tlcs call then bc averaged ovcl flic qllcllc11cd dlsoldcr to
find the large system observables. The Ising percolation
problem is similar to an annealed disorder problem in that
we are using the thermal distribution of the Ising spins in
defining the percolation problem. Percolation quantities
of interest, such as cluster statistics, are calculated by
avclaglng ovcI' thc Ising thermal disorder. IIl fRct, In Scc.
V we shaB find that the Ising percolation problem maps
into a model with coupled Potts and Ising variables. We
have introduced an analog of quenched disorder in defin-
ing the correlated percolation problem involving a two-
step averaging procedure. The occupation probabilities
give rise to an ensemble of occupation variables with the
required correlations, Rnd then peIcolation quantities can
be averaged over the "quenched" probabilities. In Sec. III
we show that this formulation of the correlated percola-
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tion problem maps into a Potts model with quenched
correlated coupling-constant disorder.

For the percolation problem the introduction of the
average over the independent Ix; I in addition to the aver-

age over the correlated Ip; I appears superfluous; we are
introducing an extra unnecessary step. In fact, for the un-

correlated case, where the {p;) are uncorrelated random
variables, it is easy to see that the resulting I 8; J are exact-

ly those that would be obtained by replacing the random

p; by a single, homogeneous, occupation probability

p = (p; ),„;thus, for the uncorrelated case the second aver-

age over the tp; I is irrelevant.
However, the introduction of the two-step process in de-

fining the correlated percolation problem is useful in that
we show in Sec. III that the bond problem defined in this

way is equivalent to a q-state Potts model with quenched
inhomogeneous coupling constants in the limit q —+1. The
couplings K&,J are related to the bond probabilities p;z by

p; J
——1 —e '». If there are long-range correlations in the

jp;J] then there will also be such correlations in the

(K; J ]. This equivalence allows us to study the correlated
percolation problem for spatial dimension d near 6 by ap-

plying the RG to the Potts model with correlated
quenched disorder. As discussed above, we do not expect
short-range correlations in the occupations to change the
percolation critical behavior. This expectation is con-

firmed in a study of the q~ 1 state Potts model for which

short-range correlated coupling-constant disorder is ir-

relevant. %'ith a long-ranged coupling-constant—
disorder correlation function gx(r)-r we find that we

must carry out a double expansion in @=6—d and in

5=4—a with 5 of order e. Expanding to lowest order in e
and 5, we find crossover, to new critical behavior

described by a new stable fixed point of the RG, according

to the extended Harris criterion. When the long-range

correlations are relevant, the new critical exponents are

vi,„s——2/a, pi,„s——(5—e) /11,

and the scaling law Eq. (1.1) is in fact obeyed. We shall

show that these results are identical to those of Coniglio
and Lubensky" for the special case of Ising percolation
with d near 6 for which a =d —2.

The remainder of this paper is organized as follows. In
the next section we apply the Harris criterion to the corre-
lated percolation problem. In Sec. III we display the
equivalence of the correlated percolation problem and a

disordered q-state Potts model with q —+1, which is uti-

lized in Sec. IV for a RG study of the percolation prob-

lem. Finally, Sec. V contains a discussion of the percola-

tion of like-pointing Ising spins.

II. EXTENDED HARRIS CRITERION

The derivation of the Harris criterion" for the correlat-

ed percolation problem is very similar to that introduced

in WH for the thermal system with correlated disorder,

and the results for the two problems are identical. We
start with the correlated percolation problem as in the In-

troduction (we shall consider the site problem for definite-

ness, analogous arguments can be made for the bond prob-

lem), defined by site-occupation variables 8;=1,0 with

mean ( 8; ) =p and connected correlation function

ge(
~

r; —rj
~

) =(8;8~)'.
Our basic assumption is that a (large) region of the sys-

tem of size V =L will contain largest clusters of size gv,
with

kv-(p* —pv) " (2.1)

where p* and v are the percolation threshold and
correlation-length exponent of the infinite system, and pv
is the average site occupation of the region,

pv= —g 8;
~;~v ' (2.2)

(2.3)

where we have taken the size of a region to be V=( with

g large as p~p . A uniform transition is consistent only
if b, /(p' —p) ~0 as p —&p'. lf ge(r)-r ' for large r
then, upon solving the integral, we find

(p' —p) ' ', a&d
(p' —p)'" ', a &d .

Q2

(p —p)

The result for a &d is the same as that for purely short-

range correlations. For the uncorrelated percolation prob-
lem dv —2 & 0 for all dimensions as we expect, short-range
correlations are irrelevant. However, for a & d our extend-

ed Harris criterion results. The correlations are relevant

when

av —2&0. (2.5)

We now apply this criterion to the new behavior with
correlation exponent v~,„g, which occurs when the long-

range nature of the correlations is relevant. Consider in-

troducing additional correlations, which produce an addi-

tional power-law term in the correlation function,

ge(r) -Ar '+Br (2.6)

with 8 &&A. Since it is the long-range nature of the corre-
lation function which is relevant to the critical properties,
if b & a the B term will eventually dominate, and crossover
to new behavior will result. However, if b &a the A term

Clearly, in order for Eq. (2.1) to be true a cluster must fit
into the region, so we must take L & gv. In the following
we shall take L =gv, since this choice results in the most
stringent criterion.

We now ask if a uniform percolation transition with the

pure correlation-length exponent v is consistent. In a uni-

forin transition the correlation length diverges uniformly
across the system, so that the gv for different regions will

all diverge at the same point as p —+p*. If a uniform tran-
sition with the pure correlation-length exponent is incon-
sistent, then the long-range nature of the correlations are
relevant and we expect the system to exhibit new critical
behavior. From Eq. (2.1), a uniform transition will occur
only if the variations in pv are small as the threshold is

approached. The variance ofpv is

b, —= ((pv) )'= g (8;8~ )'-g ~ f gg(r)r~ 'dr,
V
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bvlo„g —2 ~ 0 if b & a,
bv),„s—2 (0 if b (a .

(2.7)

continues to dominate, and the original behavior will be
stable. Thus, applying the extended Harris criterion, we
expect

function for the Potts model can be written as a cluster
expansion involving graphs of the lattice. The free-energy
of the percolation problem with bond probabilities {p;J I is
then related to the free energy of the Potts model with
disordered coupling constants {K;z I defined by the rela-
tion

This can be satisfied for any b only if
—E;.

PI,g
=1—e (3.5)

vl,„g
——2/a . (2.8)

Below, we shall see that this scaling law is realized in the
percolation of like-pointing Ising spins at their critical
point and by the results of a RG study of correlated per-
colation near six dimensions.

ge(i,j; k, i)= (p(jpk I )~„—:e gx(i,j; k, l), (3.6)

where the coupling-constant disorder is characterized by
mean and correlation function

For weak disorder in the K; J (and thus in the p; ) the two
correlation functions have the same form,

ID. EQUIVALENT POTTS MODEL K = (K; z ),„, gx. (ij;k, 1) = (K; z K~ I ),'„, (3.7)

As is well known, ' ' ' the uncorrelated bond percola-
tion problem is equivalent to the q-state Potts model in the
limit q —+1. In this section we show that the correlated
bond percolation problem maps onto a Potts model with
quenched coupling-constant disorder. For small disorder
(corresponding to weak correlations in the percolation
problem) the coupling-constant —disorder correlation func-
tion gz has the same form as the equivalent percolation
problem's correlation function ge. These results serve as
the foundation for the next section's e=6—d expansion
for the percolation problem, derived by applying the RG
to the disordered Potts model with q —+1.

Consider the correlated bond percolation problem de-
fined by the two-step process as in the Introduction. Let
us define the "free energy" of the problem' for a given
realization of the {p,j I to be

f(h)= QK, e (3.1)

where K, is the average number of s-site clusters per site.
f (h) is a generating function for the cluster statistics of
the percolation problem; for example, the probability that
a site belongs to the infinite cluster

d

6=0
(3.2)

where p; 1 is the probability of bond (i,j ), we can write
f(h) as

f(h) =—g m(G) QN, e
Ã S

(3.4)

where the first sum is over all graphs of the lattice and.V,
is the number of s-site clusters in graph G.

Closely following the derivation of the relation between
percolation and the Potts model given by Lubensky' for
the uncorrelated case, we now show that the partition

since the probability that a site belongs to an s-site cluster
is sK, Defining 'gr. aphs as subsets of the bonds of the
underlying lattice of N sites, and introducing the probabil-
ity of a graph G,

(3.3)

with ( ),„an average over the quenched disorder.
We start with a disordered Potts model defined on a

regular lattice of N points with reduced Hamiltonian

—Pa= g K, ,5. .+h+5. , (3.8)

where p=(AT) ', ks is Boltzmann's constant, and T is
the temperature. The first sum is over nearest-neighbor
bonds (i,j ), the Potts variables o; take on q different
values, and the quenched coupling-constant disorder E;j
is as above. The partition function for a given {K;J J is

Z =Tr~~je

(3.11)
where the first product is over all bonds of the lattice.

After some algebra and using Eq. (3.4), we find that the
percolation free energy Eq. (3.1) is

=Tr(
) ff [1+(e "—1)5, , ]exp h +5

&I'j & I

(3.9)
Z can be expressed as an expansion over all graphs 6 of
bonds on the lattice where a present bond corresponds to
the term in the product (e "—1)5 and an absent bond

corresponds to the 1. Each connected cluster is forced to
have the same value of o by the 6 factor. Thus, uponi' j
taking the trace over the {0;I,a connected cluster of s
sites corresponds to a term

g (e "—1)+(q —1) g (e "—1)
&~;j& &~;j&

=(e +q —1) + p,. (1—p, ) ', (3.10)
&~',j&

where p; ~
is the bond probability defined in Eq. (3.5), and

the products are over bonds of the cluster. The partition
function is a sum over all graphs 6 of the product of the
contributions from the different clusters. Using the defi-
nition (3.3) of the probability of a configuration m.(G) we
can write Z as

Z = g (1—p; 1) ' g m(G) g (e"'+q —1)
&~,j& 6 clusters
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1 F
N Bq

(3.12)

where Ii =lnZ is the free energy of the q-state Potts model
in a magnetic field h with quenched coupling constants
IE; IJ. Finally, we can average Eq. (3.12) over the disor-
der, corresponding to averaging the Potts model free ener-

gy F over the quenched coupling constants E;J, and the
percolation free energy f (and hence the cluster statistics)
over the bond probabilities p; J.

Thus, in the next section we shall outline a RG analysis
of the q-state Potts model with long-range correlated
quenched coupling-constant disorder and identify the

q —+1 results as applying to the correlated percolation
problem.

tensor of order q. The coupling-constant disorder of our
discrete Potts model leads to inhomogeneous coefficients
in the Landau-Ginzburg-Wilson expansion of the Hamil-
tonian of the continuum version. However, only the inho-
mogeneity in the "temperature" coefficient r ( x ) is
relevant near the upper critical dimension of 6. In addi-
tion, terms of fourth and higher order in Q;z or of higher
than second order in the gradient are irrelevant near d =6
and shall be neglected. Thus, we wish to consider the
Hamiltonian

P~= f ~'x[-,'r(x)TrQ + —,BkQ;JBkQJ, —t TrQ ],
(4.1)

with r (x) satisfying

IV. RG STUDY (r(x)),„=r, (r(x)r(y))', „=g„(
~

x —y ~
), (4.2)

In the preceding section we showed that the correlated
bond percolation problem is equivalent to a q-state Potts
model with quenched correlated coupling-constant disor-
der in the limit q —+1. We shall now analyze the critical
properties of the percolation problem by applying the RG
to the disordered Potts model. The case of weak disorder
is considered so that the percolation problem's bond-
occupation correlation function has the same form as the
quenched coupling-constant correlation function of the re-
lated Potts model [see Eq. (3.6)]. We shall consider the
case of a power-law form for these functions.

Following Priest and Lubensky's study of the ordered
Potts model, we study a "soft-spin" continuum version of
the disordered Potts model introduced in the preceding
section. The order parameter Q; J(x) is a traceless, diago-

where ( )„is an average over the quenched disorder, and
g„(x)-x ' for large x.

We now wish to find the free energy of the Potts model
averaged over the quenched disorder. A convenient for-
malism which accomplishes this is the replica tech-
nique, ' which replicates the order parameter n times
and takes the limit n~O at the end. The averaged free
energy is then the trace of a homogeneous effective Ham-
iltonian, which is expressed as cumulants of (/3H)" aver-
aged over the disorder. The RG is then applied to this ef-
fective Hamiltonian. These steps are presented in more
detail in WH for the case of an m-vector model with the
same type of disorder, and our derivation here follows
that paper very closely. Expanding to the second cumu-
lant, the resulting effective Hamiltonian is

p,rf= g f d"[—,'rTr(Q ) + —,'5kQ;, c)kQ; —r Tr(Q ) ]——„g f d"xd~y Tr[Q (x)] g„(
~

x —y ~
)Tr[Q~(y)]a a, P

(4.3)

where Q;~ is the replicated order parameter. Notice that
in addition to the original three-point interaction t acting
within a single replica there is a new four-point interac-
tion g„(

~

x —y ~
) acting between replicas. Fourier-

transforming yields the interactions t and w, which are il-
lustrated graphically in Fig. 1. For small k, the Fourier-
transformed correlation function —,', g„(k)—U +wk

However, near d =6 the v interaction is irrelevant and
shall be ignored.

Applying the RG to this effective Hamiltonian, we find
that we must carry out a double expansion in a=6 —d
and in 5=4—a, with 5 of order e. This expansion is very
similar to the expansion in WH, except that in that case
the upper critical dimension was 4 rather than 6. We
shall find fixed points of the RG with r, t, and w of order
e. Thus, we expand the RG recursion relations to order
t, wt, and w in order to determine the fixed points and
exponents to lowest order in e. In Fig. 2 we show the dia-
grams contributing to r', t', and w' in the limit n~O.
The momentum dependence of the diagrams of Fig. 2(a)
ftx the anomalous dimension g to be

-(d-a)

FIG. 1. Interactions t and w. Notice that t acts only within a
single replica u and is momentum independent, while m acts be-
tween arbitrary replicas u and P and has momentum dependence

—(d —a)
q
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(o) (b) (c)
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I 8 =o-
I
l

I

t

FIG. 2. Graphs that contribute to (a) r', (b) t', and (c) w'.

The critical exponent g is determined by the momentum depen-
dence of graphs (a).

2s
g=243 1 ——g*2+ w

3
(4.4)

where t' and w' are the coupling values at the fixed point
of the RG differential recursion relations. These relations
in turn take the form

2s

1+r
23 (q —2)

d q(1+r)
—=

2
(E'—3'q)t + 3

t + 2 wt, (4.5)
dt i 23(q —3) 3 23

q(1+r) (1+r)
dw =(5—2r))w+ w + wt

2 2 23(q —2) 2

dl (I+r) q (I+r)

l
=(2 rI)r——

where we have absorbed irrelevant factors into a redefini-
tion of the couplings, and @=6—d and 5=4—a. Notice
the appearance of 6 in the third recursion relation. For
the correlated percolation problem we are interested in the
special case q~l. Thus, for clarity we shall take q =1
from now on.

The fixed points of the recursion relations are listed in
Table I. We find the Gaussian and pure fixed points
found previously which describe the uncorrelated percola-
tion problem for d & 6 and d & 6, respectively, an unphysi-
cal fixed point, which is unstable for 5 &0 and has an un-
physical negative value of w* for 5&0, and a new long-
range fixed point, which describes the systems critical
behavior when the long-range nature of the correlations is
relevant.

The eigenvalues of the various fixed points are shown in
Table II. Notice that to order e the scaling law Eq. (2.8) is
satisfied since the long-range fixed point has relevant tem-
perature eigenvalue A,, = —,

' (4—5)= —,
' a, so

I

—~ a+Gauss
I

vlong =2/a

Also, we find for the new critical behavior

rj),„g
——(5—e)/11 .

(4.6)

(4.7)

The crossover between the various fixed points is deter-
mined by the extended Harris criterion Eq. (2.5). With
e&0 the pure fixed point exchanges stability with the
long-range fixed point when

5——„e=(2/v~„„)—a =0, (4.8)

while when @&0 the Gaussian fixed point is unstable to
the long-range fixed point for all 5 & 0, since
avo, ~,—2&0 for a &4 because vo,„„=—,'. Figure 3 pro-
vides a summary of the regions where the various types of
critical behavior occur.

The long-range fixed point has complex eigenvalues in
the two irrelevant directions for 0.245 & (5/e) & 1.16.
This will lead to oscillating corrections to scaling ' and
to the possibility of Hopf bifurcation behavior. In fact,
with e g 0 the long-range fixed point becomes unstable via

FIG. 3. Regions in the 6-e plane, where the various types of
critical behavior occur. Here, a=6 —d and 5=4—a, where d is
the spatial dimension and a is the power of falloff of the correla-
tion function. The Gaussian and pure behaviors become un-

stable to the long-range behavior according to the extended
Harris criterion. The crossover occurs when av —2 goes nega-
tive, where v is the Gaussian or pure correlation-length ex-
ponent, respectively. In the crosshatched region separating the
long-range and Gaussian behaviors the long-range fixed point
has a finite domain of attraction; those systems with Hamiltoni-
ans which lie outside of the domain of attraction exhibit Gauss-
ian behavior.

Fixed point

TABLE I. Fixed points of the recursion relations, Eq. (4.5).

(I) Gaussian

(II) Pure

(III) Unphysical

(IV) Long range

0
1——E14

——53
8

0
I

1008

0

(1SS —4~)

0

0
3

128 ~

(215—10m)
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Fixed point

g) Gaussian

(II) Pure

(III) Unphysical

{IV) Long range

k, =1/v

TABLE II. Eivenvalues of the fixed points of Table I.

22 [{«—»5)+{—284m'+1404e5 9—995')'")

a subcritical Hopf bifurcation when 5& —,', c. However,
unlike the case of the m-vector model studied in WH, the
correlated percolation problem does not exhibit runaway
of the RG flows as a result of the bifurcation. The bifur-
cation occurs for 5 negative so that the Gaussian fixed
point is already stable. For —,', @&5&0 there are two
stable fixed points and thus two possible critical
behaviors, depending upon the explicit form of the Hamil-
tonian describing the system. The Hopf bifurcation is the
vanishing of the domain of attraction of the long-range
fixed point.

q, —= (e, ) =-,'(m+1),

ge{ I
r —rj I

)—= &();0, &'= —'gT( I
r; —r; I

)

(5.2)

with I and g~ the Ising magnetization and correlation
function, respectively. ( ) denotes an Ising thermal aver-
age. At its critical temperature T = T, in zero field h the
Ising model's spin correlation function has a power-law—(d —2+qT )
form gT(r)-r . Thus, if the resulting site per-
colation problem is also at its percolation threshold, we
have an example of the power-law correlated percolation
problem we wish to study.

T11c lilagllctlzatioll of tllc Islllg Illodcl vallisllcs Rt its
critical point, so for the percolation problem to be at
threshold at the same time it must have percolation
threshold p,

' = —,', in which case

5's Ps— (5.3)

Coniglio et ah. ' proved that for Ising corx'elated percola-
tion in two dimensions the percolation problem is at,

threshold at the Ising critical point. In WH we discussed
the case of the triangular lattice, for which. p,'= —,, in-
dependent of correlations. We found that the scaling law
Eq. (2.8) implies that the Ising correlation length gT and
the percolation correlation length gz are proportional, in
agreement with previous results for this model. ' In gen-
eral p,

'
& —,

' for lattices of spatial dimension d &2. How-

The percolation of like-pointing Ising spins (s;=+1)
has recently received considerable attention. ' Consid-
ering the site percolation of "up" spins, so the site-
occupatIOQ varIable ls

8; = —,
' (s;+1),

then the probability that a site is occupied and the site-
occupation correlation function are, respectively,

ever, randomly removing bonds of such a lattice raises the
site percolation threshold. Specifically, for Ising percola-
tion with T =T, and h =0 it has been argued ' that if
bonds are independently active with probability

ps ——1 —exp( 2J/k~—T, ), {5.4)

where the second step is a result of Eq. (5.3). We imagine
adding a small field h to the Ising model in order to in-
duce a small magnetization I, thereby making both the
thermal and percolation problems noncritical. Now, for
d &4, scaling laws for the Ising exponents imply that
2pr=vr(d —2+11T), and the thermal correlation length

gT —
I
II,so our scaling law predicts that the per-

colation and thermal correlation lengths are proportional
Rs wc take /l~0: g~ ~gT. T1118 prcdiction ls 111 accord
with our expectation that at the Ising critical point there
should be only a single relevant length scale for d &4, and
agrees with previous d =2 results' and with argu-
ments ' that the percolation critical behavior will be of
Ising type in all dimensions d &2. For 4&d & 6 we shall
see that the scaling law is in agreement with other results
on Ising percolRtiorl, although It is Qo loQger' true thRt

kp ~fr.
If d &4 then l)r ——0, so we predict v~ =2/(d —2) with

g~ —
I

m
I

. Note that this prediction agrees with the
d =4 behavior, where scaling still holds and the correla-
tion lengths are proportional, and that for d =6, where
the long-range correlations become irrelevant and vz takes
on its mean-field value of —,'. However, for d & 4, scaling
of the Ising model breaks down and gT —

I
m

I

', in-
dependent of dimension, so there are two diverging length
scales, g~ and gT with g~ &gT. The appearance of two
length scales can be understood from the fact that the Is-
ing model's upper critical dimension is 4, while that of the
percolation problem is 6. For d &4, the fluctuations of

where J is the Ising coupling constant, then the site per-
colation problem is also at threshold, i.e., ps = —,. Note
that the lattice is left intact insofar as the thermal Ising
problem is concerned; it is only the definition of the per-
colat1on clUsters as occup1Mi 81tes conrlected by active
bonds which is affected.

Applying the Harris criterion for the correlated site per-
colation problem derived in Sec II, we. find that the long-
range correlations with power d —2+riT are relevant for
d ~6. Thus, applying our scaling law, we expect that
v~ =2/(d —2+l1 r ) for Ising correlated percolation, so the
percolation cox'relation length
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both the Ising and percolation "fields" are relevant on all
length scales, and there is only a single diverging length as
the critical point is approached. However, for 4&d &6,
fluctuations of the Ising field are irrelevant and mean-
field theory is correct, while fluctuations of the percola-
tion fields are still relevant and the percolation correlation
length is suppressed relative to the Ising one. Finally, for
d & 6 the two models decouple since the Ising correlations
are irrelevant to the percolation problem, and both exhibit
their respective mean-field behavior: g~ —

~

m
~

while gz. —
~

m
(

We now show that this picture of the 4 & d & 6 behavior
is in accord with a study of Ising correlated percolation
with d =6 by Coniglio and Lubensky. " They develop a
field-theoretic version of the problem, appropriate near
the upper critical dimension of 6, from the mapping
of the problem onto a coupled Ising and Potts system with
the number of Potts states q~1. The Hamiltonian in
zero external fields is

netization —m. %e now show that this situation is
equivalent, with respect to the percolation scaling, to the
system with no Ising magnetization but with percolation
scaling field ri ac

~

m ~. This implies that v~=v~ since

g~ —
~
r, j

~. The argument depends upon the ir-
relevance of higher-order terms of the expansion of the
Hamiltonian, In lower dimensions the expansion breaks
down and our argument for the equality of the two ex-
ponents 1s not valid.

Let us define { )q to be an average over the Ising
Hamiltonian Hr of Eq. (5.7) with Ising magnetization
{P(x) )z ———m, i.e., for any function F(P),

{~(y)&,,.=Z, ( )-'T.„)F(q). ""-',
(5.9)—pHJ{m)

Zi(m) =Tr(y)e

Z=Tr(y y)e =Zr(m)Tr(ii)e {e )r ~
—PH

—PHp —PHc

PH =PHD +PHp+PHc,
with Ising, Potts, and coupling Hamiltonians

pH. = f d'x l 2 rod'+ '(~4»'-+ad "],
pHP= 2 f d"xl&i4'+(~P)' 3wi~jk—AW, A]
pHc= ——,w2 f d x A/2,

(5.6)

(5.7)

y pl r~y~ eZ ( )T PHP PHc'(m—)—
(5.10)

where Hc (m) is exPressed as a cumulant exPansion in Hc
averaged over the Ising Hamiltonian. I.et us display the
first cumulant explicitly, by writing

PHc'(m) = —,mw2 f ddx P2+PHc "(m), (5.11)

where P is the Ising field, f is a (q —1)-component Potts
field, and A,,jk is a tensor coupling of the g fields. The re-
sult of the RG analysis of the system in d =6—e is that at
the point that we are interested in, where both the thermal
and percolation systems are critical (ro =r i =0), the criti-
cal behavior is determined by a new fixed point of the
RG. At this fixed point the scaling field ro relevant for
the Ising model exhibits mean-field behavior as expected,
while the other relevant scaling field has eigenvalue

(vz) '= —,'(d —2) to first order in e=6—d. Keeping the
Ising model at T = T, (ro ——0), this other field is ri which
corresponds to varying pi, the fraction of active bonds, so
that [compare to Eq. (5.5)]

where Hc "(m) involves higher-order Ising correlation
functions. For m small, these correlation functions will
have their m =0 forms up to lengths of order gz -m
However, in determining the critical properties of the per-
colation system only the forms of the correlation func-
tions up to gz will be relevant. Thus, if gz &gr, we can
replace Hc"(m) by Hc"(0)=Hc'(0) in (5.11) without ef-
fect. In addition, notice that the first term of (5.11) is
quadratic in P, so we can absorb it into Hp and thus gen-
erate a new nonzero value for the temperature: r i

——mw2.
If we now carry out the steps of Eq. (5.10) in the reverse
order, we recover the original coupling Hc and generate
Hr(0) rather than Hi(m) so that

Z =Zi(m)Zi(0) 'Tr(p)e (5.12)

In addition, for the percolation field, ii =0 in d =6—e.
This result is in agreement with that of the preceding sec-
tion that g = » (5—e), since a =d —2 and thus
5—=4—a =e for d~4 Ising correlated percolation. Co-
niglio and Lubensky suggest that vz ——2/(d —2) for di-
mensions d ~6, although only so long as other terms in
the expansion of the Hamiltonian (5.6) remain irrelevant.
Also, under similar assumptions, Benzoni and Cardy'
piove to all orders iil e that vp ——2/(d —2+7/r). We sllall
argue bdow that if the Hamiltonian correctly describes
the system then v~ =v~. Hence, our scaling law v~ =2/(d
—2+gr) is in agreement with these other results. Note,
however, that in low dimensions the expansion of the
Hamiltonian becomes invalid so vz and v& need not, and
will not, be the same. %hile v& continues to be deter-
mined by our scahng law, v& does not.

Consider the system described by the Hamiltonian
equation (5.6) with ra =r, =0, but with a small Ising mag-

with pH the Hamiltonian of the system with ro ——m =0
but r i

——mw 2. The prefactor Zr(m) /Zi(0) gives the
Ising-model behavior as m —+0, while the new nonzero
value of P'] leads to a pclcolat1on corrclat1on length

g~ —
~
m

~

~, so that v~ =v~. Notice that the assumption
that gz (gr is satisfied, as it must be for the argument to
be self-consistent.
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