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An amorphous sample of FeF; (enriched in *’Fe) has been prepared by vapor deposition at
liquid-nitrogen temperature, and its 4.2-K Mossbauer Zeeman spectrum is reported. The spectrum
consists of six well-resolved broad experimental lines, which indicates the existence of a distribution
of electric field gradients, hyperfine fields, and isomer shifts at the iron sites. A quantitative
analysis of mean line positions, root-mean-square widths, and line shapes of the six Mdssbauer lines
enables us to obtain new information concerning the statistical distribution of iron environments in
the glassy matrix. The electric-field-gradient distribution at the iron sites is composed of equal pro-
portions with positive and negative principal values. The distribution of Zeeman quadrupole-shift
energies is very closely of symmetric Gaussian form. The hyperfine-field distribution p(H)
possesses a small-amplitude low-field “tail” which at 4.2 K contains (5+£2)% of the total sites. A
theoretical explanation of the origin and shape of the tail is given, and it is expected to disappear
completely in the limit T—0. The limiting shape of p (H) as T—0 is quantitatively established and
is significantly asymmetric about its peak. Numerical values are given for the separate root-mean-
square widths of isomer shift, quadrupole shift, and hyperfine-field distributions and for correla-
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tions between these variables.

I. INTRODUCTION

In a series of recent papers' ~* the Mdssbauer quadru-
pole and Zeeman spectra of >’Fe in an amorphous envi-
ronment have been analyzed and used specifically to study
local structure in vitreous Y;FesO;,. This material, whose
crystalline form is yttrium iron garnet (YIG), is found to
lose all memory of its local crystalline coordination in the
amorphous state, and appears to conform with the expec-
tations of a dense random-packed assembly of spheres (of
appropriate relative diameters to represent Y3+, Fe’+, and
0, respectively) modified only to allow for the existence
of repulsive Coulomb forces between the trivalent ca-
tions.’

In the present paper we report the measurement and in-
terpretation of analogous MG0ssbauer spectra for amor-
phous FeF; (a-FeF3). This is only the second amorphous
insulating material (and first fluoride) for which detailed
assessments of MGssbauer parameters, the correlations and
variances, etc., have been given. Crystalline FeF;, like
crystalline YIG, is magnetically ordered at room tempera-
ture. Unlike crystalline YIG, however, it has only a single
resolvable Mdssbauer iron site,® so that any Mossbauer-
parameter correlations (such as those between hyperfine
field, isomer shift, quadrupole energy, etc.) which develop
in the amorphous phase must necessarily result in their
entirety from deformations pertaining to the formation of
‘the noncrystalline state.

Amorphous FeF; was first prepared by Ferey et al.’
and found to be paramagnetic down to a temperature
T=30 K, below which a speromagnetic ordering of
spins®® develops. Thus, below 30 K the paramagnetic
Mossbauer doublet”!® (which approximates!® a direct
measure of quadrupole energy distribution at iron sites in
the amorphous environment) broadens into a six-line Zee-
man spectrum. !

In this paper we report on both the preparation of an
enriched >’Fe sample of a-FeF; and its role in obtaining a
Mossbauer Zeeman spectrum at 4.2 K of high statistical
quality. A quantitative analysis of mean line positions,
root-mean-square (rms) widths, and line shapes of the
well-resolved lines enables us to obtain much new infor-
mation concerning the statistical distribution of iron envi-
ronments in the glassy matrix. In particular, we obtain
the separate rms widths of the distributions of hyperfine
field H, isomer shift &, and first-order Zeeman
quadrupole-shift energy u. Additional conclusions include
the following.

(1) The electric-field-gradient distribution at iron sites is
very accurately composed of equal proportions with posi-
tive and negative principal values.

(2) The distribution of Zeeman quadrupole-shift ener-
gies is very closely (within 19%) of symmetric Gaussian
form.

(3) The hyperfine-field distribution p(H) possesses a
small low-field “tail” which, at 4.2 K, contains (5+2)% of
the total sites. A theory of the origin of this tail is
presented which suggests that it is proportional in ampli-
tude to temperature 7T, and should therefore disappear
completely in the limit 7—0.

(4) The limiting shape of p (H) as T—0 is significantly
asymmetric about its peak [which occurs at H ~ 540 kOe,
a value somewhat smaller than the equivalent crystalline
value of 618 kOe (Ref. 6)]. The degree of asymmetry is
moresthan twice the amplitude of its analog in amorphous
YIG. :

(5) The correlation functions uy{(AHA8) and
un{AHAu ), involving fluctuations Ax (x =H,5,u) from
their mean values, are, respectively, + 0.031 and + 0.017
(mm/s)?.. Comparison with the analogous values of
+0.071 and + 0.028 (mm/s)? in a-YIG indicates that
the differences are accounted for primarily by the smaller
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rms widths of the 8 and u distributions in a-FeF; (the
latter, at least, caused primarily by the lower valence of
the anions in the halide material). To the extent that these
correlations monitor a characteristic of local disorder,
they therefore suggest some common structural features
for a-FeF; and a-YIG. For a-YIG we believe that a viable
model is one based, in lowest order, upon a random pack-
ing of spherical ions, subject to a recognition of strong
Coulomb forces which maintain a separation between
highly ionized cations within the building algorithm.!—*
For a-FeF;, on the other hand, the situation is less clear,
and an octahedral random-network model'? is an alterna-
tive possibility. As an additional complication, the low-
field tail states were not seen'! in high-field magnetic
measurements on a different (unenriched) sample of a-
FeF;. The latter sample was reported’ to have a low-
temperature hyperfine field of (558+1) kOe, considerably
larger than in our sample, leaving open the question as to
what extent different methods of sample preparation pro-
duce amorphous materials with substantially different lo-
cal environments.

II. EXPERIMENT AND CURVE FITTING

Amorphous ferric fluoride (a-FeF;) was deposited as
film by evaporation of the crystalline material onto gra-
phite, boron nitride, and glass substrates. A sample en-
riched in *’Fe was deposited only on graphite. A 3-in.-
diam graphite substrate was held to a copper block by
aluminum-filled epoxy (Epotech), but without adding the
hardener so that the samples could easily be removed
later. The fluoride was evaporated onto the substrates,
and films approximately 50000 A thick were obtained in
3 h. The station was first pumped for 24 h to a pressure
of 1.2%10~% Torr in order to remove all traces of mois-
ture. Liquid nitrogen was then passed through the block
and evaporation initiated. Details on preparation of
amorphous FeF; have been given elsewhere. '3

The 3'Fe Mossbauer absorption spectra were obtained in
a standard transmission geometry using a conventional
constant-acceleration spectrometer and a 3’Co-in-Pd
source. The room-temperature Mossbauer spectra for
FeF; deposited on boron nitride and glass are identical,
within the statistical scatter of the data, to the graphite
substrate. The absorber in this experiment was a film of
FeF; enriched in *'Fe approximately 15000 A thick. The
room-temperature Mossbauer spectrum'> of a-FeF; has
established the existence of a broad quadrupole-doublet
distribution with peak-to-peak splitting of 0.55 mm/s and
an isomer shift of 0.45 mm/s (with respect to Fe metal at
room temperature). The isomer shift indicates that iron in
a-FeF; is in the Fe*t valence state. We note that our
value of 0.45 mm/s for amorphous FeF; is slightly small-
er than the 0.54-mm/s value reported by Ferey et al.” for
their sample of a-FeF;. Both values, however, would indi-
cate a ferric state for the constituent iron atoms. The
amorphous Mossbauer spectrum is to be contrasted with
the single-crystal equivalent.® Crystalline FeF; has a
long-range magnetic order at room temperature, and
thereby exhibits a six-line Zeeman-split spectrum. In its
paramagnetic phase, crystalline FeF; exhibits a single-line
spectrum, indicating a zero or negligibly small quadrupole
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FIG. 1. Experimental *’Fe Mossbauer Zeeman spectrum of
a-FeF; taken at 4.2 K. The continuous curves are the best non-
linear least-squares fits to the data using six independent (a)
symmetric Gaussian and (b) asymmetric Gaussian distributions
of natural-width Lorentzian lines. The parameters correspond-
ing to these fits are given in Tables I and II, respectively.

splitting. The spectrum of a-FeF; at 4.2 K displays a
well-resolved six-line pattern with good statistics and
many channels per peak and is given in Fig. 1. The mean
hyperfine field is 529 kOe and the mean isomer shift is
0.586 mm/s, again indicating that iron is in the Fe’*
valence state.

The six broad experimental Zeeman lines (labeled L; to
Lg in order of increasing energy) are each composed of a
distribution of natural-width Lorentzians. We now
represent this Zeeman spectrum as the sum of six such in-
dependent distributions p;(x) in the form

6 512
f@=3h 3 wipy—1)/[wl+z-y?, (1
i=1 y=1

in which y and z are discrete variables running over the
512 channels of the folded experimental data, w; =0.10
mm/s is the Lorentzian half width at half maximum
(HWHM), and h; and [; are real variables measuring the
amplitudes and positions of the six distributions i.

From Fig. 1 we see that the Mossbauer Zeeman spec-
trum at 4.2 K consists of six well-separated lines so that
problems of line deconvolution are minimal. As a first
approximation, the independent distributions p;(x) are ar-
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TABLE 1. Line positions /; = (L; ), half widths at half heights w;, and areas 4; of the six symmetric
Gaussian distributions p; of Eqgs. (1) and (2) which best fit the Mdssbauer Zeeman data of amorphous

FeF; at 4.2 K; see Fig. 1(a).
(Ly+L,+Ls+L¢)/4 as origin.

Line positions are given with respect to the isomer shift

1 2 3 4 5 6

(L;) (mm/s) —8.6325 —4.9636 —1.3495 1.3606 49766 8.6195

2w; (mm/s) 0.9025 0.6763 0.4323 0.4632 0.6927 1.0163

A; (arb. units) 1.0175 0.7119 0.3744 0.3853 0.7280 1.0400
A,/46=0.978 A,/A45=0978 A3/4,=0972

bitrarily taken to be of symmetric Gaussian form. Writ-
ing

pi(x)=exp[ —xX(In2) /w?], )

in which w; are the respective HWHM’s for the individual
distributions i, a computer least-squares fit to convergence
with the Zeeman data is obtained as shown in Fig. 1(a).
This fit provides the “best-fit” parameters given in Table
I, where we also include the distribution-area ratios
A /Ag, Ay /As, and A3 /A4, which should all be unity for
the ideal limit of perfect data and fit.

In the symmetric Gaussian approximation the values /;
in Eq. (1) are identically equal to the mean positions of the
distributions (which we symbolize as (L;)). From Fig.
1(a) it is evident that some degree of asymmetry is present
in the individual line shapes (particularly the outside
lines), and, in an effort to represent this in the fitting pro-
cedure, we have rerun the least-squares computer pro-
gram, replacing the symmetric Gaussians of Eq. (2) with
asymmetric Gaussians of the form

pi(x)=exp[ —xX(In2) /(w )], @

in which the + (—) superscript is relevant for x>0
(x <0) and the HWHM values w;" and w;™ are, in general,
unequal for each component line ;. The best asymmetric
Gaussian fit to the data via Eq. (1) is shown in Fig. 1(b),
and generates the best-fit parameter values shown in Table
II. From them one can calculate the mean values (L;)
and variances W} of the six independent distributions:
These values are also quoted in Table II, where we note

that (L;) is no longer equal to ;.

Although, as measured by the minimized least-squares
deviation of the model from the data, the asymmetric fit
is a factor of 2.83 better than the symmetric equivalent,
some obvious discrepancies still remain in the wings of the
outside lines. These will be discussed in detail below.

III. ANALYSIS OF LINE POSITIONS

As set out in previous publications’? the mean line po-
sitions (L; ) can be expressed in terms of five parameters,
namely the mean isomer shift (8), the mean hyperfine
field (H), and the first- and second-order quadrupole
perturbational shifts {(u) and <{(as). From the
symmetric-distribution fit (Table I) we calculate (§)
=0.591 mm/s with respect to iron at room temperature,
(H )=533.4 kOe, (a,)= +0.053 mm/s, (a_)
= —0.004 mm/s, and (u )= + 0.006 and —0.007 mm/s,
where the two values for the last parameter result from
the overdetermination of the problem (six equations and
five unknowns).

The computer-determined 70% confidence limits for
the mean line position values (L;) are +0.006 mm/s,
leading us to the estimate

{u ) =0.000+0.006 (4)

for the first-order Zeeman quadrupolar line shift. A value
of zero is in accord with theoretical expectations for an
amorphous ferric speromagnet (angles 6 and ¢ random
in Ref. 1), as is the close proportionality
Ag:As:Ay:Ay:Ay: A1 ~3:2:1:1:2:3 (Table I). However, a

TABLE II. Mean line positions {L; ), half widths at half heights w, and w_, areas 4;, and mean-
square linewidths W?=((L;—(L;)))? for the six asymmetric Gaussian distributions p;/~ of natural-
width Lorentzian lines which produce the converged least-squares-computed fit to the Mdssbauer Zee-
man data of amorphous FeF; at 4.2 K as shown in Fig. 1(b). Line positions are given with respect to

the isomer shift (L, +L,+Ls+L¢)/4 as origin.

1 2 3 4 5 6
I, (mm/s) —8.8202 —5.0733 —1.3894 1.4026 5.1097 8.8422
(L;) (mm/s) —8.5669 —4.9263 —1.3338 1.3543 4.9408 8.5524
wi™ (mm/s) 0.2692 0.2309 0.1773 0.2685 0.4719 0.7304
wi (mm/s) 0.6429 0.4478 0.2593 0.1974 0.2226 0.3027
A; (arb. units) 1.0353 0.7197 0.3786 0.3891 0.7365 1.0616
W} (mm/s)? 0.1615 0.0869 0.0349 0.0396 0.0921 0.2075

A,/4¢=0.975 A,/A45=0977 A3/4,=0973
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FIG. 2. Schematic iron Mossbauer Zeeman spectrum in an
amorphous environment showing (a) the small low-field tails on
the resolved field-dominated lines L, L,, Ls, and L, and (b)
their effect on the resultant (summed) spectrum.

second theoretical expectation for amorphous ferric
speromagnet, namely! (a,)=3(a_) (which was ob-
served for vitreous YIG), is well outside even the 90%
confidence limits in the above analysis.

In order to see whether this last result is connected with
the symmetric Gaussian restriction we have repeated the
above analysis using the data from Table II appropriate
for the improved asymmetric Gaussian fitting procedure.
In spite of the almost threefold improvement in fit to the
data (as measured by the total mean-square deviation
summed over all channels), the discrepancy persists;
(a,)=0.050 mm/s and {a_)=—0.005 mm/s. In fact,
the only significant change resulting from the mean-line-
position analysis using asymmetric Gaussians is a small
decrease (to 529.4 kOe) for the mean hyperfine field.

The origin of the discrepancy lies in a more subtle
feature of the line shape, and a clue to its nature can be
seen by focusing attention on the significant deviation of
the best-fit computer-generated curves in both Figs. 1(a)
and 1(b) from the “background” data at the extreme ends
of the spectra. An effect of this kind has not appeared in
any other of our Gaussian fits to amorphous Zeeman data
[e.g., in amorphous YIG (Refs. 1 and 2) or any of the me-
tallic ferromagnetic glasses!#]. It can be explained by the
existence of a long small-amplitude tail on the low-field
side of the hyperfine distribution function p(H). This
field distribution p (H) completely dominates the outside
(i=1 and 6) and, to a lesser extent, the middle (=2 and
5) line shapes of the amorphous Zeeman pattern (see Sec.
VI), and a tail tends to generate a six-line spectrum of the
qualitative form depicted in Fig. 2, which exhibits just the
anomaly present in the observed data and which is inex-
plicable in terms of distributions p; or p;° of Egs. (2) and
(3). The high-field edge of this tail is clearly shown in the
quantitative analysis of the L,L¢ line shape set out in
Sec. VI.

IV. HYPERFINE TAIL

We propose that the origin of the low-field hyperfine
tail arises from the existence of a small fraction of § ==
ferric spins in the amorphous matrix which experience a
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resultant exchange field H., (via superexchange interac-
tions with nearest-neighbor spins) for which the energy
gupH (with g=2) is not large with respect to kT at
T=4.2 K. Within the spherical random-packing model of
amorphous FeF;, %16 each iron spin S; is coupled magnet-
ically via an exchange energy —2J;;(6;; )§,~ '§j to one or
more nearest-neighbor spins S; by a dominantly superex-
change mechanism via an iron-fluoride-iron ligand path of
bond angle 6;. When 6,; >120°, the superexchange is
strongly antiferromagnetic (negative). The magnitude of
this exchange decreases with decreasing angle and some-
where in the region 100°<6;; < 120° it goes through zero
to become very weakly ferromagnetic close to 90° [see Fig.
3(a)], which is close to the smallest bond angle allowed
within the model. We assume that direct iron-iron ex-
change contributions can be neglected in Fe** systems.
Via the geometry and packing of the computer-
generated assembly of iron and fluorine spheres represent-
ing a-FeF;, it is now possible, using Fig. 3(a), to obtain a
qualitative form for the total exchange Y, ; Jij» sensed by
each iron spin, and therefore to generate the distribution
function p( 2]. Jij), within the model. It is sketched in
Fig. 3(b). The associated exchange energy distribution

p(gupHe)=p | 3, 2Jij§j J
J

probably mimics p( 3, J;) to some extent, although it
obviously has a detailed form which depends on the de-
gree and nature of local frustration.!”

For the present purpose it is necessary only to note that
plgupH,,) has a nonzero probability within the random-
packing model as H.,—0. As a zeroth-order approxima-
tion we therefore replace p (guzH.,) by a constant value
K for sufficiently small energies. Quite generally, in an
exchange field H., at a temperature T, the equilibrium
value of an arbitrary spin is given by

S= %Mexp(EM/kT)/%exp(EM/kT) , (5)

where M =—S,—S+1,...,+S, and E =gugH,.,. This
equation shows that S does not approach its fully saturat-
ed value S=S until E/kT >>1. By formal differentiation
of Eq. (5) with respect to E, we obtain

as _ 2y (a2
iE =(1/kT){(S?)—(S)?), (6)

in which the angular brackets represent ensemble averages
(i.e., (S)=S). Using this equation we can express the
spin distribution function in the form

_ dE kT
& =pE)E —pg)— KT ™
PI=P A s TP (55 52

Since the hyperfine field for orbitally quenched spins is
directly proportional to the local spin moment (H =AS)
in the lowest-order contact approximation,'® and p (E)=K
in the “tail region” with E/KT <1, it follows that we can
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FIG. 3. (a) Exchange energy J(6) as a function of the anion bond angle 6 in an Fe—F—Fe superexchange configuration. (b)
Schematic of the total exchange distribution function p( 3, ;Jij) vs total exchange S ;Jij in a random-packed computer model of

amorphous FeF;.

express the hyperfine tail in the form
p(H)=(K /AT /({S?)-5?). (®)

Since (S?) can be directly computed for any spin quan-
tum number via the equation

(5?Y="S MPexp(EM /KT) / S exp(EM/KT),  9)
M M

we can, using Egs. (5) and (9), and eliminating E /KT, cal-
culate p(H) as a function of S/S, or, equivalently,
H/H ., where H_ ., =AS is the maximum possible value
contact hyperfine field. For spin 5, which is that relevant

for ferric ions, the function F=({S?)—S5?%)~! to which
the hyperfine tail is directly proportional, is shown in Fig.
4 as a function of S/S =H/H ,,. At E/kT=1, we find
values S=1.93 (77% saturation) and {S?*) =4.57 (73% sa-
turation). Since the midpoint minimum between Zeeman
lines L, and L, (or equivalently, Ls and Lg) also corre-
sponds to S/S =0.77 for the outside Zeeman lines, it is
apparent that the condition E/kT=1 essentially defines
the extent of hyperfine tail in the present context.

For a fixed temperature (e.g., T=4.2 K in the present
experiments) the hyperfine-field tail can therefore be ex-
pressed as
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side, middle, and outer lines of the Mdssbauer spectrum for an
“outside-line” tail.

p(H)=BF(H /H ) , (10)

where B is a constant and the function F(H /H,,) is
shown in Fig. 4. With the use of this relationship, an ap-
proximate estimate of the tail amplitude for a-FeF; at 4.2
K can be obtained directly from the experimental data of
Figs. 1(a) and 1(b) at the midpoints between L; and L,,
and between Ls and Ls. We find a value B ~0.0016,
which converts to an estimate of ~7% of the total p (H)
distribution being in the tail (i.e., with E <4 K).

From the spherical random-packed computer model of
a-FeF; we find a value of close to 7% for the percentage
of iron sites coordinated to only one or two nearest-
neighbor irons via superexchange bonds with bond angles
0;j < 115°. Although this close numerical agreement is
probably fortuitous, it does suggest, within the model, that
the ferromagnetic “potential” exchange!® via 90°
Fe’t—F~—Fe’t bonds must be very small, ie.,
J(0=90") <1 K. Unfortunately, we know of no crystal-
line ferric fluorides with 90° bonds which might lend
themselves to testing this hypothesis directly.

In a random-network model of a-FeF; the number of
0;; < 115° bonds is negligible, and an explanation of the
low-exchange-field sites would have to be sought in the
details of local spin frustration. This could arise if some
iron sites have nearest-neighbor iron spins whose projec-
tions sum to a near-zero value.

In principle, a similar hyperfine tail should also be
present in a-YIG. Since it has thus far escaped detection,
it must be of much smaller amplitude. This condition
might result, we surmise, because 90° Fe**—0?~—Fe’*
band ferromagnetic superexchange is considerably larger
than its fluorine equivalent, making gupH,., >4K for
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most of the topological coordination features which con-
tribute to the tail in the fluorine context. Once again,
however, no direct confirmation of this hypothesis is yet
available from a study of quasi-90°-bond exchange, e.g., in
crystalline ferric oxides such as CuFeO,, (with 6;;=96°).
Indeed, the degree to which direct iron-iron exchange in-
teractions might compete with 90° superexchange in these
systems also remains unknown.

V. TAIL CORRECTION TO LINE-POSITION
ANALYSIS

With the existence of a hyperfine tail on p (H) it is clear
that the computer-generated values for (L;), i=1,2,5,6
listed in Tables I and II (which are obtained in neglect of
the tail) are actually underestimates of the true mean
values at 4.2 K. In a simple approximation [assuming all
lines i=1,2,5,6 are completely dominated in shape by
p(H)], we can therefore correct the Table I and II values
for these particular average line positions (L; ), replacing
them by values A(L; ), and determining the constant A by
forcing the condition {(a,)=3(a_) (equal to, for in-
stance, 3€) in the line-position analysis of Sec. III. Using
the (more accurate) asymmetric analysis from Table II we
find values

(H)=524.0, (u)=-—0.008,
1y

€=0.0089, A=0.987,

with (H) given in kOe and (u) and € in mm/s. The
second-order shift parameter € directly determines the rms
pure quadrupole energy distribution o(Eg)=((Ey)*)'/?
via the equation?

((Eg)*Y=5|gr | pun(H e, (12)

in which gz = —0.1030 is the nuclear g factor of the excit-
ed Mossbauer level. From Egs. (11) and (12) we find the
Zeeman-estimated quadrupole variance ((Egy)?)=0.158
(mm/s)* or equivalently o(Ep)=0.40 mm/s. The latter
can be compared with direct Mossbauer-doublet estimates
in the paramagnetic regime at room temperature'""!* (0.31
mm/s) and at liquid-nitrogen temperature?®® (0.35 mm/s).
The overall agreement (indicating a small increase in
quadrupole width with decreasing temperature) supports
the viability of the tail-corrected analysis. In particular, it
allows us to calculate the variance of « [in (mm/s)?],

((Au)?)=3((Eg)*)=0.032, (13)

or, equivalently, o(#)=0.18 mm/s.

Finally, if the center of “gravity” of the tail states is
H /H ,,,=x, then the fraction f of states in the tail is re-
lated to A by the equation

1—f 4+xf=A. (14)

For a tail shape of the form shown in Fig. 4 we have
x =~0.6 and consequently, from Eq. (14) with A=0.987, an
estimate f~3%. Both of our independent estimates of
tail fraction (7% from Sec. IV and 3% here) are depen-
dent on a knowledge of tail shape. The discrepancy,
which we may incorporate within the error bars,
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TABLE III. Summary of the findings of the present paper for the mean values (x ), rms fluctua-
tions o(x), and correlations (AxAy) for x,y =H (hyperfine field), § (isomer shift), and u (first-order
quadrupolar Zeeman line shift) as T—0 in amorphous FeF.

(u)=—0.008 mm/s
(H)=529 kOe (peak value at 540 kOe)

(8)=0.586 mm/s (with respect to iron metal at room temperature)
o(u)=0.18 mm/s i
o(H)=24.1 kOe

0(8)=0.08+0.02 mm/s
un{AHAS)= +0.031 (mm/s)?
ux{AHAu )= +0.017 (mm/s)*

f=0.05+0.02, (15)

may indicate a deviation from the ‘“constant—density-of-
states” approximation of Fig. 4 or may simply result from
the smallness of the effect combined with the statistical
accuracy of the data and analysis.

VI. LINEWIDTHS AND LINE SHAPES

Assuming that the states in the hyperfine tail at 4.2 K
are not grossly atypical in terms of their saturation field
in the limit T—0, the linewidth values in Table II should
be representative of the fully saturated S—S spin system.
They may therefore be analyzed in conventional fashion
as set out in Ref. 1. Using the rms widths W? directly
from Table II in the linewidth ‘difference equations’ [Egs.
(12) of Ref. 1], we find field correlations [given in
(mm/s)?]

py{AHAS) = +0.031, puy{AHAu)=+0.017,  (16)

where Ax =x —(x) (x=H,u,..., etc.). Correlations
(A8Aay ) are too small [ <0.001 (mm/s)?] to be reliably
estimated.

From the overdetermined lowest order linewidth “sum
equations,” viz.,

T(Wi+Wi)=a’+gib?, (17a)
(Wit Wh=a’+g2h?, (17b)
Wi+ Wi =a’+gh?, (17¢)

in which g, =0.2448, g,=0.1418, and g;=0.0388,
a?=((A8)%) +((Au)?), b =p%{(AH)*), (18)

we find the solution with smallest rms deviation to be
a?=0.036 and b2=2.50 (mm/s)?, leading to the standard
deviations

0(8)=0.06—0.10 mm/s,
(19)
o(H)=24.1 kOe (1.58 mm/s) ,

the spread in values for o(8) depending on whether one
takes the second-order Zeeman [0.032 (mm/s)?] or pure-
quadrupole liquid-nitrogen [0.025 (mm/s)?] values as be-
ing the more accurate representation for ((Au)?) as
T—0. The deviations of the right-hand side of Egs. (17)
using @?=0.036 and b*>=2.50 from the experimentally
determined left-hand side, are, respectively, —0.0011,

+ 0.0034, and —0.0023 (mm/s)? for Egs. (17a), (17b), and
(17¢).'* These numbers reflect the smallness of the corre-
lations of the type (A8Au) and (AHAa.) which have
been omitted from Eqgs. (17).

Our final findings for mean values, correlations, and

“distribution widths for the Mdéssbauer parameters of a-

FeF; as T—0 are set out in Table III. We note, in partic-
ular, the contributions gj2<(AH )2), {(Au)?), and ((A8)?)
of hyperfine-field, quadrupole-, and isomer-shift distribu-
tions to mean-square linewidths for the outer, middle, and
inner (j=1,2,3) Zeeman lines: They are

Hyperfine = Quadrupole Isomer

Outer: L,Lg 0.150 0.032 0.007(3)
Middle: L,,Ls 0.050 0.032 0.007(3)
Inner: Lj,L, 0.004 0.032 0.007(3)
(20)

in units of (mm/s)®. Thus the inner lines are dominated
by quadrupole distribution and the middle and outer lines
by hyperfine-field distribution. However, for the middle
lines, L, and L5, the field dominance is not overwhelm-
ing, and our earlier approximation (Sec. V) that the mid-
dle line shapes, like the outer ones, reflect the hyperfine
distribution alone, is evidently not quantitatively correct.
On the other hand, the very marked dominance of inner
linewidth by quadrupole broadening allows us to analyze
the L; and L, line shapes in order to determine the distri-
bution p,(E) of quadrupole shifts quite accurately. In
Fig. 5 we show the computer-generated residuals R;(E)
and R4(E) from the best symmetric Gaussian fit of Fig.
1(a) for lines Ly and L4. As explained in Ref. 3, the func-
tion %[R3(E)+R4(E)], which is shown in Fig. 5(c), mea-
sures the deviation of p,(—FE) from a symmetric Gaussian
form. This deviation, from Fig. 5(c), is found to be ex-
tremely small (less than 1% of the distribution amplitude)
and is exactly symmetric about the distribution center (de-
fined as E=0). This symmetry establishes® that the num-
ber of iron sites with positive and negative electric field
gradient (EFG) in a-FeF; is very accurately equal. Finally
the degree of asymmetry about the line centers seen [Figs.
5(a) and 5(b)] in R;(E) and R4(E) separately (approxi-
mately +£2.5% of total line amplitude) reflects the small
field-dependent contribution to inner line shape and the
asymmetry of the hyperfine-field distribution function
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FIG. 5. (a) and (b) show the residuals R; and R4 for the two
inner Mdéssbauer Zeeman lines L3 and L, measuring the differ-
ence between the data points and the best-fit-computer-
generated symmetric Gaussian curve of Fig. 1(a) scaled as a per-
centage of peak height. The continuous curves are merely
guides to the eye. The arrows labeled L; and L, denote the
peaks of the two Zeeman lines and those labeled 5 the widths at

half height. The velocity scale for each line is zeroed at the peak
value. (c) The non-Gaussian component of the distribution of
first-order Zeeman quadrupole shifts calculated by averaging the
L and L, residuals of (a) and (b) (see text and Ref. 3). Its lack
of asymmetry about its center establishes that the number of
iron sites with positive and negative EFG’s is very accurately
equal in a-FeF;.

1
+0.2

p(H). The close equality in number of iron sites with pos-
itive and negative EFG’s is expected within the random-
packing model of a-FeF;, and also, presumably (since
crystalline FeF; has an unmeasurably small EFG itself ©),
within any distorted network model as well.

Details of the asymmetry of field distribution p (H) can
accurately be computed from the shapes of the lines i=1
and 6 which are overwhelmingly dominated by field dis-
tribution. In such a situation® the hyperfine-field energy
distribution py(E), which is directly proportional to p (H),
has an asymmetric part which is measured by the function
+[R¢(E)+R(—E)]. This function, involving the residu-
als R to lines L, and L¢ as generated by the symmetric
Gaussian fit of Fig. 1(a), is shown in Fig. 6(a). The de-
tailed form of the complete distribution py(E) is then
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FIG. 6. (a) Asymmetric component of hyperfine-field-

generated line shape calculated by averaging the L and energy-
reversed L, residuals of Fig. 1(a) for a-FeF; at 4.2 K. (b) The
unnormalized total hyperfine-field distribution line shape p (H)
obtained by adding curve (a) to the average symmetric Gaussian
best fit to lines L, and L¢. Velocity units have been converted to
magnetic field units in the abscissa.

found by adding this asymmetry function to the average
symmetric Gaussian best fit to the outside Zeeman lines.

" The result, plotted in Fig. 6(b), is expressed in field units

and therefore represents an unnormalized measure of
p(H).2

The degree of asymmetry, as measured by the ratio of
the amplitudes of Figs. 6(a) and 6(b), is about 7%, which
may ‘be compared with a value of 3% for the analogous
degree of asymmetry in a-YIG.® Finally, we note that the
high-field edge of the low-field tail of p (H) is clearly visi-
ble in Fig. 6(b). It cannot be reliably extended to lower-
field values by this method because of the developing line
overlaps with L, and L.
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