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Exact solutions to the time-dependent Landau-Ginzburg model of phase transitions
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Using the Landau-Ginzburg Hamiltonian, which provides a phenomenological description of
phase transition, we derive its Lagrangian and subsequently the Lagrange-Euler equations of motion

for the order parameter. In the case of one-dimensional systems these equations appear in the form
of a nonlinear Schrodinger equation and are solved exactly following the method of Hasse, using the

assumption of constant envelope velocity. The resulting time-dependent solutions possess a per-

manent profile, and their role and range of existence are discussed. The temperature dependence of
their velocities and widths is analyzed.

I. INTRODUCTION

This paper is intended to generalize the Landau-
Ginzburg model of phase transitions and to investigate the
resulting time-dependent solutions of the equation of
motion of the order parameter g. We treat the order pa-
rameter as a complex time- and space-dependent function
and utilize the Hamiltonian approach. The potential
function appears as a power series up to order 2n in

~ g ~

.
The equation of motion also includes a dissipative term.
We begin by reviewing the original Landau-Ginzburg ap-
proach.

Landau' developed a phenomenological theory of
second-order phase transitions by expanding the Gibbs
free energy G of the system in a series of symmetry invari-
ants of the low-temperature symmetry group gp which is
also a subgroup of the high-temperature symmetry group

A2(T P)=a(P)e, (2)

where e=(T T,~/T, is the no—rmalized temperature. The
extremal value of g, g, is found simply by minimizing G,

'I .n=n
=0,

and using the stability conditions

&0,

+[—(a /2A4)e]'i, T & T,

0, T&T, .

G(T,P)=Gp(T, P)rl +A4rl +. . .

where P denotes the external field conjugated with the or-
der parameter g and Gp is the Gibbs free energy of the
high-temperature phase. In order to obtain the desired
transition at T, Landau postulated that

It is required that A4 & 0 and a & 0 for the low-
temperature phase to be ordered.

When the expansion Eq. (I) is carried out to the next
order,

G(T P)=Gp(T P)+a(P)eel +A4ri +A6rl + ' '

then g becomes

+ [—A, + (A 24 —4aA, e)'"]'"
T( Tc

336

0, T&T,

(4)

where the new transition temperature T,* is

T,*=T, +(A4/4aA6),

and the transition may be either of second or first order
depending on whether A4 & 0 or A4 &0, respectively.

In order to include spatial inhomogeneities of the order
parameter, when these inhomogeneities are slowly varying,
Ginzburg added another correction to the origina1 Lan-
dau expression,

G =Gp+ J (Apt) +A 4& +D
~

Vg
~

)dV,

where the sixth-order term of Eq. (4) has been dropped
and D is called the dissipation constant. Minimizing this
functional with respect to g one obtains

2(ae+2A4g DV )rl=0, —
which has two trivial, spatially homogeneous solutions
[those of Eq. (5)] and one nontrivial solution (in one-
dimensional systems) representing a boundary wall be-
tween two possible ordered phases of opposite signs,

g =qptanh[x /W2(( T)],
where rip rl(x ~ ao ) and g ( T——) =D/

~

A 2 ~

. Here g is the
coherence length. The latter solution exists only below T,
and only if D & 0.

In order to consider time-dependent phenomena one
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uses the Gibbs free energy G from Eq. (7) and arrives at
the Langevin equation (without the presence of external
forces),

2 an22/=( —2) (A2 ——2A42/ )r/ D—
ax2

(10)

+—(V2/)' dV,
2

where n =2 corresponds to the standard Landau function-
al and n =1 may be the case in systems where n is time
reversal or space-inversion invariant. They obtained an
equation of motion analogous to Eq. (10) and postulated
the following solutions (which they checked by substitu-
tion). (i) A kink in the form of

/rI1O+ exp[5(X —Xo ut )])— (12)

where 2/0 corresponds to q of Eq. (5), 5 is the reciprocal
width, and u is the velocity. (ii) A kink-antikink couple in
the form of

r/= r/0(1+ exp I
—5[X—Xg (t)] I )

&&(1+exp j5[X—Xs(t)]I ) (13)

The first solution is interpreted as an interface separating
the ordered phase from the disordered one, whereas the
other solution describes a nucleation center of the ordered

phase. Both solutions have permanent profiles and travel
with constant velocities. All of their parameters depend

significantly on temperature.
It is our intention to provide a derivation of exact solu-

tions of a generalized time-dependent Landau-Ginzburg
model without restricting the order of the transition. In-

stead of the free Gibbs energy we will employ the Hamil-

tonian formalism and the order parameter will be a com-

plex function. The resultant equation which replaces Eq.
(10) is

where the constants, A2, A4, and D should be taken in
units of the rate constant as Eq. (10) is a rate equation.
This equation has been termed as "rather hopeless"' to be
solved exactly. Therefore, a usual procedure has been to
linearize it and use various approximations to perturb the
linearized solution. However, Parlinski and Zielinski
discussed the first-order structural phase transitions in a
recent paper and postulated two types of special solutions
to Eq. (10). The Gibbs free energy they used can be
represented as

G=GO+ f A22/ +A„+2r/"+ +A2„+22/ "+

form of the equation of motion may be conveniently sum-

marized as follows.
(1) We use the continuum approximation and include

the possibility of inhomogeneities by writing an appropri-
ate Hamiltonian H as

0= f dx[(m/2)+x)'+A2
I ~ I

'+A. +2 I n I

"+'

+A,„+, I n I

'"+'—(D/2)
I v~ I

']
= f dxA (x), (15)

where (x) is the Hamiltonian density.
(2) The Landau condition given by Eq. (2) is adopted.
(3) We invoke the Gaussian approximation with a prob-

ability density p given by

p=Z 'exp[ (r/ r—/) /k—T] . (16)

H= x p+A2n +A +2

+A,„+, I

r/I'"+' —(D/2)
I
v@'] . (17)

Here q =r/(x).
(5) We express 2/ as a complex function depending upon

both space (x) and time (t),

2/=
I
2/(x, t)

I

e'&'" "=r/e'&, — (18)

where for the sake of convenience we have also denoted

(6) By using the Legendre transformation we convert
the Hamiltonian density (x) into a Lagrangian density

L(r/„, 2/„2/). This transformation is readily carried out as
follows:

LH=L —mn„ =an '

BY/ B7/
lt ~ nxBt Bx

(19a)

(19b)

From Eqs. (19) it is easy to see that m is the momentum
density conjugate to n. The Lagrangian density resulting
from these calculations has the form

L =(t /2)(r/r/i r/'r/&)(D/2)r/. ' ——A2
I

2/
I

An+212/ I

"+ A2n+217/
I

"+
0 ~ (20)

Here Z is the appropriate normalization constant and n is
the most probable value of r/. Within this approximation

n =n.
(4) Assuming that the kinetic energy term in Eq. (15)

can be treated as a constant we replace the block Hamil-
tonian by an approximate equivalent Hamiltonian ex-

pressed as

D t/ +[ 2A+2(+tt2)nA+I'/ I

'

+(2&+2)A2. +2 I
r/

I

"]2/ (14)

(7) The standard Lagrange-Euler equations of motion
may be written as

II. EQUATION OF MOTION

a aL a aL
ax an„+at an,

aL
an
' (21)

In this paper we follow the approach taken by Ma and

einploy a block Hamiltonian for a system undergoing

phase transition. The free energy of the system is there-

fore not used. The necessary steps leading to the final

(8) Substituting Eq. (20) in Eq. (21) we get

+[2A2+(tt+2)A. +2 I n I"

(2n+2)A2„+2 I 2/ I
"]2/= i2/, . (22)—
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This is our final equation of motion and is an example of
the well-known nonlinear Schrodinger equation. Hasse'
has presented a method which can be adapted for the ex-
act solution of Eq. (22). In the next section we turn our
attention to this aspect of the problem.

III. SOLUTION OF THE NONLINEAR SCHRODINGER
EQUATION

Representing the potential term in Eq. (22) by

~( 1) ~2(~+2)~n+21 1 I
"+(2~+2)~2n+2

I 1 I

(23)

and substituting ri from Eq. (18) into Eq. (22), we obtain

i (ri, +i riP, ) =Dn +2iDri„g„+iDrig Drtg„—

—8"(g)ii .

which yields P—,= —(P, ) =v /4D as required by Eq.
(33). Substituting this value of P, into Eq. (31) we arrive
at

ri~ = [(1/2D )v + W(ri) ]ri/D . (35)

z(ri) =—f dye v + W(q) (37)

By substituting the definition of W from Eq. (23) and car-
rying out a termwise integration over g we obtain

Because of the assumed constancy of v, Eq. (35) can be
solved exactly upon introducing a new variable: z—:(ri„) .
As a result we transform Eq. (35) into

dz 2 12
v + W(g) (36)

dg D 2D

which can be written in the integral form
T

We may now separate the real and imaginary parts as fol-
lows.

(i) The imaginary part yields

z(ri) =c,rt'+ c,ri" +'+c3q'"+',

where the constants are

(38)

nt =2Drixdx+Drtkxx

which when multiplied through by 2' transforms into

—(q') = (ri')(2DP„)+ g'(2DP ) .

Introducing the quantum velocity as

v = 2DP„—
and the density as

p(x, t) =ri (x,t),

(25)

(26)

(27)

(28)

V2
c] ———2A2+

~n+2
C2=

232n+ 2
C3=

We now employ the definition of z to solve for g

+(x —vt) = f dil'z(il')
Y/p

= f dg'[g'(ci+czri'"+c3q ")'~ ]

(39)

(40)

(41)

(42)

we rewrite Eq. (26) in the form of an equation of continui-

ty,
where bio ——ri(x = vt ). Changing the integration variable to
g=ri", Eq. (42) becomes

p, = —(p&)„.
(ii) The real part yields

rig, =Dpi„D—rig„—W(ii )ii, —
which can be transformed into

p, —8'(il) —(1/4d)v +(D/ri)ri~ =0 .

(29)

(30)

(31)

n

+(x vt)= —f d—g[g(ci+czg+c3$)' ] ', (43)
Pl gp

which upon another change of variable, r= I/g assumes
the form of a standard elliptic integral,

—n

+(x —vt)= ——f" dr(C3+Cpr+Cit ), (44)—n

(H) = —(,P, ) =mv /2=v /4D . (33)

We now assume v to be constant and set f(t)=v /4Dt to
obtain

P(x, t) =(1/2D)v(x —vt)+(v /4D)t, (34)

Integration of Eq. (27) yields
I

P(x, t)=(1/2D) f, dx'v(x', t)+f(t), (32)

where the function f(t) is selected in the manner suggest-
ed by Hasse' such that the expectation value of the
Hamiltonian gives the energy of the wave packet. To car-
ry out this program we interpret (2D) ' as the effective
mass of the quasiparticle described by the Schrodinger
equation, Eq. (22): m =(2D) ', and we write

whose value depends on the constants c~, c2, and c3, and
another constant defined as

4 V6=4C3C~ —C2 —— 232n+2 ZA2+n 2D
2—~n+2

(45)

Equation (44) is obtained, after a series of transforma-
tions, as a result of using the Hamiltonian, Eq. (15), to
derive the equation of motion of ri, Eq. (22). The latter
equation has been integrated out by assuming the form of
ri as in Eq. (18) and keeping the velocity v constant. The
variable ~ is simply ~=g . The analytical expressions
for the integral Eq. (44) are given in Appendix A. Substi-
tuting those expressions into Eq. (44) and solving for ri we
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where

X3 ——ln(2c~rio "+cz) .

(iv) If c& & 0 and arbitrary b„ then

rI(x, t)= 1+6
4c(

sinh[X4+n~c~ (x ut )]—

obtain the following possibilities.
(i) If c~ &0 and 6&0, then

rt(x, t) = {(1/2c& )V b, sinh[x ~+n~c&(x v—t)]
—c2/2c) }

where

x& ——sinh '[(2c&go "+c2)/V b, ] .

(ii) If c& & 0 and b, & 0, then

rt(x, t) = {(I/2c )V b, sin[x2+—nQ —c~(x ut—) j
—c2/2c1 }

where

X2 ——sin '[(2c&rIo "+cq)/V' —b] .

(iii) If c ~ & 0 and 6=0, then

7)(x,t) = {(I/2c&)exp[X3+n~c~(x ut)] —c.2/2—c& }

(46)

(47)

(48)

(50)

(51)

Note that Eq. (52) becomes identical to Eqs. (50) and (46)
if 5=0 and 1, respectively. A special use of this solution
with 5= —1 and n =4 is listed in Table 1 of Hasse. '

All the solutions given in Eqs. (46), (48), (50), and (52)
are essentially waves propagating through the system with
a constant velocity v and a permanent profile. These for-
mulas determine the real part of g [see Eq. (18)j which is

related to the envelope wave, whereas the carrier wave is
given by e'~ where P is displayed in Eq. (34). Therefore,
each of these time-dependent solutions can, in general, be
written as

g(x, t) =goof [5,(~,—V, t)]exp[i5, (~,—u, t)],
(54)

U V
(55)

It is perhaps worth mentioning that apart from the time-
dependent solutions (i)—(iv), Eq. (22) possesses a number
of trivial, time- and/or space-independent solutions which
have been presented in conjunction with the earlier
models. These are the following.

(v) The solution corresponding to the disordered phase
(stable for T & T,*),

where the index e refers to the envelope and c refers to the
carrier properties, rio is the amplitude, and f is the func-
tion of the profile expressed in (i)—(iv). It is readily seen
that

where

1 —6 C2
+ cosh[X4+ n~c& (x —ut )j-

4c] 2cj

(52)

ri(x, t) =0 .

Here

5, =U, =5, =U, =go ——0.

(56)

X4 ——ln{2[c~(ciao +cz'9o +c3)]' +2ctgo "+c2} .
(53)

(iv) The solution corresponding to the homogeneously
ordered phase

rI(x, t)=+ (n+2—)A„+2+[(n +2) A„+2 —8(2n +2)A2A2„+2]'

2~2m+2
(57)

This solution exists only when T(T,*. Here

5, =v, =u, =0; 5, = oo and rio&0.
(vii) Provided T & T,

' and D &0, there exist solutions
describing a stationary boundary wall between the solu-
tions (vi) with opposite signs,

tions to exist. From the requirements on the signs of c~
and 6 stated for each of the solutions we easily deduce the
following.

(1) Solution (i) requires that D & 0 (dissipative systems)
and the temperature range must be restrained to

rt(x, t) =gotanh
2(( T)

(58)

Here 5, =u, =u, =0; 5, = [V 2g( T) ] '. In the next section
we proceed to analyze in detail the properties and ex-
istence ranges of the time-dependent solutions (i)—(iv).

IV. DISCUSSION OF THE SOLUTIONS

4aD 2,g 2

However, T, may be made arbitrarily small by the ap-

propriate choice of parameters.
(2) Solution (ii) requires that D & 0 and T & T, .cl'
(3) Solution (iii) exists only if D & 0.
(4) Solution (iv) may exist both if D & 0 and if D & 0. In

the former case one needs

We now discuss the constraints imposed on the parame-
ters c&, c2, and c3 and through them on the coefficients
A2, A4, A6, and D in order for the time-dependent solu-

U2T(T 1 — =T
4aD

(60)
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and in the latter case one needs T & T, . From the formc2'

of these solutions wc Ilotc tlIRt f coIltalllcd III Eq. (54) Is
comprised of a function raised to the (—lfn)th power.
Therefore, additional restrictions arise if n is even (n =2 is
the most common ease). In this case we require that in
the entire range of x Ut,—the function whose root is taken
should be positive, otherwise unphysical divergences ap-
pear.

Upon analyzing this condition in all the four cases we
find the following additional restrictions that have to be
imposed in order for the solutions to attain physical
meaning.

(1) Solution (i) requires that cz &0 or else there will be
at least one singular point. This combined with the previ-
ous requirement that D&0 results in 3„+2~0 which
means that only systems exhibiting first-order transitions
may possess this solution.

(2) Similarly, solution (ii) may only exist if cz&—b, ~ 1

which implies that cz &0 and (cz —4c3cI)' . However, cz
is positive and cI is negative, and therefore the latter con-
ditions can never be realized and consequently solution (ii)
1s Unphysical.

(3) Solution (iii) exists only if cz & 0 which is equivalent
to A„+z &0. The latter condition is satisfied only by sys-
tems undergoing first-order transitions.

(4) Solution (iv) can only be admitted if cz & —2+cIc3,
w111ch III terms of thc Hamtltonlan constants, Is written Rs

1/2

~D )

2Az~+z 2Az+
2D

This inequality is satisfied irrespective of the sign of A„+z
and therefore solution (iv) may exist in system exhibiting
both first- and second-order transitions. The assumption
that D ~ 0 is followed by A„+z & 0, and conversely if
D &0; then it is required that A„+2&0. We conclude that
solution (iv) may exist either in systems exhibiting first-
order transitions with D&0 or in systems exhibiting
second-order transitions with D &0. The final analysis we
make is with respect to the form of the traveling solutions.
Using Eq. (54) and Eqs. (46), (48), (50), and (52), we notice

the following common features.
(1) The envelope velocity U, =U is given in Eq. (33)

%'herc wc adopt

(62)

along with Eq. (57) for I). Therefore we find that I)—+0 as
T—+T, and q=0 when T& T,*, U —+0 as T~T,*, and
U =0 when T & T,'. The envelope velocity U decreases con-
tinuously to zero with temperature if the transition is of
second order and has an abrupt discontinuity at T, in the
case of a first-order transition. We conclude that all
time-dependent solutions become stationary (or vanish al-
together) above the transition temperature T,".

(2) In all four cases the envelope width is 5, =nQ
~
cz

~

and thus 5,~0 as T~T, .
(3) The profile of the time-dependent solutions is

preserved throughout their propagation and can be desired
as follows. Solution (i) is a kink-antikink couple, solution
(ii) is a periodic function, solution (iii) is a kink, and solu-
tion (iv) is of an intermediate form between (i) and (iii).
Solution (iv) becomes (i) when b, = 1 and (iii) when 6=0.
We have depicted these four profiles in Figs. 1—4.

(4) The amplitude for each solution can be written as

I)o——(1/2cI) ' " and I10~0 RST~T," .

T11c plopcrtlcs of solutions (I)—(lv) Rlc summar1zcd Ill
Table I.

Finally, by comparison with the work of Parlinski and
Zielinski we note that solution (iii) corresponds to their
kinklike solution which has been interpreted as an inter-
face between two allowed phases and solution (ii) corre-
sponds to their kink"ant1kmk couple whIch has bccn iden-
tified with the nucleation center. We emphasize here that
we have found that these solutions exist only for first-
order phase transitions in a limited temperature range and
they require that D &0 which characterizes a dissipative
medium. The other two solUtions which wc include in
Table I have not been demonstrated previously. The
pcrlodlc solution, Ilowcvc1', 111ay oIlly cxlst If n ls odd (tllc
order parameters must be invariant under time reversals

0.7

06-
1

0.5—
I

04, 0.5—

I

0.2-

0.1-

GA—

0.3-

-4 -P. 0
Z= n /c„(x-vt)

FIG. 1. Profile of solution {i).

l I I

-4 -2 0
Z=n jc„(x-vt)

FIG. 2. Profile of solution {ii).
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0.6— 0.8—

0.5— 0.6—

0.4— 0 04-

0.3— 0.2—

0.2—

0.1—

0-
s I i I i I i I i l s I

-4 -2 0 2 4 6

Z= n JGg (x-vt)
0 I I I I I I I I I I I I

-4 -2 0 2 4 6

Z= n Jc„(x-vt)

FIG. 3. Profile of solution (iii).

FIG. 4. Profile of solution (iv).

or space inversions). Furthermore, solution (iv) exists
both in systems undergoing first- and second-order transi-
tions. Both these new solutions appear if only the ap-
propriate temperature ranges are ensured to coincide with
the prescribed sign of the dissipation constant D. We may
identify solution (ii) with elementary excitations" around
the extremal value g and solution (iv) with local regions of
order within the correlation length. Also notice that all
the time-dependent solutions can propagate in both direc-
tions along the x axis and can have both positive and neg-
ative values of the amplitude as long as no external field
breaking this symmetry is applied.

The physical meaning of the solutions with D(0 is,
however, uncertain to the authors, as for the order param-
eter to be stable against fluctuations it is required that
D) 0. The opposite case can only be taken if a higher-
order term proportional to

~

V q i
is present to ascertain

the stability. We intend to examine this question and also
investigate the role of external fields in a future paper.
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APPENDIX

From the table of integrals' we find that the value of
the following elliptic integral,

I= x c3+c2x+cix (Al)

depends on the sign of ci and b, =4c&c3 —cz, namely the
following four possibilities exist.

(i) If c» 0, then

I=(1j~ci)In[2[el(c3+c2x+cix )]' +2cix+c2I .

(A2)

TABLE I. Properties of solutions (i)—(iv).

Solution Profile

Kink-antikink

couple

Dissipation
constant

D&0

Temperature

T, &T&T,

If n=2

First order

Periodic

function

D&0 T,*&T& T, Disappears

(iv)

Kink

Kink-antikink

couple or kink
depending on 6

D&0

D&0

Tc &T

T&T, , T&T,

T,*&T& T,

First order

Second order

First order
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(ii) If c» 0 and 6 & 0, then

I=(I/~c)) sinh '[(2c)x+c2)/~b, ] .

(iii) If c& &0 and 5 ~0, then

I= ( —I/Q —c
~
)sin '[(2c~x+c2)/v' —6] .

(iv) If c ~ & 0 and 6=0, then

I=( I/~c& )In(2c~x+c2) .
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