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Reaction kinetics on fractals: Random-walker simulations and exciton experiments
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Both computer simulations and laboratory experiments on binary reactions of random ~alkers on fractal

spaces bear out a recent conjecture: The time development of the reaction is dominated by the intrinsic

fractal (fracton, spectral) dimension. For the Sierpinski gasket the effective spectral dimension for reac-

tions is d,'=1.38 (actual spectral dimension d, =1.365). For the percolating cluster (60%, square lattice)

d, =1.34 (d, =1.333). From the exciton percolation laboratory experiments d, =1.5, based on triplet-

trlplet annihllatlon ln naphthalene isotopic mixed crystals at 2 K.

(2)

where p is the density of walkers.
Howcvcr, II1 mlcroscoplcally llctcrogcllcoUs IllcdIR (wc II1-

cludc low-dimensional spaces as special representatives of
1Mtcfogc11coUs tl1rcc-dlIlMflsloIlal spaces), onc 111ay gct

dp
dt

txt p

which is equivalent to a time-dependent rate coefficient. 7

We have conjectured' that for fractal (self-similar) spaces h

is related to an effective spectral (fracton) dimensions d,
'

(we
usc the prime to distinguish this reaction exponent from the
conventional d, ):

h = 1 —d,'/2 (4)

It follows froIIl Eq. (3) t11at tlM IIltcgratcd rate cqUat1011 Is

(5)

Our Monte Carlo simulations9 are for the reaction

(6)

No "traps" are present in these systems and all walkers

Within the last year, intrinsic dynamical properties of frac-
tals, e.g. , random walk, conductivity, phonon, and magnon
effects, have been related to an unexpected new dimension
dg —tlM spectral (ffRctofl) dllllcllsloI1. For EUclldcall
(three-dimensional) spaces the classical behavior is retained,
giving the classical diffusion constant, the Debye (T ) heat
capacity at low temperatures, and Ohm's law. For fractal
spaces the spectral dimension leads to drastic deviations
from the classical laws. It has also been conjectured that
the binary reaction coefficient is related to the same spectral
dimension to which the magnon and phonon densities of
states are related. 5 Our simulations bear this out for both a
deterministic fractal (Sierpinski gasket) and a random one
(percolating cluster). Our fusion experiments on na-
phthalene isotopic mixed crystals exhibit the same nonclas-
sical bchavlor, Rt Rnd below the empirical pcrcolatlon coA"
centrat1on. "

Wc discuss binary reactions with one kind of reactant:

A + A products

where thc A species are random walkers. The standard,
classical, second-order rate law gives

move independently (one at a time). When two walkers oc-
cupy the same site within one instant, one walker is re-
moved from the system and the other ~alker continues its
walk unperturbed. This is the only type of ~alker interac-
tion allo~ed.

The planar Sierpinski gasket was generated iteratively us-
ing a method similar to Pascal's triangle. An eighth-order
Sierpinski gasket was used consisting of approximately
10000 sites where we defined a site as the vertex of a trian-
gle. If a walker is at one of the three corners of the largest
trlanglc lt rcma1ns confined to thc flnltc gasket, RAd 1ts sub-
sequent move is restricted to only one of its two possible
nearest-neighbor sites. At time t=0, walkers were started
at random sites on the gasket. We performed our reacting
random-walker simulations with an initial walker density of
p0=0.1; 500 runs were performed.

Simulations on the percolating cluster started with an ini-
tial walker density of p0=0.02 on a 60'/o occupied lattice.
These simulations used 400& 400 square lattices and consist-
ed of 25 runs, each for a different lattice realization.
Periodic boundary conditions were imposed on these lat-
tlCCS.

Thc Mlchlgan tcl mlnal system uniform 1andom" number
generator (FUNIF) was used in all simulations on the per-
colating cluster and on the Sierpinski gasket. A linear
least-squares regression was used to obtain values for 1 —h
in Eqs. (3) and (5). Each walk was followed for 2000-4000
steps.

The laboratory experiments on molecular exciton kinetics
consisted of monitoring the evolution in time of the delayed
fluorescence and phosphorescence resulting from the homo-
fusion (annihilation) of Frenkel triplet excitons on percola-
tion clusters in an isotopic alloy crystal, naphthalene-h8 in
naphthalene-d8, at a temperature of 2 K. Further details are
given in Refs. 5-7, 10, and 11.

Table I gives the results obtained from a linear regression
on the simulation data of Fig. 1 in the long-time limit.
These are compared with single random-walker simulation
results and asymptotic theories, obtained from the mean
number of distinct sites visited:

g(t)~ tt —h

The single random-walker simulations (this work and Refs.
8 and 12) were performed for lattice sizes and times similar
to those of the reacting walkers.

The results of Table I appear to substantiate the conjec-
ture that the effective spectral dimension of the reacting
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TABLE I. Effective spectral dimensions d, '/2.

Reacting walkers

(Asymptotic)

Single walkers

Simulation Theory'

Sicrpinski

Percolation cluster 0.67'

I ~ e ' Reference 4.
b 0,686 in Ref. 12.

' Reference 8.

~ ~ 0 ~ 'I

10 'Io

TZ~E (ms)

FIG, 1. Reacting random walkers. Bottom: On a square-lattice
(60%) infinite percolation cluster (p& ——0.02). Middle: On a tri-

angular Sierpinski gasket (p& = 0.1). Top: Triplet excitons on a
long-range cluster of naphthalene (80k) in a naphthalene-d8 crystal

(po normalized to 5 x 10 3). Time in ms.

walkers is the same as that of the single walker on both the
Sierpinski gasket and the percolating cluster. We note that the
correlation length of the 60% percolating cluster is long
enough to give the same fracton dimension as the incipient
percolating clusters'3 '5 (59.31'/o). Preliminary data'6 on the
three-dlmcnslonal S1cIplnskl gasket substant1atc thc saITlc

conjecture (d, = 1.547, d,
' = 1.56).

'The laboratory experiments represent a long-range per-
colation case where the effective critical concentration'0 is
about 7% and the effective topology is that of a square lat-
tice.67' The Fig. 1 results for the experimental data are
based on triplet exciton density measurements, i.c., only
phosphorescence measurements. This gives 1 —h = 0.82
+0.05. A related treatment based on Eq. (3) requires both

phosphorescence and delayed fluorescence measurements
[see Ref. 5(a)]. It gives h =0.28+0.05 (for earlier times).

The effective spectral density is thus d,'= l.5 +0.1. Consid-
ering that this 8'/o sample may be significantly above the
critical long-range percolation concentration, the above
value is consistent with d,

' values found in Ref. 8, for lat-
tices above the critical concentration, i.e., with a crossover
to Euclidean behavior. We note that for crossover cases d,

'

is a crude effective fracton dimension as the asymptotic
behavior is really Euclidean. Such crossovers, for single and
reacting random walkers, are discussed elsewhere. ' Actual-
ly, the experimental data appear to follow the fractal slopes
at early times but to "cross over" to Euclidean at later
times.

In conclusion, the conjecture that fracton exponents apply
to binary reactions of random walkers is borne out by simu-
lations on both deterministic and random fractals. This may
be of much relevance to reactions in microscopically hetero-
geneous media. Our experimental results for molecular ex-
citon reactions illustrate this point.
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