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Perturbational calculation of the diffusion constant limited to the lowest Landau level is studied for the
two-dimensional electron in the presence of a strong magnetic field and random impurities. This expan-
sion is asymptotic and the conductivity at the band center is estimated as o, =1.4¢2/27%% by the Borel-

Padé approximation.

A two-dimensional electron in the presence of a strong
magnetic field shows a quantized Hall effect. This
phenomenon is considered to be connected strongly to the
localization of the electron in random impurities and also to
the existence of the extended state. Recently Wegner! has
obtained an exact expression for the density of states in the
case of a strong magnetic field and a white-noise distribu-
tion of impurities. Further study for the arbitrary short-
range random distributions has been worked exactly.? How-
ever, for the conductivity an exact expression has not been
obtained as yet. In this paper, we consider the perturbation-
al expansion about the strength of the random potential.
The calculation is simple for the two-particle density-density
correlation function due to the fact that only two deter-
minants are necessary for each diagram. This perturbational
expansion is asymptotic. The expansion coefficients of the
diffusion constant at the band center show alternative signs
and the series is Borel summable. By Borel-Padé analysis,
the conductivity at the band center is shown to be nonvan-
ishing. For the other energies away from the band center,
the series is more complicated. We have not obtained a de-
finite conclusion due to the shortness of the series, but the
series shows the tendency of the vanishing diffusion con-
stant energy for the band center.

The lowest Landau level is spanned by the orthogonal set
of functions under ed = B/2(y, —x,0) gauge® as
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The constant C in Eq. (5) depends on the one-particle
Green’s function. Matrix M, is obtained from matrix M,
by putting 1 in the corresponding element due to insertion
of r’ as in Fig. 1. In the diagram of Fig. 1, for example,
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where B is the magnetic field and z=x +iy. The one-
particle Green’s function becomes
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with w,=eB/my, where my is the mass of the electron. The
random potential is assumed to take a white-noise distribu-
tion,
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The wave function is Gaussian and the impurity scattering
is calculated by a Gaussian integral.! The nth impurity
scattering gives the contribution to the one-particle Green’s
function as
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where y=1/2w(E —%w,/2) and matrix M, is related to the
diagram, and the determinant of this matrix is equal to the
number of Euler trails.!

For the two-particle Green’s function, we consider a
retarded-advanced Green’s-function pair which gives dif-
fusion propagators. We denote this quantity as K(q) and
K (gq), in turn, is expressed by the determinants,
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matrices M; and M, become
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-1 2 0 -1 -1 2 0 -1
M=o -1 2 -1 Mx=|p -1 2 o0

-1 0 -1 2 -1 0 -1 2]

Instead of the unperturbed propagator

y+=[27(E—tw/2 tie/2)]7!
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FIG. 1. Diagram of retarded-advanced Green’s function with im-
purity scatterings [Eq. (5)]. r’ is inserted between 4 and 3, then
matrix M, [Eq. (6)] is modified from M;.

we use the renormalized true propagator I' +
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The two-particle Green’s function K (g) has a diffusion pole
for small g and for small . To obtain an explicit series, we
expand as (W =27w)
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where D is the diffusion coefficient.
has real and imaginary parts. We write

The propagator T +
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FIG. 2. Lines a and b represent (2,1) and (3,1) complex Borel-
Padé approximation, respectively, and the dashed line shows the ex-
act value for x. 8= —sin~![p/(p?+2) ~1/2].

A, and A4, are given as
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From Egs. (8) and (9b), and the fact that Im2 , has a factor
A,, the infinitesimally small quantity me/A4, is written in the
following series by the small variable x = C2%,
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In the limit of vanishing €, x is equal to 273w (p?+ (%), where p and ¢ are —ImG/m and ReG/, respectively. By the exact

expression for these quantities,! p and { are given as
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where v=(7/2w)?(E —kw./2). The angle 6 is expressed
as sing= —p(p2+¢») ~12
The expansion of Eq. (10) is asymptotic. The asymptotic

series  f(x) =3 a,x" is written by the series
g(2) =3 a,x"/n! as a Borel-Padé approximation,
s@= e lea (12)

where g(z) is approximated by a ratio of polynomials. We
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apply this Borel-Padé analysis. Considering xe?’® as a com-
plex variable and performing the Borel-Padé approximation,
we obtain an accurate value x which satisfies Eq. (10) in the
small-¢ limit. In Fig. 2, the Borel-Padé result is compared
with the exact value. At the band center, x becomes 4/7
for = — /2. In Table I, the value for x by Borel-Padé ap-
proximation for § = — 7r/2 is presented.

The diffusion constant is obtained from the numerator of
Eq. (8),
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TABLE 1. Borel-Padé analysis for x which gives me/4,=0 at the
band center §= —m/2. The exact value is x =47=1.273. (n,m)
are degrees of polynomials of Padé:

n m
(=3 a2V 3 b2 .
=0 j=0

n

m 1 2 3 4

1 1.69 1.22 1.35 1.40
2 * 1.31 1.27 1.27
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TABLE II. (n,m) Borel-Padé analysis for 2 D/A4, at the value of
x=4/7=1273.

X

m 1 2 3 4
1 * 1.288 1.458 1.392
2 * * 1.411 1.440

1- %x2c0s20— (:—écos49 +%c0329 +%)x3 —(4.6839c0s60 +1.7161 cos49 +1.5838 cos26 +0.924 44) x*

—(25.809 cos86 +9.3880 cos6 6 +6.3208 cos46 +7.3002 cos2 +4.0538) x>

—(174.19c0s100 +63.427 cos86 +34.897 cos60 +33.964 cos49 +38.526 cos20 +20.092) xb — . - - . (13)

Notice that x and 6 are functions of a single variable v. For
the band center, this series has alternative signs and is Borel
summable,

2wD
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Borel-Padé analysis gives us 2wD/A4,=14 for x=4/n
—1.273 (Table II). The conductivity o, is related to the
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FIG. 3. Coefficients f; for D(x) =3, fix! as a function of @,
0= —sin~"p/(p? +®)~12]. #=—m/2=—1.57 corresponds to
the band center.

|
diffusion constant by the Einstein relation as

ox=e’pD . 15)

For small w, the density of state becomes v2/m?w=1/74,
and the diffusion constant D is proportional to 4, /27 at
E=F%Kw. /2. Thus, the conductivity is proportional to
e? /272 independent of the strength w. Our estimate gives
oxx=14€*2m2F.

For E #kw./2, the asymptotic series is more complicated
and we have not enough terms to discuss a definite value of
D. The constant 4, in Eq. (13) becomes small away from
the band center. We eliminate this 4, by using Eq. (10) as

—SF(), F(0=3 fix . 16)
2 i=0

If F(x) is not divergent (or at least the power of Ine), then
we have a vanishing diffusion constant since e is an infini-
tesimally small quantity. The expression for the coefficients
f; are easily obtained from Egs. (10) and (13). In Fig. 3,
fi Gi=1,...,5) are plotted for 8. For 0= —m/2, F(x)
seems divergent (x=4/w) and for other values of 6
(E #kw./2), f; shows oscillation for # and F(x) seems to
have a finite value for x which is determined by Padé
analysis or exact expression. Therefore, the conductivity
seems to be vanishing except the band center. By the
renormalization-group analysis,* it is shown that there is
no extended state in a weak magnetic field. But it is dis-
cussed that nonperturbative term gives the extended state
near band center due to the instanton effect.” The relation
of our perturbational treatment to the renormalization-
group calculation is not fully understood although maximal
crossed diagrams are vanishing for both cases. There is an
essential difference in that we have here no small parameter
as 1/Epr in the weak magnetic field. Numerical simulation®
and self-consistent approximation® also suggest that there is
no extended state except the band center. We are planning
to make a more detailed analysis using higher-order terms.
For comparison with experiments, the value of

ox=146220%=1.7x10"5 Q!

is close to metal-oxide-semiconductor field-effect transistor
observation,!® although we have neglected the mixing with
other Landau levels.



29 BOREL-PADE ANALYSIS FOR THE TWO-DIMENSIONAL . . . 3729

ACKNOWLEDGMENT

The author gratefully thanks Dr. E. Brézin for discussion about the method of calculating the two-particle Green’s
function and for useful suggestions.

IF. Wegner, Z. Phys. B 51, 279 (1983). 6S. Hikami, Phys. Rev. B 24, 2671 (1981).

2. Brézin, D. J. Gross, and C. Itzykson, Saclay Report No. TH. Levine, S. B. Libby, and A. M. M. Pruisken, Phys. Rev. Lett.
spht/83-154 (unpublished). 51, 1915 (1983).

3R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983). 8T. Ando, J. Phys. Soc. Jpn. 52, 1740 (1983).

4F. Wegner, Z. Phys. B 35, 207 (1979). 9Y. Ono, J. Phys. Soc. Jpn. 51, 3544 (1982).

SE. Brézin, S. Hikami, and J. Zinn-Justin, Nucl. Phys. B 165, 528 105, Kawaji and J. Wakabayashi, Surf. Sci. 58, 238 (1976).
(1980).



