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Borel-Pade analysis for the two-dimensional electron in a random potential
under a strong magnetic field
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Perturbational calculation of the diffusion constant limited to the lowest Landau level is studied for the
two-dimensional electron in the presence of a strong magnetic field and random impurities. This expan-
sion is asymptotic and the conductivity at the band center is estimated as o~ 1.4e2/2rr2t by the Borel-
Pade appl oximation.
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A two-dimensional electron in the presence of a strong
magnetic field shows a quantized Hall effect. This
phenomenon is considered to be connected strongly to the
localization of the electron in random impurities and also to
the existence of the extended state. Recently %egner' has
obtained an exact expression for the density of states in the
case of a strong magnetic field and a white-noise distribu-
tion of impurities. Further study for the arbitrary short-
range random distributions has been worked exactly. 2 How-
ever, for the conductivity an exact expression has not been
obtained as yet. In this paper, we consider the perturbation-
al expansion about the strength of the random potential.
The calculation is simple for the two-particle density-density
correlation function due to the fact that only two deter-
minants are necessary for each diagram. This perturbational
cxpaQslon ls asymptotic. Thc cxpanslon cocfflclcnts of thc
diffusion constant at the band center show alternative signs
and the series is Borel summable. By Borel-Pade analysis,
the conductivity at the band center is shown to be nonvan-
ishing. For the other energies away from the band center,
th.c scl'lcs ls morc complicated. We hRvc not obtained R de-
finite conclusion due to the shortness of the series, but the
series sho~s the tendency of the vanishing diffusion con-
stant energy for the band center.

The lowest Landau level is spanned by the orthogonal set
of functions under eA =B/2(y, -x, o) gauge' as

where 8 is the magnetic field and z=x+iy. The one-
paI'tlclc Grccn s function becomes
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where y = 1/2rr(E tru, /2) and—matrix Mt is related to the
diagram, and the determinant of this matrix is equal to the
number of Euler trails. '

For the two-particle Green's function, we consider a
retarded-advanced Green s-fUQctlon pall' which gives dif-
fusion propagators. We denote this quantity as X(q) and
E(q), in turn, is expressed by the determinants,

with ruq=eB/rrlo, where rrto is thc mass of thc electron. Thc
random potential is assumed to take a white-noise distribu-
tion,

( V(r) V(r') ).,= ws(r r')—
Thc wave function ls GaussiaIl Rnd thc impurity scattcrlng

is calculated by a Gaussian integral. ' The nth impurity
scattering gives the contribution to the one-particle Green s
function as

&(q) = r r' -r' r e "t' " ld2r = exp —— q
1, , 1 C detM2

wh«e wc have used (X =detM2/detM&)

r r

2dp .~ ~ p 2

4 2m' 2X 2
exp i q p — = ~exp ——q

The constant C in Eq. (5) depends on the one-particle
Green s function. Matrix M2 is obtained from matrix Ml
by putting 1 in the corresponding element due to insertion
of r' as in Fig. 1. In the diagram of Fig. 1, for example,

matrices M& and M2 become

2 0 —1 0
—1 2 0 —1

Ml= 0
—1 0 —1 2

t

Instead of the unperturbed propagator

y + = [2m (E !ra),/2 + ia/2)]—
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FIG. 1. Diagram of retarded-advanced Green's function with im-

purity scatterings [Eq. (5)]. r' is inserted between 4 and 3, then
matrix M2 [Eq. {6)] is modified from Mt.

we use the renormalized true propagator I +

r

I + =I/2m E ——tu, ——X+ + —e
1 i

2
'

2 2

The two-particle Green's function E(q) has a diffusion pole
for small q and for small e. To obtain an explicit series, we
expand as (w =2m')

-0.5 -1.0 -1.5
FIG. 2. Lines a and b represent (2,1) and (3,1) complex Borel-

Pade approximation, respectively, and the dashed line shows the ex-
act value for x S= —sin '[p/{p2+]2) 'i2j.

E(q =0) Dq +e
E(q) ,21-r', r w'/4-r' r, w'/4+=1+~ l-r, r w-r', r' ~'/2+

A~ and A2 are given as

(9a)

A2 =2m —— ImX+1

2 2m
(9b)

where D is the diffusion coefficient. The propagator I +
has real and imaginary parts. %e write

I' g = I/(At +iA2) = C exp( +if))

From Eqs. (8) and (9b), and the fact that ImX+ has a factor
Aq, the infinitesimally small quantity n e/A2 is written in the
following series by the small variable x = C'w,

1 2 sin38 5 3 sin58 41 4 sin78 449 5 sin98 5993 6 sin11g
A2 2 sin8 4 sin8 8 sin8 16 sin8 32 sin8

(10)

In the limit of vanishing e, xis equal to 2m3w(p'+('), where p and $ are —1mG/n and ReG/m, respectively. By the exact
expression for these quantities, '

p and ( are given as

' 1/2=1 2$= —i p
VT 7T N
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where g(z) is approximated by a ratio of polynomials. We

where v=(n/2w)' '(E —tee, /2). The angle 6i is expressed
as sing= —p(p2+g2)

The expansion of Eq. (10) is asymptotic. The asymptotic
series f(x) = X a„x" is written by the series
g(z) = Xa„x"/n! as a Borel-Pade approximation,

I

apply this Borel-Pade analysis. Considering xe2I~ as a com-
plex variable and performing the Borel-Pade approximation,
we obtain an accurate value x which satisfies Eq. (10) in the
small-e limit. In Fig. 2, the Borel-Pade result is compared
with the exact value. At the band center, x becomes 4/n.
for 8 = —m/2. In Table I, the value for x by Borel-Pade ap-
proximation for 8 = —7r/2 is presented.

The diffusion constant is obtained from the numerator of
Eq. (S),
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TABLE I. Borel-Pade analysis for x which gives me/Az =0 at the
band center 8= —m/2. The exact value is x =4m= 1.273. (n, m)
are degrees of polynomials of Pade:

g (z) - X alz'/ X bizj .
I~0 j 0

TABLE H. (n, m) Borel-Pade analysis for 2vrD/A2 at the value of
x =4/w =1.273.

1.22
1.31

1.392
1.440

= 1 —
2

x cos28 —( 36 cos48+ —cos28+ —)xI —(4.6839cos68+ I 7161cos48+ I 5838 cos28 y0 92444) x4
2

—(25.809 cos88+9.3880 cos68+6.3208 cos48+7.3002 cos28+4.0538)x'

—(174.19cos108+63.427 cos88+34.897 cos68+33.964 cos48+38.526 cos28+20.092)x'—

Notice that x and 8 are functions of a single variable p. For
thc band center, this scrics has altcl'Qatlvc signs and ls Borcl
sumrnablc,

—19 545x +130 126x— (14)

Borel-Padc analysis gives us 2nD/Az=1. 4 for x=4/m
—1.273 (Table II). The conductivity o. is related to the

PIG. 3. Coeffjclents f& fof D(x) = Xflx as 8 function of 8,
8 = —sin -I [p/(pz +g&) '/I]. 8= —m/2 = —1.57 corresponds to
the band center.

I

diffusion constant by the Einstein relation as

For small w, the density of state becomes J2/mzw = I/nA2
and the diffusion constant D is proportional to Az/2n at
E =if'&,/2. Thus, the conductivity is proportional to
e'/2m'lf independent of the strength w. Our estimate gives
o.„„=1.4e'/2 n 2 t.

For E Awol /2, tllc asyIIlptotlc scrtcs ls IIlorc coIIlpllcatcd
and we have not enough terms to discuss a definite value of
D. The constant A2 in Eq. (13) becomes small away from
the band center. %'e eliminate this A2 by using Eq. (10) as

D = F(x), E(x—) = X f)x' . (16)
2 ~ o

If F(x) is not divergent (or at least the power of In&), then
wc have R vanlshlng dlffuslon constant slncc 6 18 an lnflnl-
tesiInally small quantity. The expression for the coefficients
f& are easily obtained from Eqs. (10) and (13). In Fig. 3,
ft (i=1, . . . , 5) are plotted for 8. For 8= Ir/2, -E(x)
seems divergent (x =4/w) and for other values of 8
(E &tran, /2), f& shows oscillation for 8 and E(x) seems to
have a finite value for x which is determined by Pade
analy818 ol' exact expression. Thcl'cfol c, thc conductlvlty
seems to bc vanlshlng cxccpt thc band ccntcr. By thc
renormalization-group analysis, ~~ it is shown that there is
no cxtcndcd state ln a weak magnetic field. But lt is dis-
cussed that nonpcrtul'batlvc term glvcs thc extended state
near band center due to the instanton effect. 7 The relation
of our perturbational treatment to the rcnorrnalization-
groUp calculation 18 Qot fully Undclstood althoUgh maximal
crossed diagrams are vanishing for both cases. There is an
essential difference in that wc have here Qo small parameter
as I/E~r in the weak magnetic field. Numerical simulation
and self-consistent approxirnation9 also suggest that there is
QG cxtcndcd state cxccpt thc band ccQtcl. %c Rl'c planning
to IDakc a Hlorc detailed analysis using higher"order terms.
For comparison with experiments, the value of

~ = I 4e'/2~'a=. I 7X 10 . 'n.-'-
18 close to metal-oxide-semiconductor field-effect tI'anslstol'
observation, 'o although we have neglected the mixing with
other I Rndau lcvcls.
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