Erratum

Erratum: Wannier exciton in quantum wells [Phys. Rev. B <u>28</u>, 4878 (1983)]

Y. Shinozuka and M. Matsuura

Recently we have found mistakes in the numerical calculation of the binding energies of excitons in quantum wells. There are corrections in the results for n = 1s, 2s, and $2p_x$ states (but not for $2p_z$). Figures 2-5 should be replaced by the revised Figs. 2-5, respectively (see below). In addition, the following points should be noted.

(a) The statement on the restriction of two variational parameters $\alpha_n = \beta_n$ in the original paper is incorrect. The correct calculation shows that, as the well becomes thinner, the dependence of binding energies on β_n becomes weaker. Then, as seen in Fig. 2(a), the wave functions with the restriction of $\alpha_n = \beta_n$ (which, for n = 1s, reduce to the second trial function of Bastard, Mendez, Chang, and Esaki¹ give the exact values of the two-dimensional situation in the thin limit $(L/a_B = 0)$ and can be used in the entire well-thickness range. The statement, on page 4879 (left column, line 35 through and including right column, line 4), "Recently, similar. . . the entire well-thickness range." should be deleted. Use of two independent variational parameters α_n and β_n can yield larger binding energies when the well thickness is finite. Calculated binding energies are imporved by 4.3% at $L/a_B = 1$ for n = 1s, 6.2% at $L/a_B = 2$ for n = 2s, and 3.2% at $L/a_B = 4$ for $n = 2p_x$ in comparison with those with the restriction of $\alpha_n = \beta_n$.

(b) For n = 1s, as the well becomes thinner, the value of $\overline{\beta}_{1s}$ decreases for $L/a_B \ge 1$ and then increases for $0.05 \le L/a_B \le 1$. When $L/a_B \le 0.05$ we obtain $\overline{\beta}_{1s} = 0$.

(c) For excited states, the inequality in binding energies $E_{2p_z}^B \leq E_{2p_x}^B \leq E_{2p_x}^B$ holds for the entire well-thickness range.

(d) The quantities $(\langle x^2 \rangle_n)^{1/2}$, $(\langle y^2 \rangle_n)^{1/2}$, and $(\langle |z_e - z_h|^2 \rangle_n)^{1/2}$ decrease monotonically as the well becomes thinner, except $(\langle x^2 \rangle_{2s})^{1/2}$ and $(\langle y^2 \rangle_{2s})^{1/2}$. There is no large dip in the quantity

 $|\psi_{1s}(0, 0, z_e, z_h = z_e)|^2 / |\psi_{2s}(0, 0, z_e, z_h = z_e)|^2$

in Fig. 5.

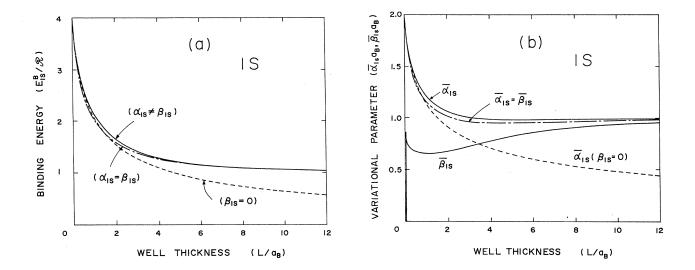


FIG. 2. (a) Dimensionless binding energy of the 1s exciton (E_{1s}^{B}/\Re) and (b) variationally determined parameters $\overline{\alpha}_{1s}a_{B}$ and $\overline{\beta}_{1s}a_{B}$, are plotted (full line) vs dimensionless well thickness (L/a_{B}) . Broken lines have been obtained with the restriction of $\beta_{1s} = 0$ and chain lines with the restriction of $\alpha_{1s} = \beta_{1s}$.

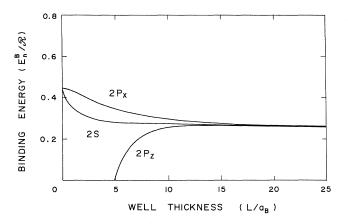


FIG. 3. Dimensionless binding energies (E_n^B/\Re) of n=2s, $2p_x$, and $2p_z$ exciton states are plotted vs dimensionless well thickness (L/a_B) .

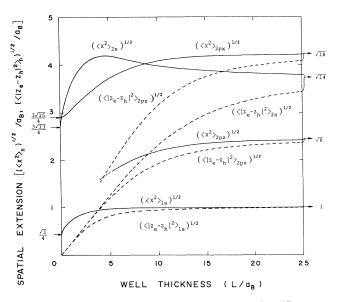


FIG. 4. Dimensionless transverse extensions $(\langle x^2 \rangle_n)^{1/2}/a_B$ (full line) and longitudinal extensions $(\langle |z_e - z_h|^2 \rangle_n)^{1/2}/a_B$ (broken line) of n = 1s, 2s, $2p_x$, and $2p_z$ states are plotted vs dimensionless well thickness (L/a_B) . Numerical values indicated with arrows are those in two- and three-dimensional situations.

¹G. Bastard, E. E. Mendez, L. L. Chang, and L. Esaki, Phys. Rev. B <u>26</u>, 1974 (1982).

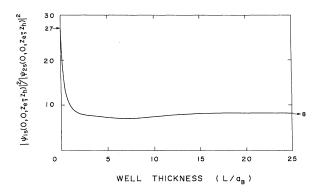


FIG. 5. The ratio of the absolute square of the wave functions at the origin of the relative motion coordinate of the 1s and 2s states

 $|\psi_{1s}(0, 0, z_e, z_h = z_e)|^2 / |\psi_{2s}(0, 0, z_e, z_h = z_e)|^2$

is plotted vs dimensionless well thickness (L/a_B) . Numerical values indicated with arrows are those in two- and three-dimensional situations.