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Structure factor of a correlated nonuniform fermion gas at small wavelength
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The structure factor of a nonuniform interacting electron gas is examined at large wave vectors to de-

lineate the difference between lowest- and higher-order perturbation contributions. Implications for the
exchange-correlation energy are also discussed.

Hubbard' and Nozieres and Pines' were some of the first
to recognize the utility of studying the detail dependence of
the structure factor, for a uniform correlated electron gas, in

terms of the individual wave vectors q. Following these
ideas there were several recent extensions' ' of such calcu-
lations to nonuniform systems with some surprising results8

(Ref. 8 will be referred to as I). I showed that any nonuni-

formity, superimposed on a uniform Fermion system, fun
damentally changes the nature of the structure factor
S„(r, r ') in the thermodynamic limit. The S„(r, r ') or

equivalently the exchange-Coulomb hole' is given by

S&(r, r ') = (@~~ [p(r ) —p(r )][p(r ') —p(r ') ] ~@~), (1)

where $~ is the full ground state for the nonuniform in-
teracting Fermion system with interparticle interaction
h. v(q) and p( r ) is the density operator. [Concerning v(q)
we take the form Xv(q) = X47re'/(q'+ n'). ]

We summarize the conclusions of I:
(i) For Hartree-Fock (HF) alone a metal surface intro-

duces long-range behavior in the exchange-hole such that

f

lim S~ ~(q, q)—= lim j dr „dr'e'"'t" "lS„ t(r, r') W dr ~
d3r'Sq t(r, r')=0 (2a)

The last equality is simply a statement of the conservation
of particles [Eq. (1)l.

The connection between S~(q, q) and the exchange-
correlation energy is '

d3q
E„,=„,E„,(q)2' '

=&- J
d q

(2~)'
which implies similar subtlety for E„,(q) at small q for
long-range u(q) (i.e. , n 0; see below).

(ii) The long-range part of the exchange-Coulomb hole
(or equivalently the small-q limit) of a weakly nonuniform
fully correlated electron gas is extremely sensitive to the
external perturbation. Consequently, the small q region of
E„,(q) is modified by the detail density profile and interpo-
lations, in that range, are clearly inappropriate.

(iii) The behavior of Eq. (2a) at a metal surface is modi-
fied only for a Coulomb interparticle interaction v ( q )
(n 0, see also Refs. 9-11). For such a long-range in-
teraction the term responsible for the behavior of Eq. (2a)
is screened and the small-q behavior is now governed by the
detail of the surface electronic profile, in agreement with
(ii) (see also Ref. 10). For example, the E„, contribution

kF8mq(&os —cps/2) (where ~q and coq are the bulk and sur-
face plasmons, respectively) to the surface energy at small

q appropriate to the semiclassical approximation' ' is now
modified by the detail surface density profile.

The above three results pertain to the long-wavelength
limit (small q) of S~ ~(q, q). For large q I only briefly ex-
amined the contention that the corresponding E„,(q) is

given exactly in the local-density approximation (LDA). 4 In
I

I

this Brief Report we examine the expected differences from
higher-order perturbation.

It will turn out that it is sufficient to consider the struc-
ture factor Sz(q, q) to second order in an external potential
Vq( r ) of a single Fourier component k (i.e., Vb( r )
= Vq(k)e' " ' " ). To first order in the interparticle interac-
tion, the diagrams for the structure factor are presented in

Fig. 1. We exclude HF contributions to S~(q, q) (some ex-
amples are shown in Fig. 2) since these graphs are known to
give identically zero contribution above q =2kF. ' In the
limit of q ~ and after some algebra required to evaluate
the Feynman diagrams of Figs. 1 and 2 the leading contri-
butions to S~(q, q) can be extracted. The results are as
follows:

(a) Graphs (1) and (2) of Fig. 1 and (8) of Fig. 2 make
the following leading contribution in 1/q,

lim S~(q, q)=
4 IIO(k) Vb(k) (3a)

q~oo q

where A is a constant independent of q, k, and e'. IIo(k) is
the usual Lindhard screening function

0 (e-) —0 (e- -)
(2m)' e-, +-„—e-„

where e~=p'/2m —e~ and 0~(x) =1 for x (0 and
8 ~ (x) =0 for x )0.

(b) Graphs (5)—(8) of Fig. 1 give

BA. e
lim S (q, q) =

4 IIt(k) VP(k) (4a)
q~oo 4

where again B is a constant independent of q, k, and e'
and

d [o (~ )0 (~ ) ' (~ )' ( +7k)]

(27r )' (~-, + k -~-. )'

29 3703

=0 (4b)
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s), (q, q) = s„F(q q)-

+ 1 ~ ~

FIG. l. AII lowest-order non-Hartree-Pock contributions to the
structure factor S),(q, q). The wiggly line ending with the cross is

the bare external perturbation V&(k). The solid arrowed lines are

the electron propagators and the dashed lines are the interparticle
interaction Xv.

FIG. 2. Examples of Hartree-Pock [(1)-(6)] or RPA [(7),(g)]
contributions to the structure factor.

where 0 ~ (x) = 1 —0 ~ {x).
(c) Graphs 3, 4, 9, and 10 of Fig. 1 and the HF or

random-phase-approximation (RPA) contributions [see Fig.
2, (1)-(7)] are either identically zero or make higher-order
contributions in 1/q. The structure factor for a uniform in-
teracting electron gas goes like 1/q4 at large q (Refs. 1 and
2) and our results show that' nonuniform corrections carry
the same leading terms in 1/q.

%'e next turn to the implication of the above results for
the E„, in the LDA, at large q. To make the connection
with E„, in the LDA and Eq. (2b) we recall that the contri-
butions of Figs. 1 and 2 in conjunction with Eq. (2b) con-
tain the term f d'r V»( r )p{ r ) = V»(k) p(k). This term is
not part of the E„,contribution in the density functional for-
malism (FD) and must be subtracted out. Upon integration
over the coupling constant and making the above subtrac-
tion we get for the lowest-order nonuniform contribution to
E„,in the FD

2

lim E„,(q) = ——,V» (k)~ 110{k)1 v(q)e
XC

1 u(q)e'
lim E„,(q) = —— „p'( k )&XC

4 4

Since A ls Indepetldellr of k Ell. (6b) ls accounted for to
lowest order entirely in the LDA in agreement with the pre-
vious conclusions. This result hinges on thc structure of
Eqs. (3a) and (6a) which both contain IIo(k) in lowest-
order perturbation.

%e now see the difficulty of extending the above con-
clusions to higher order where such a simple relation is no
longer valid, and where terms also make a 1/q contribu-
tion, as can bc verified by direct evaluation of the higher-
order Feynman graphs. %e conclude that thc result of the
lowest-order perturbation theory cannot be trivially ex-
tended to higher order and the contention that the
lima E„"o"(q) is exact remains in question.
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