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A computational scheme is described which simplifies many Green’s-function calculations of energy-
dependent quantities such as the density of states through a novel use of analytic properties. Calculations
are performed at complex energies well above the real axis where the quantities of interest are slowly vary-
ing. Physical results are then obtained by analytically continuing Green’s-function matrix elements back to
real energies using an efficient numerical procedure based on Taylor-series expansions. The approach is
simple, versatile, and particularly well suited for evaluating the complicated Brillouin-zone integrals which
often appear in Green’s-function calculations. In recent coherent-potential-approximation (CPA) calcula-
tions for Hg; - ,Cd, Te, the use of this technique cut the required computer time by about a factor of 3.

I. INTRODUCTION

Many of the properties of crystalline, imperfect, and
disordered solids are conveniently calculated by using
Green’s-function techniques.'”> At present, however, nu-
merical use of these techniques is lengthy and cumbersome.
One ingredient contributing to the complexity of such calcu-
lations is the singular behavior of the Green’s function G
on the real energy axis.*

Recently, the analytic properties of G for complex ener-
gies have been used>® to simplify Green’s-function calcula-
tions of quantities such as the charge density and total ener-
gy, which require a summation over the occupied states of a
system. Instead of integrating the appropriate matrix ele-
ments of G along the real energy axis up to the Fermi level,
as had previously been done, the real energy integrals in
Refs. 5 and 6 are replaced by contour integrals in the com-
plex energy plane. The contours are chosen to ensure
smooth energy variations of G far from the real axis, there-
by eliminating rapid energy variations, and reducing the re-
quired numerical work.

In this Brief Report we present a novel computational
scheme also based on the use of complex energies which
simplifies Green’s-function calculations of energy-dependent
quantities such as the density of states. This scheme con-
sists of two basic steps. In step one, all numerical calcula-
tions (Brillouin-zone integrations, solution of Dyson’s equa-
tion, etc.) are performed along a line of energies well above
the real axis where energy variations are smooth. In step
two, the important matrix elements of G are analytically
continued back to the real axis using an efficient numerical
procedure based on Taylor-series expansions. While this
approach may not be superior for extremely-high-resolution
results requiring numerical accuracies within a percent or so,
its simplicity and versatility have already been demonstrated
to yield quantitatively significant physical parameters
(~ 5-10% accuracy) very efficiently.’

II. BRILLOUIN-ZONE INTEGRATION

The analytic continuation procedure described in Sec. III
is especially useful in the context of Brillouin-zone integra-
tion, which is often the most time-consuming aspect of
Green’s-function calculations. The most general form of
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Brillouin-zone integral encountered in such calculations?® is
+) 3 + 7
GE*) = [,k G(E*.K)
= [ @k OEY—E@) - 2(EX, 17 . ()

Here E*=E +i0" is an energy infinitesimally close to the
real axis, £(K) is a slowly varying function of k, E(Kk) is a
real band energy, and S(E™*,K) is a complex self-energy
[with Im3(E*, k) <0]. In the special case 3(E*, k) =0,
a variety of efficient Brillouin-zone schemes can often be
implemented which exploit the fact that the imaginary part
of G(E*, k) reduces to a series of & functions at the band
energies.” The only sophisticated technique which is also
applicable in the presence of a finite self-energy, such as
that found in disordered alloy calculations, is the special
directions method of Bansil.!'

In many Green’s-function calculations, the matrix ele-
ment G(E*) is most conveniently evaluated by adding a
small, finite imaginary part to E¥ and directly calculating
G(E*, K) at a large number of K points.*!! The drawback
to this approach, of course, is that the number of K points
which must be considered for accurate results is usually
enormous due to the rapid E-space variations of G (E ¥, K)
when [Im3(E*, )| is small.

If the energy E*, however, is replaced by a complex en-
ergy z in the upper half plane, the integral G(z, k) is a
much more slowly varying function of both z and k. Only a
relatively small number of K points is then required to
evaluate G (z). Unfortunately, the resulting G(z) is con-
siderably broader'? than the desired G(E*). As a result,
complex energies have been used previously only in the
evaluation of Brillouin-zone integrals requiring low-
resolution results.!! The novel feature of the present
scheme, which allows complex energies to be used without
significant loss of accuracy, is the elimination of spurious
broadening through analytic continuation back to the real
axis.

III. NUMERICAL ANALYTIC
CONTINUATION PROCEDURE

The procedure for performing the analytic continuation
presented in this section is applicable to any function F(z)
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which is analytic in the entire upper half plane of z.

The proper initial choice of complex energies to be used is
specified as follows. Let us suppose that F(E*) must
eventually be determined in the real energy interval
E in=<=E =< F . in discrete steps AE. AFE should be chosen
such that Eax= Emin+ NAE, with N an integer. It is then
necessary to consider only a discrete set of complex energies
of the form

Zam=Emin+n AE +im AE , 2)

where n and m are integers (cf. Fig. 1). The initial calcula-
tions of F(z) should be performed along a line of such en-
ergies for a particular value of m =M. The optimal choice
of M depends on AE and requires a compromise between
ease of numerical computation of F(z) (large M), which
often involves integrals such as Eq. (1), and accuracy of the
analytic continuation process to the real axis (small M).
For reasons that will become clear, the accurate evaluation
of the function at the end points F(E. ) and F(E ) of
the desired interval is ensured if the range of »n to be con-
sidered in the initial row of values is —(M+1)
snpsN+M+1.

In Fig. 1 the relevant portion of the complex energy plane
is shown for a typical starting point M =5. The desired
values of F(E™) lie at energies represented by triangles
(heavy solid line) along the real axis in the figure. The ini-
tial calculations of F(z) should therefore involve the ener-
gies —6=n <N +6 along the line m =5, represented by
circles.

The extension of F(z) back to the real axis is achieved
through repeated use of the Taylor-series expansion of
F(z),

F(z)= S F9(z0)(z = 20)/j! ®

j=0

about a point zo for which F(zo) has already been deter-
mined. In each application of Eq. (3) the coefficients of a
truncated form of the series are fit to F(zo) and other
known values of the function. The resulting polynomial is
then used to generate one new value of F(z) for z closer to
the real axis than zg.

Since the approximation involved in truncating Eq. (3) is
only accurate for z close to zg, the entire analytic continua-
tion process consists of a series of steps, M in all, which
lead to F(E*) on the real axis. Specifically, a given step
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FIG. 1. Schematic illustration of the analytic continuation pro-
cedure for the starting point M =5. Boxes A-E represent the gen-
eration of one new value of the function in each of steps 1-3,
respectively. {Dashed box: quartic expansion [cf. Eq. (4)] appropri-
ate for step 1; Solid box: cubic expansion used for remaining steps
[ef. Eq. (5)].) O energies where function is known initially. A:
energies where function is ultimately determined. X: energies
where function is evaluated during intermediate steps.

generates a new row of values F,p,—1=F(z,,-1) from pre-
viously determined values in preceding rows. The values of
zo=2z,m to be considered in each step lie in the range
(-—m+1)sn=<(N+m-—1). The energy configurations
which determine the known values of F(z) to be used in
each application of Eq. (3) are described below.

In the example of Fig. 1, the analytic continuation pro-
cedure generates values of F(z) for all energies represented
by crosses. Examples of the generation of one new value in
each of steps 1-5 are presented in boxes A-E, respectively.
The figure illustrates how the number of values of z for
which F(z) must be evaluated decreases as the real axis is
approached.

The first step, corresponding to row m = M, differs some-
what from those involving closer rows in that five consecu-
tive values along the row must be considered (box A).
These values are used to fit the unknown coefficients
FYP(z¢) of a quartic expansion of F(z) about the central
point zo=2z,,. In the example in box A of Fig. 1, the new
value F_g44 is generated from expansion about z_4 s (the
central point) using the known values of F(z) at the circled
points in the box, z,s for —6=n < —2. In general, the
value of F,, - generated by such a fit for the central point
Z9= 2z, is given explicitly by

Fn.m—1=5Fn.m/2+ (F —2,m+Fn+2,m'— IOFn—l,m_ 10Fn+l,m)/12+i(Fn+2,m_Fn—2,m—'5Fn+1,m+5Fn~—1,m)/6 . (4)

Once the first two rows (m = M,M — 1) of values of F(z)
have been determined, a simpler, cubic approximation to
Eq. (3) can be used as indicated in boxes B-E. For
20=2, . this fit produces the new value

Fn.m~1=4Fn,m_Fn,m+1_Fn—-1,m_Fn+l.m . (5)

The final step yields the desired values of F(E*). Note
that the radius of convergence of Eq. (3) is given by Imz,.
The use of the cubic fit therefore ensures that only values
of z,, within this radius of convergence are required to fit
the coefficients of Eq. (3), even as the real axis is reached.
Since only algebraic manipulations are involved, the pro-
cedure just described requires a minimal amount of comput-

|
er time. To illustrate its effectiveness, we now consider the
test function

h(z)=2[z—(z2=1)Y2]+ (2 +0.1+0.05/) ™!
+(z—=0.140.05i)"1 , (6)

which is analytic in the upper half plane and exhibits many
properties similar to those of Green’s functions. The dotted
curve in Fig. 2 shows —Imh (E*). Its appearance is similar
to a density of states containing EY? singularities at £ = +1
and sharp Lorentzian structure at £= +0.1. We use this
sharp structure to illustrate the analytic continuation pro-
cedure. To begin, we calculate #(z) off the real axis for
AE=0.02 and M =5 (to give Imz=0.1). The dashed
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FIG. 2. Negative imaginary part of the test function 4 (z) [cf. Eq.
(6)] vs Rez for Imz=0% (dotted curve), and Imz=0.1 (dashed
curve). The solid curve results from the application of the analytic
continuation procedure to calculate values of hA(z) for AE =0.02
and M =5.

curve in Fig. 2, —Imh(z) vs Rez, along this line indicates
how much the sharp structure is smoothed. This smearing
of the band edges and Lorentizian structure is typical of that
found for Green’s functions evaluated for complex argu-
ments. Using the values of #(z) for Imz =0.1, we analyti-
cally continue the function numerically back to the real axis
using the procedure described in this section. The result is
indicated by the solid curve in Fig. 2. The Lorentzian peaks
are again quite prominent, but not quite as sharp as the dot-
ted curve, and the EY? edges reappear, as seen in the inset.
Noticeable discrepancies arise only in the vicinity of struc-
ture whose width is on the order of AE, as in the tips of the
Lorentzian peaks and right at the band edges.

IV. IMPLEMENTATION IN REALISTIC
CALCULATIONS

The approach described in this paper is easily implement-
ed and widely applicable. It has been thoroughly tested by
the present authors’ in large-scale coherent-potential-
approximation (CPA) calculations for Hg;_,Cd,Te. The
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solution of the CPA equations? in realistic calculations re-
quires several iterations. At each stage of iteration it is
necessary to determine matrix elements of the form G (E ™)
in Eq. (1) in some range of E. These lead to a new approxi-
mation to the CPA self-energy. This process is continued to
self-consistency. The present scheme is particularly well
suited for such calculations since, in addition to simplifying
the Brillouin-zone integrations, the use of complex energies
often speeds up the iterative process as well.!?

Some brief comments about the calculations for
Hg;-xCd,Te in Ref. 7 will be useful to those wishing to use
this scheme. These calculations utilized an empirical tight-
binding approximation. The required Brillouin-zone in-
tegrals were evaluated by dividing the irreducible Brillouin
zone into cubes,'* determining G (z, k) at each cube center,
and multiplying by the fraction of the cube volume con-
tained in the zone. For an energy spacing AE =0.075 eV
and M =5 (ie., Imz=0.375 eV), 444Kk points were re-
quired to obtain accurate results.!* Self-consistency to 0.1%
was achieved in 2-4 iterations. As an accuracy check, the
HgTe and CdTe densities-of-states calculations were per-
formed for the same AFE using the brute-force approach of
adding a 0.02-eV i_{naginary part to E* and determining
G(E*, k) at 2135 k points. The average root-mean-square
difference between these reference results and the densities
of states shown in Fig. 5 of Ref. 7 was about 3%.

The reduction in computer time associated with the ana-
lytic continuation was tested by performing straightforward
CPA calculations for Hg;-,Cd,Te with x =0.3, 0.5, and 0.7
using the same AE and ImE*=0.02 eV. At least 825 k
points and up to eight iterations were required to obtain
CPA densities of states differing by less than 2% from those
in Ref. 7 obtained from the analytic continuation tech-
nique. Overall, the computational scheme described here
reduced the required computer time by about a factor of 3.
A reduction of an order of magnitude could be achieved for
numerical accuracies in the 10-20 % range.
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