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The effective-medium theory has been presented by many authors and widely applied. In particular, the
theory is accepted as a very good first approximation for the conductivities of inhomogeneous continuous
media, of random-resistor networks, and of the bond-percolation problem. But the discrepancy between

the conductivity given by theory and that of the site-percolation problem is substantial. In this Brief Re-
port we improve the theory for this problem and propose three equations for the effective conductivity in

the site-percolation problem. Although the three equations are empirical, the conductivities given by these
equations agree well with data from computer simulations and actual experiments for thc site-percolation

problem except for the (extreme) vicinity of the critical percolation probabiiity.

The effective-medium theory' ' (EMT) was applied to
the problem of the conductivities of random-resistor net-
works by Kirkpatrick, 4 and the effective conductivity given
by the EMT agrees well with the conductivities of random-
resistor networks and of the bond-percolation problem ex-
cept for the vicinity of the critical percolation probability.
Por the site-percolation problem, however, the conductivity
given by the EMT disagrees substantially with the conduc-
tivity of random-resistor networks, and the EMT has been
improved for this case. ' 8 Recently, we presented another
way of improving the EMT. In this Brief Report we derive,
using the improved EMT, three empirical equations for the
conductivity of the site-percolation problem, and compare
the results with data from computer simulations or from ac-
tual measurements. The equation for the effective conduc-
tivity 0 ' for a binary system is given by the EMT "0 in the
form

some physical properties of the medium. "" The upper
bound is close to the more conductive conductivity o-I and
the lower bound is close to the less conductive conductivity
o2. The Wiener" and the Hashin-Shtrikman (HS)" bounds
are representative bounds. The %'iener upper bound is the
conductivity when the two components of the material are
put in parallel to the applied field, and the lower bound is
the conductivity when the two components are put in series
to the applied field. The arrangements of the components
are, respectively, the most conductive and the most resistive
geometrical conf1guI'Rtlon. Thc HS bounds RI'c thc most
I'cstrlct1vc ones that can bc glvcn only 1Q terms of ol,
and p. Then o.t and a)are g.iven by

rf'r= p cr +t(1 —p) a-2,

0 t Crt

(1 —p) o.t +p(r2

(1 p) =0 (1) for the Wiener bounds, and
crt+(1/p, —1)o" rr2+(1/p, —1)a'

where o.l and a-2 are the conductivities of the components,
p is the volume fraction of the component with o.t ( ) o.2),
and p, is the critical percolation probability when 0-2=0.
Por the percolation problem in which o.2=0, the normalized
effective conductivity o'/a-t is obtained from (1) as fol-
lows:
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Equation (2) is known to be a very good first approximation
for the bond-percolation problem, but it cannot be applied
to the site-percolation problem. Por the purpose of extend-
ing the applicability of the equation even to the site-
percolation problem, we presented an improved EMT9 by
replacing rr; (i =1,2) in (1) with a certain conductivity

crt (i =1,2) which includes not only the property of o-, it-
self but also an averaged property of the medium in some
form. Then Eq. (1) becomes

d(1 —p) ai(a2 —at)
(TI = 01+—

dat+p(a2 —at)

dp a.2( a-t —rr2)
rr = rr2+ do.2+(1 —p) (o.t —rr2)

for the HS bounds, where d is the dimensionality. For the
percolation problem (rr2=0) we denote by ot'and o-»'the
normalized conductivities obtained from (3), (4), and (5)
and (3), (6), and (7), respectively. Then o.t'and a-»'are
given, respectively, by
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0 —O~ ;p+-. ' „(1 p) 0 . (3)
cr' t+(1 /,p—1)o' a2+ (1/p, —1)a" P +Pc

Ol = 01
1 +Pc

(10)

As a trial to determine suitable o-, it is effective to set cri
and crt to an upper and a lower bound on a ", respectively,
because the bounds were derived by the spatial average of rr)=0

Oc1984 The Am'. can Physical Society



Volume F'I'action p Volume I raction p

F'IG. 1. Normalized conductivity against p for p, =0.24. The data

points 8rc rcsUlts from 8 computer S1nlu18t1on fo1' 8 body-ccntcrcd-
cubic network (Ref. 13).

FIG. 3. NorIYlalizcd conductivity against p for p~ =0.32. Thc data
points are results from a computer simulation for a simple cubic
network (Ref. 13).

to obtain Watson-Leath's (WL) result. 6 When we express
by o.nr' the normalized conductivity obtained from (3),
(10), and (11), rTrrr is

(12)

Eq. (12) becomes WL's equation '
0 '7T 2 VF 2

~ ~ ~(~ —2)/~) .
0] 2 2

IQ Figs. I-6 %c colTlpal'c Ol, gal, and Om %1th data floID

computer simulations and actual experiments. IQ all the fig-
ul'cs thc solid lines arc balll, Ol, and 0 ll against p ln order
of decreasing conductance, and thc data points arc results
from computer simulations or actual measurements for six
types of site percolation. Figures 1„2, and 3 illustrate
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FKJ. 2. Normalized conductivity against p for p, =0.251. The FIG. 4. Normalized conductivity against p for p~ =0.407. The
data points arc results fronl 8n actU8l mcasurcmcnt for 8 Inixturc of. dRtR points RM Msults from 8n actual nlcasUMmcnt for 8 t%G-

hard, insulating, and conducting particles (Ref. 14). dimensional continuum system (Ref. 15).
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FIQ. 5. Normalized conductivity against p for p, =0.5. The data
points are results from a computer simulation for a t~o-dimensional
Vofonoi tessellation (Ref. 16) ~
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three-dimensional (3D) problems and Figs. 4, 5, and 6
denote two-dimensional (2D) problems. In 3D, o.t' and
o-11'agree well with the data; so do al'and o111'in 2D. For
the vicinity of p, the behaviors of the three equations are
linear with the increase of p —p, . However, except for a
narrow region near p„ the three equations can be well ap-
plied to the conductivities of the site-percolation problem.

In this Brief Report we empirically derived the conductivi-
ties for the site-percolation problem, and the conductivities

FIQ. 6. Normalized conductivity against p for p, =0.591. The
data points are results from a computer simulation for a square net-
work (Ref. 17).

agree well with data frorYl computer sllTlulatlons and from
actual measurements. More theoretical and deductive
methods are left open for future work.
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