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Crystalline LiH is studied at a linear combination of atomic orbitals—Hartree-Fock level of ap-
proximation with the use of two basis sets: a minimal basis set comprising a single Slater-type orbi-
tal per atom (minimal closed-shell model), and an extended set comprising 11 independent s- and p-
type atomic orbitals per unit cell (extended-basis-set model). The problem of an adequate treatment
of long-range Coulomb interactions (which is of great importance with polarizable jonic systems)
has been solved by including a Madelung potential in the Fock operator. Cohesive energy, bulk
modulus, band structure, x-ray structure factors, and electron-momentum distribution data are cal-
culated and discussed. The agreement with experiment is in general very good with the extended-
basis-set model. The present study confirms the essentially ionic nature of LiH.

I. INTRODUCTION

The Hartree-Fock (HF) approach is believed to provide
an accurate description of ionic crystals since most sys-
tematic errors due to correlation effects cancel when sub-
tracting the corresponding free-ion term.! A reasonable
approximation to the HF solution of these crystals can be
constructed within a crystalline orbital-LCAO formalism
using a minimal set of atomic orbitals (AO’s) able to
describe the individual ions; in order to account for the
deformation of the AO’s in the field of the crystal, scale
factors can be used as variational parameters. No self-
consistency problem is left since for each reciprocal-space
vector E, the density matrix P(K)is simply the inverse of
the overlap matrix S(K). This model is sometimes called
the “minimal-closed-shell” model (MCS). Its application
is particularly simple in the case of lithium hydride be-
cause only two AQO’s are there needed to accommodate the
four electrons associated with each crystal cell. For this
reason a number of theoretical MCS calculations have
been performed for LiH in past and recent years>~'® (for a
rather detailed discussion of theoretical work up to 1977,
see Ref. 17). For a long time, before the advent of power-
ful computers, one of the main problems has been the ac-
curate evaluation of the inverse-overlap matrix. It has re-
cently been recognized that due to the large size of the H™
ion, a large number of neighbors must be taken into con-
sideration!"!? and that many of the less recent calcula-
tions suffer seriously from lack of orthogonality of the
crystalline orbitals. The second main problem has been
the choice of an adequate function Xy to describe the hy-
dride ion. With few exceptions (Kunz® modeled, for in-
stance, the radial dependence of Xy by approximately tak-
ing into account the crystal field according to the
Adams-Gilbert method), a 1s Slater-type orbital (STO) has
generally been used for Xy, with a suitable scale factor ay;
values of ay ranging from 0.6875 (free-ion value) to 0.837
a.u. have been proposed. The ionic model just described
provided a reasonable explanation of some essential physi-
cal properties of LiH: cohesive energy,’ x-ray structure

29

factors,!® and Compton profiles (CP’s).!®

On the other hand, the limits of this simplified descrip-
tion have been recognized from early years® and are essen-
tially related to the high polarizability of H~. Kunz® has
shown that the radial behavior of Xy must differ appreci-
ably from 1s STO’s in order to account for crystal-field
effects. Besides, an analysis'’ of the CP’s has shown that
the electron-momentum distribution (EMD) of LiH can-
not be explained without introducing an anisotropy of the
valence Wannier function which goes beyond orthogonali-
ty effects. Both these requirements of a richer radial and
angular description of the wave function can be met, in
principle, using a reasonably extended basis set. It is the
purpose of the present paper to perform such a calculation
(to be referred to in the following as “extended basis set,”
or EBS) and to compare the corresponding results with
those obtained using an MCS model. The resulting infor-
mation can be precious for the interpretation of the struc-
ture of H™ in alkali hydrides and other ionic hydrides.
The use of EBS’s has been suggested for a proper descrip-
tion of more general classes of ionic crystals,'® and it ap-
pears nearly mandatory when studying the reaction prop-
erties of their surfaces using, for instance, a thin-film
model.

The present calculation represents a severe test of the
computational techniques adopted in the CRYSTAL pro-
gram!®?0 used in the past for the solution of the HF prob-
lem. In fact, defining a self-consistent wave function be-
comes a delicate problem in the presence of long-range
Coulomb terms with a system that is purposedly described
as highly polarizable. This problem is dealt with in Sec.
II. It is shown that the neglect of the electrostatic poten-
tial contributed by crystal cells beyond a certain distance
in the construction of the Fock matrix causes large errors
in the present case. The simple technique that has been
adopted for including electrostatic interactions up to in-
finite distance is also described. In Sec. III the choice of
the minimal basis sets and EBS’s that have been used for
the present calculations is first justified, then the results
are presented and discussed. The results concern total and
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cohesive-energy data, bulk modulus, band structure,
charge density, and EMD. Particular attention is devoted
to the distribution of momenta, since there is very rich
and reliable experimental information resulting from
directional CP’s.

II. MADELUNG POTENTIAL

We have recently performed a detailed analysis of the
problem of the correct evaluation of Coulomb terms in
HF calculations of periodic systems, and described the
way it is handled in the CRYSTAL program.”’ Essentially
our procedure is as follows: (a) The interaction of two
charge distributions contributing to the total charge in
cells 0 and f is treated exactly at short range; (b) when
the reciprocal penetration of the distributions is sufficient-
ly small, the electronic charge in cell i is partitioned into
“shell-charge distributions” which are then expanded in a
multipole series; (c) for |m | larger than a given radius M
(the Madelung radius), the multipole series is truncated to
the first (charge) term; the effect of the atomic charges
beyond M is included in the energy expression as a classi-
cal Madelung term, but is altogether ignored in the Fock
operator. The above-described technique has been shown
to work very well with a number of different systems
(metals, insulators, semiconductors, thin films, and poly-
mers) with little or no ionic character. We have already
pointed out that in the case of ionic crystals, especially
three-dimensional ones,?! rather large Madelung effects on
the wave function were to be expected. Suppose, in fact,
that a certain radius M has been fixed, and we indicate as
Madelung potential, or ¥M2(T), the electrostatic potential
contributed at a given point T within the sphere of radius

M by the charge distributions associated with all the cells.

centered outside the sphere. If ¥™M2d is neglected in the

construction of the Fock matrix, the latter can be wrongly
calculated because of an artificial field which sets in inside
the sphere due to the presence of free charges of opposite
sign at the two ends of the sphere in the direction of the
cell dipole. In particular, the element F £VK’ which relates
the AO’s X, and Xy in cells 0 and o, respectively, will
differ from Fg,‘ " thus destroying the hermiticity of
F(K). The entity of this error obviously depends on the
magnitude of the variation of ¥ in the zone spanned
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by the product distributions X ,? X. . Suppose the unit cell
of LiH is chosen to contain third-neighbor lithium and
hydrogen atoms, with hydrogen at the origin and lithium
along the [111] direction, and M=18.1 a.u., corresponding
to the inclusion of twelve full stars of cells within the
sphere. Then, within few a.u. from the center of the
sphere, the linear relation yMad(x y z2)=—0.27
+0.0491(x +y +2z) is observed to hold with very good ap-
proximation (both the potential and the lengths are ex-
pressed in a.u.). It is clear that neglecting a term which
depends so strongly on position causes deep effects on the
wave function if the polarizability of H™ is accounted for
by an EBS. Consider, for instance, the first two columns
of Table I, which report the results of two calculations
performed with an EBS (to be described in the next sec-
tion), setting ¥M*d=0 and using two different choices of
the unit cell (containing first- and third-neighbor lithium
and hydrogen atoms, respectively). Far from coinciding,
the two results reflect in an impressive way the different
importance of the ¥ term in the two cases. Note that
the corresponding calculations performed with a minimal
basis set do coincide, due to the lack of variational free-
dom, and thus give much more reasonable results: The to-
tal energy is —8.010 a.u., and the kinetic energy is 8.082
a.u. Taking into account the effect of the Madelung po-

tential on the general element F,?v-'r of the Fock matrix is
simple enough if we assume the linearity of ¥ over the
region where the overlap density X,(T)X,(T—1) differs

appreciably from zero,
(xJ | M| X Ty ~SPMA(E) 4 7, grad[ PMRHE)] . (1)

Here S is the overlap integral (X,? | X Ef ) and ¢ is a suit-
able center with respect to which the dipole moment of
the distribution is evaluated; we have taken ¢ to coincide
with the center of gravity of the two adjoined Gaussians
associated with the two AO’s.2° For calculating M2 and
its gradient at a specific position, we have assumed that
the charge distributions in the cells outside the sphere can

‘be approximated by a multipole expansion truncated at

the first (charge-only) level. The classical expression for
the Madelung potential V124 (Refs. 22—24) can then be
used. The inclusion of ¥4 in the Fock operator not only

reestablishes the hermiticity of F (K), but also makes the

TABLE 1. Effect of the Madelung potential on the results for LiH. The calculations were performed using an EBS (see Table II)
with two different choices of the unit cell, containing first-neighbor Li and H atoms or third-neighbor atoms. With reference to Eq.
(1), three levels of approximation were considered in the treatment of the Madelung-potential contribution to the Fock matrix ele-
ments: (i) full neglect of ¥™*, (ii) use of PM24(2) but neglect of grad"M*¥(¢), and (iii) inclusion of both terms as in Eq. (1). In all
cases the Madelung correction was included in the total-energy expression. All units are a.u.

Approximation

for yMad Complete neglect Neglect of gradient As in Eq. (1)

Unit cell First neighbor = Third neighbor  First neighbor  Third neighbor  First neighbor  Third neighbor
Total energy —7.964 582 —17.721480 —8.060 622 —8.055382 —8.062 888 —8.062 890
Kinetic energy 8.181625 8.366291 8.063 766 8.049010 8.067730 8.067 730
Madelung energy —0.162 745 —0.184 829 —0.262709 —0.683054 —0.263333 —0.687245

Mulliken net 0.78 0.38 0.98 0.97 0.98 0.98
charge on Li
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results totally insensitive to the choice of the unit cell, as
in the last two columns of Table I. From the data report-
ed in the two central columns of Table I, it is seen that in
the present case the inclusion of the gradient term in Eq.
(1) does not matter very much. This is because with our
choice of € it is easily seen that ¥, is approximately zero
for all distributions involving s orbitals. This is no longer
true for s-p distributions, which, however, do not contri-
bute appreciably to the ground state of LiH.

III. RESULTS AND DISCUSSION

A. Computational conditions

Table II reports the basis sets employed for the present
MCS and EBS calculations; in both cases nGTO varia-
tional functions have been used, i.e., linear combinations
of n Gaussian-type orbitals (GTO’s). The two MCS func-
tions are 4GTO best-fit approximations to the 1s STO,?
with @ =2.6875 and 0.77242 for Li* and H™, respective-
ly. These are the optimum values obtained by Hurst?® for
the individual ions with a model Hamiltonian where point
charges approximated the crystal field about the ion; they
have since been used by many authors.”'>!* While our
own calculations have indicated that the optimum ay
value is somewhat higher (around 0.81 a.u.), we have pre-
ferred to use the more standard scale factor to make com-
parisons easier, and also because the various calculated
quantities do not change very much in that narrow range
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of a values.'>!7 The EBS has been chosen after many cal-
culations. A very rich set of independent s functions was
first explored in order to fix the coefficients of the high-
exponent Gaussians which describe the wave function
near the nuclei. The exponents of the outer s functions
were then chosen so as to allow adequate variational free-
dom and efficiency. The effect of the inclusion of a shell
of p-type GTO’s centered on hydrogen and lithium has fi-
nally been considered. In the cases of H and Li a
minimum in total energy was found with exponent coeffi-
cients of 0.3 and 0.6 a.u., with an energy gain of 0.002 and
0.003 a.u., corresponding to a p population of 0.006 and
0.028 electrons, respectively. In this optimization we had
no linear-dependency problems of the kind encountered
with metallic lithium.?’

The calculations to be discussed in the following were
performed by fixing the computational parameters so as
to insure a numerical accuracy better than 10~ a.u. in to-
tal energy. In particular, the ¢, parameter which fixes the
penetration threshold of two charge distributions, beyond
which the Coulomb interactions are treated exactly, has
been fixed to 10~3. The Madelung radius (see Sec. II) has
been assigned a value of 18.1 a.u., exchange sums have
been limited to within four stars of neighboring cells,'
and no multipole terms have been used in the evaluation
of Coulomb interactions between separate distributions,
after having verified that inclusion of hexadecapoles
(lowest nonzero multipoles) contributed to the total energy
by only + 2.5X 1075 a.u. In all cases, except when calcu-

TABLE II. Exponents (in a.u.) and coefficients of the s and p Gaussian functions used in the present
MCS and EBS calculations. The contraction coefficients multiply normalized individual s and p Gauss-

ians.

Function
Model number Center Type Exponent Coefficient
MCS 1 H s 4.315640 0.026 136
0.763 489 0.135792
0.197 838 0.353250
0.060341 0.259239
2 Li s 52.2465 0.169 629
9.24305 0.881319
2.39509 2.292 67
0.730507 1.682 52
EBS 1 H s 120.0 0.000267
40.0 0.002 249
12.0 0.006 389
4.0 0.032906
1.2 0.095512
2 H s 0.5 1.0
3 H s 0.13 1.0
4-6 H p 0.3 1.0
7 Li s 700.0 0.001 421
220.0 0.003 973
70.0 0.016 390
20.0 0.089 954
5.0 0.315 646
1.5 0.494 595
8 Li s 0.5 1.0
9—11 Li 0.6 1.0
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lating the bulk modulus, the experimental geometry of the
fcc crystal was adopted, corresponding to a nearest-
neighbor distance of 3.858 a.u.

B. General features of the solutions

Table III summarizes some results of the two calcula-
tions. It is seen that the EBS model brings in an appreci-
able increase in stability and a net improvement of the
virial coefficient. The cohesive energy has been calculated
by subtracting the HF energy of the free ions from the to-
tal energy per unit cell.?® The EBS result is close to the
experimental value of 0.346 a.u.,>* but the MCS model
also accounts for the largest portion of the cohesive ener-
gy, thereby confirming early results®: A further 31073
a.u. can be gained within the MCS model if the optimum
scale factor ag=0.81 a.u. is used. For the EBS model we
explored the dependence of total energy on the nearest-
neighbor distance r,. The basis set was the same as in
Table II except for the exponent on the outermost p and s
GTO’s on hydrogen, which was varied proportionally to
1/r3, following a suggestion by Surratt et al.’* As usual
in HF calculations, the energy minimum corresponded to
a slightly expanded structure (ro=3.876 a.u. as opposed to
the observed value of 3.858 a.u.) with an energy gain of
only 0.000 11 a.u. The EBS bulk modulus, obtained from
d’E /(dry)?, was in the range of the experimental uncer-
tainty [2.28—3.47 X 10'! dyn/cm? (Ref. 29)].

Also in Table III the valence-band eigenvalues at the
special K points are reported. The MCS and EBS bands
differ appreciably; in particular, the valence-band widths
are 0.276 and 0.245 in the two cases. It is of some interest
to compare the present band-structure results with those
obtained by Grosso and Pastori Parravicini,’® who
described the core and valence states with an MCS model,
but ignored orthogonality effects, and used an ortho-
gonalized-plane-wave treatment for the conduction bands.
Their valence-band width (0.478 a.u.) is nearly twice as
large as the present MCS and EBS ones, and the shape of
their valence band is more similar to the EBS than to the
MCS one. Such results are not easily explained, except
perhaps by considering their use of a very contracted hy-
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drogen orbital (a;=1.050 a.u.). If the first virtual band is
considered in the EBS case, it is found that the direct gaps
at " and X are 1.27 and 0.49 a.u., respectively, to be com-
pared with Grosso’s values of 1.38 and 0.34 a.u.; the intro-
duction of the p orbitals on hydrogen turned out to be
essential for a proper description of the first conduction
band, particularly at X. Obviously, correlation corrections
have very deep effects on calculated gaps and bandwidths.
For example, Kunz and Mickish!® have shown that the
direct gap at X was reduced from 0.55 a.u., as resulting
from their HF MBS calculation, to 0.23 a.u. after correla-
tion was roughly taken into account according to an elec-
tronic polaron model.

C. Electron charge distribution

Experimental x-ray structure factors provide, in princi-
ple, the means for checking the accuracy of the calculated
charge density. In the case of LiH, reference is usually
made to the set of diffraction data produced by Calder
et al. over 20 years ago;>? there the intensities of 21 reflec-
tions are reported, together with an accurate analysis of
experimental errors and an ample comparison with avail-
able theoretical data.3~>2¢ A major problem when com-
paring theoretical and experimental structure factors is ac-
counting for thermal motion, which is particularly impor-
tant for light atoms such as lithium and hydrogen. An
obvious choice with an MCS treatment of ionic systems is
to assume that the electrons belonging to a given ion are
rigidly following the motion of the corresponding nucleus.
The thermal effects are then accounted for by applying to
each ion a Debye-Waller correction with a suitable B fac-
tor; reference can here be made to the values By; and By
measured by Calder’? using x-ray and neutron diffraction.
For the EBS model we proceeded analogously, by apply-
ing a Debye-Waller correction to core and valence elec-
trons separately, with By; and By thermal factors, respec-
tively.

Table IV reports the observed and calculated structure
factors for the two models; the MCS data are practically
coincident with those obtained by Grosso and Pastori Par-
ravicini!® using the same model. The data have been

TABLE III. Energy data and valence-band eigenvalues for the MCS and EBS solutions.

MCS EBS

Total energy (a.u.) —8.00971 —8.062 89
Kinetic energy (a.u.) 8.081 65 8.06773
Virial coefficient 1.0045 - 1.0003
Cohesive energy (a.u.) 0.283 0.338
Bulk modulus (dyn/cm?) 3.41x 10"
Eigenvalues of the valence
band at special K points (a.u.)

r —0.45906 —0.492 19

X —0.18300 —0.24725

w —0.27131 —0.249 66

L —0.278 61 —0.38833

K —0.25029 —0.26581
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TABLE IV. Calculated and observed x-ray structure factors. The reflections are labeled according to the usual criterion. For
each of the two models the first two columns report the core and valence contributions to fy; without any thermal correction, while
the data in the third and fourth columns are the | fu | after a Debye-Waller correction, with By=1.8 and By; as indicated. The

agreement factors in the last row are calculated according to the formula R =Y | fi8* — fii; obs | /3| frel

%% | . The thermal factors are in

A2,
MCS EBS
Total corrected Total corrected
hkl Core Valence B;;=101 Bp;=1.10 Core Valence B;=1.01 By;=1.10 Observed
000 2.0 2.0 4.0 4.0 2.0 2.0 4.0 4.0
111 —1.749 0.715 1.012 1.005 —1.734 0.681 1.029 1.022 1.086+0.002
200 1.676 0.534 2.057 2.048 1.658 0.510 2.018 2.010 2.032+0.003
220 1.425 0.239 1.454 1.441 1.440 0.233 1.427 1.414 1.454+0.004
311 —1.272 0.141 0.972 0.956 —1.247 0.148 0.946 0.930 0.960+0.004
222 1.227 0.138 1.123 1.107 1.201 0.142 1.104 1.088 1.096+0.002
400 1.068 0.091 0.897 0.879 1.044 0.098 0.883 0.865 0.888+0.002
331 —0.968 0.052 0.695 0.676 —0.946 0.062 0.672 0.654 0.671+0.005
420 0.938 0.066 0.732 0.713 0.916 0.072 0.719 0.701 0.738+0.002
422 0.830 0.050 0.603 0.585 0.812 0.056 0.594 0.576 0.600+0.003
333 —0.761 0.024 0.494 0.476 —0.745 0.033 0.479 0.462 0.472+0.006
511 —0.761 0.024 0.494 0.476 —0.745 0.033 0.479 0.462 0.474+0.004
440 0.663 0.033 0.422 0.405 0.652 0.037 0.417 0.400 0.414+0.003
531 —0.614 0.014 0.356 0.339 —0.604 0.020 0.347 0.331 0.354+0.001
442 0.598 0.028 0.358 0.341 0.590 0.031 0.354 0.338 0.349+0.001
600 0.598 0.028 0.358 0.341 0.590 0.031 0.354 0.338 0.359+£0.002
620 0.542 0.025 0.304 0.289 0.536 0.026 0.302 0.286 0.299+0.001
533 —0.505 0.008 0.261 0.246 —0.501 0.013 0.257 0.242 0.248+0.002
622 0.494 0.022 0.261 0.246 0.490 0.023 0.259 0.245 0.250+0.001
441 0.451 0.019 0.223 0.210 0.450 0.020 0.223 0.209 0.209+0.002
551 —0.423 0.005 0.194 0.181 —0.422 0.009 0.193 0.180 0.182+0.003
711 —0.423 0.005 0.194 0.181 —0.422 0.009 0.193 0.180 0.179+0.001
R 0.024 0.019 0.018 0.029

corrected with two sets of thermal factors taken from
Calder’s paper; for hydrogen, By =1.80 A? was used in
the two cases (resulting from neutron-scattering experi-
ments); for lithium, the values By;=1.01 A? (from x- ray
scattering) and Bp;=1.1 A? (an average between x-ray-
and neutron-scattering determinations) were tried; the
latter set has been adopted in previous theoretical
work.”®"15 Tt is seen that the agreement between theory
and experiment is generally satisfactory and that the
theoretical data do not differ very much from each other.
The quality of the agreement for high-index reflections,
where the contribution from lithium is dominant, critical-
ly depends on the value of By;. The analysis of the low-
index reflections, where thermal corrections are less im-
portant and qualitative differences in the description of
valence electrons should come more easily to light, ap-
pears more interesting. It is precisely with the first reflec-
tion that the most marked disagreement between theory
and experiment takes place. With respect to the observed
(111) intensity, the MCS result is too low by about 8%,
apparently because of an overestimation of the corre-
sponding hydrogen structure factor. This has been taken
as an indication of a partially covalent character of the
Li—H bond*? which cannot be accounted for by the MCS
model. However, the EBS model does not seem to per-
form much better; it can be added that these results are

relatively stable with respect to reasonable modifications
of the basis set and thermal factors.

This large discrepancy between the experimental data
and both theoretical results is perhaps to be attributed to
insufficient accuracy of the experimental techniques. In
the case of beryllium,>~35 it has been shown lately that
relatively recent’® x-ray-diffraction data can be affected by
systematic errors of the order of 6%.

A general conclusion can be drawn from the above dis-
cussion, namely, that the EBS and experimental charge-
density data confirm by and large the ionic character of
LiH. The covalent character of this crystal, if any, is very
little; in fact, the Mulliken bond population between
nearest neighbors, as obtained by the EBS calculation, is
slightly negative (—0.005 electrons). The changes in
charge distribution introduced by the EBS model with
respect to the MCS model are most clearly described by
directly referring to charge-density data. Table V reports
the values of minimal charge density along the main three
crystallographic directions, and the distance from hydro-
gen where it occurs. As expected, abandoning the strictly
ionic model brings in a slight increase of density in the
ionic interstices. The same features emerge more clearly
from Fig. 1: The differential map pggs—pmcs on the
(100) plane exhibits a flat relative maximum midway be-
tween next-nearest neighbors, revealing a smoother char-
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TABLE V. Value and location of the minimum of the charge
density along three crystallographic directions. d is the distance
from hydrogen. p and d are expressed in a.u.

MCS EBS
Direction P d P d
[100] 0.00117 2.320 0.00131 2.254
[110] 0.00083 2.728 0.000 88 2.728
[111] 0.00052 3.341 0.00055 3.341

acter for the EBS charge density with respect to the MCS
charge density, which finds a counterpart in the lower in-
tensity of the first few valence structure factors.

D. Electron-momentum distribution

A very accurate set of experimentally determined CP’s
along five crystallographic directions of LiH have been re-
cently produced by Reed.’” The profiles have been
corrected by removing the errors related to multiple-
scattering events and to limited resolution; the corrected
profiles are reported in Table I of Ref. 37 and will be re-
ferred to henceforth as Reed’s experimental data. The in-
formation they contain is invaluable for discriminating be-
tween different theoretical models. In particular, as will
be shortly demonstrated, the differential CP’s at low mo-
menta and the autocorrelation function B(T) at intermedi-
ate distances (around 6 a.u.) are a subtle and reliable test
of the accuracy of the theoretical description of the
valence electrons of LiH. The EMD in the range 0—1.5
a.u. is, in fact, dominated by the contribution of the two
valence electrons, and differences in the description of the
valence wave function show up quite clearly here. This is
shown in Fig. 2, which demonstrates the EMD along the
main three crystallographic directions. It can first be ob-
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served that the use of an EBS appreciably reduces the
value of the EMD at zero momentum, as is predictable on
the basis of the virial theorem.® Regarding the anisotro-
py, the [100] curve is the most squarelike in shape in both
cases, while the opposite is true for the [111] curve. This
behavior is, however, much more evident in the EBS
model, where there is a marked anisotropy also below 0.5
a.u.

A direct comparison of theoretical EMD data with ex-
periment would require the reconstruction of the EMD
from measured directional CP’s. In order to avoid an ac-
cumulation of errors, it is, however, preferable to compare
experimental with calculated CP’s. Table VI reports the
theoretical CP’s for the two models along the five direc-
tions considered by Reed. The MCS results are very close
to those obtained by Ameri et al.'® with the same basis set
using a SGTO (instead of a 4GTO) approximation of the
STO’s, and are also less anisotropic than those reported by
Aikala'' who used, however, a slightly more expanded
function for the hydride ion (ay=0.7208 a.u.). Figure 3
shows the four differential CP’s, J100) —J|;jx); these quan-
tities are particularly suitable for checking the quality of a
calculated wave function because the differences between
different theoretical models are evident, and also because
many systematic errors which can affect the experimental
CP’s are canceled when subtracting one profile from the
other. Along with the MCS and EBS data, here we have
reported the differential CP’s calculated by Ramirez
et al.¥® following the method of the molecular simulated
crystal, which had given satisfactory results with lithium
fluoride.”® We have not reported Aikala’s'! differential
profiles since they closely resemble those obtained with
the present MCS model, though slightly more anisotropic.
From Fig. 3 it is seen that the EBS model gives the closest
agreement with experiment, although it apparently un-

FIG. 1. Total charge density pgps (left) and differential charge density ppps—pmcs (right) on the (100) plane. The numbers on the
isodensity lines are in units of 10~ a.u.; the lithium atom is at the top left and bottom right in each plot.
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EMD

0.5

EBS

FIG. 2. Calculated EMD along three crystallographic directions for the two models. Different lines refer to different directions as
follows: solid line, [100]; dashed line, [110]; dotted-dashed line, [111]. The heavy solid line is the contribution from core electrons.

Here and in the following figures a.u. are used throughout.

derestimates anisotropies; we will return to this point.
The data by Ramirez are furthest from experiment; in-
terestingly enough, as pointed out by Reed, the experimen-
tal maxima, minima, and zeros (confirmed by the EBS
model) are located at positions which are generally inter-

mediate between the fully ionic model (MCS) and the
molecular-simulated-crystal model of Ramirez et al.,
which exaggerates the covalent character of the Li—H
bond. Owing to the preceding discussion on the structure
factors, one must be very careful in interpreting this

TABLE VI. Directional CP’s obtained with the MCS and EBS solutions.

[100] [110] [111] [112] [221]

MCS EBS MCS EBS MCS EBS MCS EBS MCS EBS
0.0 2.259 2.243 2.182 2219 2273 2.294 2.260 2271 2.235 2.255
0.1 2.221 2.201 2.159 2.193 2237 2.259 2.220 2234 2210 2.240
0.2 2.116 2.095 2.102 2.131 2.137 2.160 2.121 2.141 2.128 2.156
0.3 1.956 1.956 2.007 2.031 1.978 2.006 1.973 2.001 1.994 2.015
0.4 1.757 1.795 1.833 1.853 1.773 1.805 1.787 1.823 1.802 1.829
0.5 1.536 1.614 1.600 1.616 1.544 1.578 1.565 1.604 1.571 1.603
0.6 1.312 1.410 1.337 1.351 1.304 1.333 1.318 1.351 1.315 1.338
0.7 1.099 1.180 1.070 1.081 1.070 1.086 1.075 1.095 1.069 1.084
0.8 0.907 0.940 0.862 0.870 0.867 0.869 0.866 0.871 0.859 0.864
0.9 0.745 0.731 0.697 0.700 0.710 0.701 0.705 0.699 0.700 0.695
1.0 0.616 0.580 0.581 0.578 0.594 0.581 0.590 0.577 0.586 0.576
1.1 0.517 0.478 0.504 0.496 0.509 0.494 0.508 0.492 0.504 0.492
1.2 0.442 0.407 0.442 0.429 0.442 0.427 0.444 0.427 0.441 0.427
1.3 0.383 0.356 0.391 0.375 0.388 0.373 0.392 0.375 0.391 0.376
1.4 0.337 0.316 0.350 0.333 0.344 0.331 0.347 0.332 0.348 0.332
1.5 0.300 0.284 0.313 0.296 0.308 0.296 0.309 0.295 0.310 0.296
1.6 0.268 0.255 0.279 0.264 0.276 0.265 0.276 0.263 0.277 0.264
1.7 0.240 0.230 0.248 0.236 0.248 0.237 0.247 0.236 0.248 0.236
1.8 0.216 0.207 0.222 0.211 0.223 0.212 0.221 0.211 0.222 0211
1.9 0.194 0.187 0.198 0.189 0.199 0.189 0.197 0.188 0.198 0.189
2.0 0.175 0.169 0.176 0.169 0.177 0.168 0.176 0.168 0.177 0.168
2.5 0.102 0.098 0.101 0.096 0.100 0.095 0.100 0.095 0.100 0.095
3.0 0.057 0.054 0.057 0.055 0.057 0.055 0.057 0.055 0.057 0.055
3.5 0.033 0.032 0.033 0.032 0.033 0.032 0.033 0.032 0.033 0.032
40 0.020 0.019 0.020 0.019 0.020 0.019 0.020 0.019 0.020 0.019
5.0 0.007 0.008 0.007 0.008 0.007 0.008 0.007 0.008 0.007 0.008
6.0 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

7.0 0.001 0.001 0.001 0.001 0.001

0.001 0.001 0.001 0.001 0.001
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[100]-[112]

lw T

FIG. 3. Differential CP’s Jyi00)(q)—Jijki(q), as indicated.
The different lines refer to different cases as follows: solid line,
EBS calculation; dashed line, MCS calculation; dotted-dashed
line, Ramirez et al. calculation (Ref. 39); dotted line, experimen-
tal data (Ref. 37).

feature as an indication of a partially covalent character
of the Li—H bond. Rather, it can be observed that the
analysis of the CP’s can provide higher discriminating
power between different theoretical models with respect to
more traditional x-ray-diffraction data. The Fourier
transform of CP’s, the so-called autocorrelation function
B(T), provides an important check of the quality of indi-
vidual directional CP’s. The main features of these func-
tions can be summarized as follows.*! —*

(a) Their value at » =0 must equal the number N of
electrons; this allows a check of the accuracy of the adopt-
ed numerical techniques.

(b) In periodic systems, the sign of B(T) is typically al-
ternating over distances which are of the order of magni-
tude of the lattice parameter. More precisely, when con-
sidering nonconducting systems, the autocorrelation func-
tion along a given direction is bound to be zero at T values
which are a multiple of the fundamental translation dis-
tance T along that direction. Verifying how precisely
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TABLE VII. Zero passages (in a.u.) of the autocorrelation
function along different directions for the two theoretical
models considered and for Reed’s experimental (expt.) results
(Ref. 37); the last column gives the reticular zero passages im-
posed by symmetry (geom. for geometrical).

MCS EBS Expt. Geom.
[100] 6.68 5.14 5.25
7.73 7.72 7.80 7.72
12.20 12.78 11.08
[110] 5.45 5.45 5.44 5.46
10.93 10.92 13.07 10.91
16.16 16.29 16.37
[111] 6.18 5.87 5.70
9.56 9.34 8.70
13.25 13.38 10.63 13.36
[112] 5.89 5.62 5.54
9.45 9.45 9.36 9.45
15.25 14.85 11.25
[221] 5.77 5.65 5.57
10.37 10.13 9.70
14.56 14.00 11.07
0.1
[110]
frd
[112]
[221]
r

FIG. 4. Autocorrelation function B(T) along different direc-
tions. The symbols adopted are as in Fig. 3.
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FIG. 5. Average autocorrelation function B(r) with damping factor included (see text). The dotted-dashed curve refers to the ex-
perimental data of Pattison and Weyrich (Ref. 17); the other symbols are as in Fig. 3.

these “reticular zero passages” are reproduced not only
permits us to evaluate the formal correctness of the calcu-
lated wave functions (in particular concerning the ortho-
gonality constraint), but also provides a satisfactory test of
the range of reliability of experimental data.

(c) The experimental error has been shown to affect
B(T) essentially as a damping factor D (T)=exp(—B%?),
where B is proportional to the resolution in momentum
space.

Table VII reports the location of the first reticular and
nonreticular zero passages for Reed’s data, and for the
two theoretical calculations. A more detailed description
of the behavior of the experimental and theoretical auto-
correlation functions around the first minimum is provid-
ed by Fig. 4. The first observation that applies to those
data is that the first reticular zeros are well accounted for
by all theoretical calculations, while Reed’s data satisfac-
torily reproduce the zero locations up to r ~ 10 a.u., but do
not clearly identify subsequent zeros. This suggests that a
comparison with experimental data is meaningful up to
about that distance, which is, however, sufficient for
discriminating between the theoretical calculations in
favor of the EBS model. Figure 4 shows that the calcula-
tion performed with the extended set also provides semi-
quantitative agreement with Reed’s data concerning the
position and values of relative maxima and minima. The
most important disagreement encountered between Reed’s
and EBS data concerns the entity of B(T) at the

minimum, which appears somewhat underestimated by
the theoretical calculation. The same effect could, howev-
er, be attributed to an overcorrection of experimental data
for limited resolution.

In order to check this point, we report in Fig. 5 the ex-
perimental average autocorrelation function B(r), obtained
by Pattison and Weyrich!” with a polycrystalline sample,
along with the corresponding theoretical curves calculated
according to the two models and multiplied by the experi-
mental damping factor D (r). For comparison, B(r) is also
reported obtained from Reed’s data according to the fol-
lowing procedure: An average CP has first been obtained
as a weighted average of Reed’s directional CP’s; after
Fourier transformation the resulting values have been
corrected using Pattison’s damping factor. The following
observations apply to the data reported in Fig. 5. (a) We
believe that the curve by Pattison and Weyrich is particu-
larly reliable and can be taken as a reference because of
the simplicity of their experimental setup and of the very
high peak-to-background ratio. (b) The first zero practi-
cally coincides for the two experimental curves and for the
EBS curve, while it is clearly offset with the MCS model.
(c) Reed’s minimum is much lower than Pattison’s, prob-
ably to indicate that Reed’s data for the minimum are
overcorrected by the author himself. (d) On the contrary,
Reed’s curve is much nearer to the zero line with respect
to Pattison’s beyond 9 a.u. Perhaps the last two observa-
tions are indicative of some deficiency in Reed’s procedure
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for correcting the CP’s for experimental errors; clearly, if
Reed’s directional B(T)’s were renormalized in order to
bring their average in accordance with Pattison’s B(r),
their agreement with the EBS data would become much

closer.

IV. CONCLUSIONS

A quite complete ab initio study of crystalline LiH at a
HF level of approximation has here been presented. The
use of a very large basis set, able to describe the polariza-
bility properties of the hydride ion, has been made possi-
ble by an accurate treatment of Coulomb interactions up
to infinite distance. The results are, in general, in good
agreement with experiment. With respect to minimal-
basis-set calculations, there are definite improvements in
the evaluation of the cohesive energy and in the descrip-
tion of the electron-momentum distribution, while x-ray-
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diffraction data do not discriminate between the two
models. On the whole, the EBS calculation confirms the
hypothesis of substantially ionic character of crystalline
LiH.

The application of the present computational scheme to
other ionic systems is in progress. We do not expect to
meet particular difficulties in their treatment: Although
the study of LiH is made easier by, its having only four
electrons per unit cell, the accurate treatment of the large
and extremely polarizable hydride ion is certainly a severe
test of the computational techniques.
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