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The ionic conductivity of a binary system consisting of two kinds of monovalent ions in the two-
dimensional honeycomb lattice is calculated by the path probability method of irreversible statistical
mechanics. The main purpose is to gain insight into the probable cause of the mixed-alkali effect
observed in P-alumina-type systems and glass systems in general. It is shown that if the interaction
between the two components is attractive, the existence of a sharp minimum which is caused by or-
dering can be expected at a certain composition. The minimum is shown to be mainly due to a per-
colation difficulty created by mutual arrangements of two kinds of ious. Based on these findings, it
is suggested that the major cause of the mixed-alkali effect is the drop in the percolation efficiency
due to the blocking of the diffusion (percolation) path created by mutual interaction of different
kinds of ions.

I. INTRODUCTION

Thc problem wc dcR1 with hcIc 1s 8 gcQcfal thcorct1cal
treatment of ionic conductivity of two-component systems
in which conduction ions are mutually interacting strong-
ly. We deal with this problem utilizing the pair approxi-
mation of the path probability method (PPM) of irreversi-
ble statistical mechanics. ' Our major interest in dealing
w1th th1s problem 1s to gct an 1ns1ght 1nto phys1cal causes
of so-called mixed-alkali effect. The mixed-alkali effect
(MAE) has been known for some time in glass systems. '

In binary glass systems in which one kind of alkali ion is
progressively substituted by another kind of alkali ions, it
is observed that the conductivity does not vary linearly
with the fraction substituted. Instead, one often finds a
substantial decrease in the conductivity at intermediate
compositions without any apparent physical causes. Ir-
respective of the effort of many researchers, the cause of
the effect has not been satisfactorily explained. s' Howev-

er, recently the existence of a similar effect in crystalline
systems such as in P-alumina-type systems has also been
observed. The existence of the effect in P-alumina
systems indicates that MAE is a common phenomenon
whether the system is crystalline or not. If this is so, there
is possibility that the origin of MAE, at least its qualita-
tlvc fcatul'cs, call bc understood lly 'tllc 'tl'catlllcllf, 111 crys-
talline lattice systems which is theoretically far more easi-

ly tractable than in glass systems.
The theoretical basis of ionic conduction in solids so far

has been essentially the random-walk theory. In other
words, if there are n conduction ions with the charge e
and the mobility JM, the conductivity o. is considered to be
glvcn by

Based on this expression, past efforts in explaining MAE
have been to give reasonable causes to reduce n and/or JM

by the addition of other ions as exemplified by theories
such as the theory of Hendrickson et al. " and the weak

electrolyte theory. ' ' However, in the ion conduction in
solids, there is another factor fI which may be called the
percolation efficiency which was introduced by Sato and
Kikuchi with the name of the physical correlation fac-
tor. l 1 If explanations of MAE based on n and itt only are
not satisfactory, the explanation of the effect should then
be based on the percolation efficiency. ' Indeed we will
show that there are some experimental evidences which
indicate that the percolation efficiency is really playing
the essential role in MAE.

Our interest in the present theory is to show in binary
systems in general that how the percolation efficiency can
be defined and that under what condition the decrease in
the percolation efficiency becomes conspicuous. By
know1Ilg this cond1tlon, our next tRsk 1s to 1clatc this coIl"
dition and the probable cause of MAE which may be
occurring in glass systems and P-aluminas. Indeed, for
extracting the percolation efficiency in the conductivity of
solids, any simple lattice system will suffice. However,
because we will be dealing with MAE of i'-alumina-type
systems, the adoption of the two-dimensional honeycomb
latt1cc which was 81Icady ut111zcd by Sato and Klkuchi for
the idealized model of P"-alumina explained in Sec. II
would be convenient. The model is essentially a lattice-
gas model and many-body effects in transport are con-
tained because mutual interactions among constituent con-
duction ions are included. As a theory of diffusion, the
model represents a generalized vacancy mechanism. How-
ever, as was pointed out in the original treatment, ' the
model is sufficiently general to include other mechanisms
such as the interstitial mechanism and interstitialcy mech-
anism which has been claimed to be operative in P-
aluminas' ' and in glasses. '

The treatment of mass transport by PPM has been
made extensively. However, the treatment for binary sys-
tems has been limited to the derivation of the correlation
factor of isotope diffusion of one of the constituents and
the treatment of ionic conductivity of binary systems has
never been shown. Therefore, in the following we show
the outline of the derivation of required quantities by the
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pair approximation of PPM although the basic concepts
utilized are the same. In Sec. II, we describe the specific
model for which the ionic conductivity is calculated. In
Sec. III, an outline of the mathematical procedure of the
PPM is given in order to make the presentation of the
model system unambiguous. There, all the variables need-
ed to define the model system are given. In Sec. IV, the
flux expression is given, and the Onsager equation for
mass transport is derived under the steady-state condition.
Expression of conductivity and its analysis are given in
Sec. V. We calculate the composition dependence of the
total conductivity as well as that of individual com-
ponents. The correlation factor of the isotope diffusion of
one of the constituents are also calculated because the iso-
tope diffusion is often helpful in understanding the mech-
anism of diffusion. In the last section, we try to organize
these results so that MAE in P-alumina and glasses can be
properly understood.

The two-dimensional honeycomb lattice consists of two
kinds of ions and vacant sites. We assume that the con-
duction (and/or diffusion) takes place via vacant sites as
was done earlier. That is, the motion of ions is as-
sumed to be a hopping into the nearest-neighboring vacant
site. We further assume mutual interactions among can-
duction (or diffusing) ions. Introduction of mutual in-

teractions among diffusing species of ions is a necessary
feature to discuss the many-body nature of ionic trans-
port. Here we assume that the interactions among mobile
ions are taken into account in the form of nearest-

neighbor pair interactions. The new feature in the present
model is that two interpenetrating sublattices are con-
veniently introduced to define the ordered states of the
system which may be set in at low temperatures in dealing
with ion transport.

III. GENERAL OUTLINE OF THE METHOD

II. MODEL

The specific theoretical model proposed in this work is
that when an electric field (and/or a generalized chemical
potential gradient) is imposed, two kinds of monovalent
ions move on the two-dimensional honeycomb lattice (Fig.
1). The major task of the theory is then to derive the On-
sager equation for mass transport,

(2.1)

in an analytical fashion. The letters A and 8 indicate the
two components. Symbols 4z and 4z represent the flows
of A and 8, respectively, and az and az are the chemical
potential gradients for A and 8 ions, respectively, which
serve as the driving forces. Knowing the expression of
L;J s, we can obtain detailed information of the kinetic
properties of the system. The kinetic conefficients L;J.'s

thus determine properties such as conductivities, the
mobilities of ions, the percolation efficiency, and the
correlation factors for isotope diffusion.

We work on a system consisting of two kinds of ions 3
and B in the two-dimensional honeycomb lattice. Each
lattice site is occupied by ions (2 or 8) or vacancy (V).
Hereafter, i stands for the ions (A or 8) or vacancy, and
we shall refer to A, 8, and V as 1, 2, and 3, respectively,
when convenient. Ions A and B have charges Z&e and

Z2e, respectively, where Z; is the valence and e the elec-
tronic charge. We eventually assume Z~ ——Z2 ——1 in order
to avoid complications due to charge-compensation prob-
lems arising from possible change in distribution of
charge particles. Figure 1 shows one of the lattice planes
which forms the two-dimensional honeycomb lattice. We
introduce a coordination axis as shown in Fig. 1 in order
to define the variables needed in specifying the state of the
system. Lattice lines parallel to the x direction are num-
bered by an integer written as v. A lattice point on the Uth

line may be called a vth lattice point (or a v site). The
center of a bond connecting a vth lattice point and a
(v + l)th point is designated by n which is equal to v+ —,.

We assume the ions move from lattice sites to adjacent
vacancies due to the driving force such as an applied elec-
tric field E and/or a concentration gradient of these ions.
Although the direction of the force can be taken arbitrari-
ly, here we take it in a symmetric direction along the
plane as shown in Fig. 1 for the sake of simplifying the
mathematical treatments.

(0
I

I

I

I

v n v'+I

FIG. 1. Honeycomb lattice. Two sublattices are marked by

open (a}and solid (P}circles. These lattice sites are occupied by
two kinds of ions (A or 8) or vacancy ( V). Some sites, called a
sites, are favored sites for an A ion and some called P sites are

favored sites for a 8 ion. Conduction and/or diffusion take(s)

place on this plane via a vacancy migration mechanism. v and

v+ 1 indicate the position of lattice sites while n indicates a
bond between the vth and the (v+ l)th lattice sites.

A. The state and the path variables
(relations among variables)

In PPM we first define a certain number of variables
called the state and the path variables. The state variables
are introduced to describe the state of the system at time t.
To describe the kinetics of the system, that is, how the
state of the system changes with time, we need the path
variables which connect the state of the system at t and

In our model, two sublattices called the a and the P
sites in the honeycomb-lattice net (see Fig. 1) are intro-
duced to define the possible ordering of the two corn-
ponents which may appear at low temperatures due to the
mutual interactions among ions. We assume that the in-
teractions among ions are taken into account in the form
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TABLE I. Definition of state fractionals. i =1, 2, and 3 cor-
responds to 3, 8, and V, respectively.

Conf lgUI'ation

on a vugh site
State fractional

of i's on a vth state

of nearest-neighbor pair interactions.
I et us define the state variables. The fraction that Rn a

site is occupied by the ith species is defined as p;. Hence,

p) expresses the fraction that an a site is occupied by an A

ion. The corresponding fraction on a P site is defined as

q;. A configuration of a nearest-neighbor bond is of the
form i j,-where the first member i is for the a site and the
second member j is for the p site, where i and j take 1, 2,
and 3, depending on whether the sites are occupied by an

A ion, a 8 ion, or a vacancy. Then it is convenient to de-

fine the fractions of bonds in three directions which are in

tllc I J confIlgulat10II Rs x(j y j)(j y RIld z(j y rcsPcctlvcly T11csc
state variables are summarized in Table I. So far we have
defined the state variables of the system which specify the
state of the system at time t. In kinetics the system is gen-

erally observed as it changes toward the eventual equilibri-
um state. This state changes to a different state in a short
time interval ht. Hence it is convenient to define its con-

jugate path variable, which gives the fraction (or probabil-

ity) for a certain unit jump in a certain cluster configura-
tion between t and t +b, t. Here we assume b, t much larger
than the time required to complete a unit jump but suffi-

ciently small so that for any cluster {any pair) there is a
negligible probability that more than one ion jumps.
Under these conditions, the number of types of possible
changes during At is greatly reduced when we consider the
migration mechanism, and the possible types of changes
are then found based on simple geometrical arguments.
Let us define the path variables which depend on time I
and t +At. The conjugate path variables of p; and q; are,
respectively, defined as P)j(r, t+bt) and Q)j(t, t+At)
Here I'(j(t, t +6,t) describes the fraction (or probability) of
the path which connects the state of an n site occupied by
the ith species at t and by the jth species at t +b, t due to a
unit jump of ions through the vacancy-migration mecha-
nism. The same interpretation is applied to Q,j for a P
site. It should be noted that we also include the case
where i and j can be the same species, otherwise one of

them must be 3 (i.e., a vacancy). When i and j are dif-
ferent, we need a third subscript on which of the three
bonds the vacancy migration occurs; as is seen in Fig. 1,
each point has three bonds associated with it: the right,
the center, and the left. A subscript R, C, or I. is used to
indicate the location of the migration activity. For exam-
ple, P'I'3 I( is the fraction of the path which connects the
state of the occupant at an u site in a vth lattice line due
to the configurational change. That is, an A ion at an a
site on a vth lattice plane at t moves to the right, leaving
the site vacant at t+ht. The possible cases for the I"s
and Q's are listed in Table II.

Similarly we can define the conjugate path fractionals
of the configurational state of the pair, x;j, y;j, and zj, , as
X(j k( ( I, t +b t), Y)I k) ( t, r+ b, ), and Zj; )k ( I, I +b, t), respec-
tively. Here X's, Y's, and Z's connect the fraction (or
probability) of the path associated, respectively, with the
cotlflgulR'tloIIR1 cllaIlgc of tllc state fract10Ilals x(j y g(jy Rlld

zj; at time r and r +ht on the same sites. When the con-
figuration does not change, i =k and j=I hold. When it
does change, the change is in either i or j so that either

j= I or i =k holds. When it changes, say i &k and j=I,
either i or k must be 3 (i.e., a vacancy). For this sort of
conf1gufat1onRl change, wc 1ntI'oducc R subscr1pt R, C, OI'

I. to indicate the bond direction on which the migration
occurs. For instance, XI&',z L, is for an 3 8pair at r-and a
V-8 pair at t +At, the A ion having moved toward the left
in j()t, by breaking an interaction energy e&I) between ions
A and 8. Hereafter, e;j stands for the nearest-neighbor in-
tcract1on cnclgy between thc l Rnd thc J spcclcs, whelc wc
RSSUIIIC E&y=ey(=Eyy=0 (I ='A Rnd 8). T11C SIIIlllRr 111-

terpretation holds for Y's and Z's. It should be noted that
these configurational changes of a pair cluster in time in-
terval j().t is assumed due to a unit jump of an ion through
the vacancy-migration mechanism. Possible path frac-
tions of the configurational changes of the pair state at an
II and a p site are listed in Table III. It should be noted
that our formulation will be made in the .lattice-fixed
frame of reference.

Now that we define the appropriate variables to
describe the system, it is easy to write the relations be-
tween these variables. The normalization conditions for
p's and q's are

~ on o."
l Oll P

(v) y ~(v) (3.1)

ConfligUratlon
State fractional
of an i-j pair

Geometrical consideration leads us to the followtng «»-
tions between the point-state variables and the pair-state
var1ablcs:

vth bond
&(v) pv)

(v)
Pt

3

y X(jv)

j=1

3

g 3'(~g

j=1
3

(n —1

3
(n —1)

Z$Jj 1

3
) (n)

ZJ g

j= 1

nth bond
p(v) ~(v+))

where i takes 1, 2, and 3. The path variables are for the
configurational changes during the time interval At.
Therefore the state fractionals (p's and q's) and their con-
jugate path fractionals (P's and Q's) at time I and I+ j().t
are related as
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TABLE II. Definition of the path fractions: p;") and Q'i"'. i = 1 and 2.

Configuration
change on a"

site Path fractional

Configuration
change on P'")

site Path fractional

I',(;)(t,t +At) Q,
"(t, t + t3.t)

(v)
Q(, 3,L

p(&)33

(v)
Q3, ;C

Pi ( t} Pii +Pi 3L +Pi 3C +Pi 3R +P 33
(&) (v) (v) (v) (v) (v)

p~(v)(t+gt) pi(iv)+p(v) +p(v) +p(v) +p(v)
(3.3)

for an a site. Here i takes 1 and 2. The same expressions
are obtained for a p site by replacing p's by tt's and p's by
Q's. Similarly we can relate the state fractionals of bonds
(x's, y's, and z's) and their conjugate path fractionals (X's,
F's, and Z's) by looking at the occupant at an a and a P
site at time t and t+b, t, respectively. These relations are
given in Appendix B.

From geometrical considerations, we see the following
relations among the path fractionals:

(&) (~) (v) (v)p, 3,c=Q3, ,c=x3,3 —=&
(v) (~) (~) (~)

p3, ;c=Q, 3,c=&3;3=&p.

B. Change of state

When we define the change of a quantity f in ht as

bf =f(t ~St) f(t)— (3.5)

then the change of states at the a and the P sites on a vth
lattice plane perpendicular to a conduction (or diffusion)
plane is given by making use of p s in Eq. (3.3) and the
similar expressions for q s and the relations (3.4}:

~P' =(P3, ;c P;3,c}+(P—3, ,R Pi, 3,R }+(P3,—;L P,3,L)—(v) (~) (~) (~) (~) (~) (~)

(X(v) X( ))+v( y(n) y(n) )+ (Z(n 1) Z(n —1)
)

(3.6a)

(v) (v+ 1) (n) (n)
P;,3,R=Q3, ;,L =~.3,3.=—I'a

(~) (~+ 1) (n) (n)
p3, ,R=Q;3,L =I'3„.3=I'p;

(v) (v—1) (n —1) (n —1)
pi, 3,L=Q3, i,R =z(3,3i

=zni—
(v) (v—1) (n —1) (n —1)p3iL Qi3R z3ii3 =zpi

(3A} t) a"=(Q3", ,c—Q', 3,'C)+(Q3". ',L —Q",3,'L )+(Q3", ', R—Q', 3,'R }

(X(v) X(v))+( y(n —1) y(n —1))+(Z(n) Z(n))

(3.6b)

for i = 1 and 2. In the above expressions abbreviated nota-
tions are introduced, indicating an a or a P site is occu-
pied by the ith species either at time t or t +At.

for i=1 and 2. It is clear that the expressions (3.6a) and
(3.6b) show the configurational change of a site occupancy
in an a and a P site in the vth lattice line of the conduc-
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TABI.E III. Definition of the path fractionals of bond pair. There are, in total, 60 possible configurational changes on the x( ',
y'"', and z'"' bonds during time interval At. i and j take 1 and 2.

Bond pair
Configuration change

on a bond Path fractional
Configuration change

on a bond Path fractional

(v) (~)+Pl +l 3,3E

X(,, ),, (L or Z) X3,';J (E. or L)

X,', ,), (L or g) X,J(',)3 (Z or L)

F3"~; (L or C)
r,.(3"),, (C or Z)

F;", (C or R)

(n) (n)
zpg Z3l, l3

Z3',
~ (L or C) Z', ", ',, (C or a)

tion (or diffusion) plane, respectively, during the time in-
terval b, t via the vacancy-migration mechanism.

Similarly we can write the configurational change of
pair-state variables doc;J, by,z, and Mz, by making use of
Eqs. (Bl) and (82) and the corresponding equations for

the pair-state variables for z's. These relations are given
in Appendix B. In fact as will be shown later (see Sec.
IV), the dkfference by'"' —bz'"' will be used as the condi-
tion for the steady state. In terms of path variables,

1S given by

(n) (n) (n) (n) (n) (n) (n) (n) (n) (n)~y;, —~J., =(&3J,C &,, 3,, C)+—(I'3J, J,C &J,J 3)+—c(~. , z3—JI',, 3,z)+(&3J, j,L I'J, ~,,L)—
(Z'3 "C Z" '3 C) (Z3' " C Z''3'L) (Z3' "8 Z" 3'R) (Z'3 ''L Z" '3 L)

(n) (n) (n) (n) (n) (n) (n) (n)

where i and j take I and 2.

C. Definition of flow

the average change of the fractionals at an a and a P site
in an arbitrarily taken reference lattice line, say, a vth lat-
tice line, and is given by

In order to derive the ()nsager equation for mass trans-
port, it is necessary to define the flow of the two com-
ponents. The net flow of the ith species may be defined as

@(&—t) C)(n) & (g (v)+g (v))

Then the average flow of the 1th species across the nth lat-
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tice line can be given by

(3.9)

the most probable path of individual path variables de-
fined for the jump of the ith species (Appendix C). Let us
consider the case where a small chemical potential,

for i=1 and 2. It is noted that the flow is expressed in
terms of the path variables which indicate the fractionals
of the exchange of an ith atom and a vacancy across the
nth line.

In the PPM formalism, those path variables, X's, 1"s,
and Z's, are given in terms of the most probable path
which determines the path on the free-energy surface and
they are expressed in terms of the state variables at a time
instant t and the physical parameters such as interaction
energies ej's between ions. Expressions for the most
probable path of individual path variables are given in
Appendix C and Table IV.

IV. DERIVATION OF THE ONSAGER EQUATIONS

The Onsager equations for mass transport are linear
equations which relate the flows of particles of individual
species and the respective potential gradients such as
chemical potential gradients as driving forces. The flows
of ions induced by an electric field as a driving force are
evaluated from Eq, (3.9) in terms of those expressions for

I

a,'"'=d—a,'"'/dn, (4.1)

is further imposed on the system. Note that the chemical
potential p; for an ith ion is defined by p;=a;P
[P—:(ks T) ' is the reciprocal temperature] and that a dot
notation is used for the spatial derivative rather than the
conventional time derivative. In the PPM, the Onsager
equations are defined across a reference plane at a time in-
stant t In .the following our aim is therefore to obtain the
relationship between the flows and the driving force,
which arise from these potential gradients.

A. Expression of the flow

When a; and/or E exist(s), naturally we can expect the
concentration gradients p; and q;. Another quantity
which is of a similar nature as p; and j; is the deviation
from equilibrium, that is, the deviation from symmetry of
the pair- fraction variables, y,J"' —y,&",

' and z,J"' —z,J",', in-

duced by a; and/or E. It is noted that the latter appears
in the following combination:

(n)
(n) (n) (n) (n)

(n) (n)
yij e yl 3e

(n) (n) (n) (n)
lJ 'I3 3J 33

(n) (n) (n) (n)
lJ yi3 y3j 33

(n) (n) (n) (n)
y 3j y 3je y 33 y 33e

(n) + (n)
y3je y 338

(n) (n)
ij ije

(n)
ZlJ8

(n) (n) (n) (n)
Zi 3

—Zl'38 Z3j —Z3je
(n) (n)
l 38 3J8

(n) (n)
33 338+ (n)

338

(4.2)

(n) (n) (n)
yij =yij yij e (4.3)

As can be easily proved from Eq. (4.2), QIJ"' satisfies the
relations

(n) (n) (4.4a)

for ij =1 and 2. The subscript e indicates the equilibrium
value when a; and E vanish and the 5 notation is defined

by

l

does not hold. Therefore, f;',"' does not vanish. This is be-
cause of the fact that our system consists of two sublat-
tices (a and P). Of course, for the disordered phase, there
is no distinction between the lattice sites, and hence the re-
lation (4.4b) does hold and P';,"'=0 is satisfied.

When the potential gradient, i.e., the force (a;/P
and/or Z;eE), is imposed on the system, we expect the net
flux of ions, 4; in Eq. (3.9), is to be induced. Our aim is
now to derive the dependence of 4; on the force and Q,J.
To do this it is convenient to define the normalized flow

for i =1 and 2; however, the symmetry relation

{n) (n) (4.4b)

C,(n)
,n(n)

(n)X;8"

y(n) y(n)
al Pl

y(n)
ie

Z 1 Zpo(n) {n)

Z(n)
ie

2, (4.5)

TABLE IV. Path variables and most probable path expressions. i and j take 1 and 2. A's and KJ are defined by Eqs. (C3) and
(C4), respectively.

Path variables

~(n)
Yi 3,ij,c
~(n)

3j,ij,C
~(n)
~ ij,3j,C
~(n)
Yji,i 3,c
~(n)
~i 3,ij,R
~(n)
~ ij,i 3,R
~(n)

iJ3JL
~(n)

3j,ij,L

Most probable path

X(v+1) (n) / (v+1)
aJ 3t3 /g3

. X(v) (n) / (v)
Pig'3j /P3
(v) (n) (n)Xai Kij 3 ij /Ay, ai
(v+ 1) (n) (n)

XpJ K;Jp J. /Ay pJ

Z aj 3'i3 /g3
(n + 1) (n) (n)

Zpj K,Jy,J /Ay p
(n —1) (n) (n)Z zj Kj&'pj&'/Ay zi

Z( —1) () ()
Pi 3'3j /P3

Path variables

~(n)Zi 3,ij,c
~(n)
Z3j,ij, c

(n)
Zij, 3j,c
~(n)
Zij, i 3,c
~(n)
Zij, 3J R
~(n)Z 3j,ij,R
~(n)
Zij, i 3,L
~(n)Zi 3,ij,L

Most probable path

X() () ()
aj Zi3 / 9 3

~(v+1) (n) / (v+1)
Xpi z3j /p3

ai ij Zij z ai
(v) (n) (n)

XpJ K,JZIJ /Az pJ
Y""'K-."/A"ai ij Zij z,ai

Y( +1) ( ) (+1)
pi Z3j /p3
(n —1) (n) (n)

YpJ Kijz;J /Az pJ
~(n —1) (n) / (v)

aJ l3 /93
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where i takes 1 and 2. It is noted that in equilibrium

(n) (n) (n)X;, =Pe =Ze (4.6a) (4.6b)

holds, and that Lie~ Pie~ and Zie arc, respectively, the
values of X;, F;, and Z; when the forces vanish. We can
show the rdations

and the same for F's and Z's in equilbrium.
&y ~~king use of Eqs. (C2},(C3), and the 5 notation de-

f»ed 1n Eq. (4.3), we can write )IiI") as

~zg'e+n (n)A(n —1)A(v) p (v+1)g (n)A(n —1)A(v) i (v+1)}2
(n) ~ e 3i 3 z, ai x,ai &Qi ~ ~3i y, Pi x,Pi ~pi

2'P; =o ln E (n) (n+1) (v+1) (v) 2 (n) (n+1)p(v+1) (v))2e g3i P*s Pi ~~x,Pi (Pi j ~i3 ~~y, ai ~~x,ai ~pi

(4.7)

for i=1 and 2. Here A's are defined in Eq. (C3). We as-
sume the change of properties along the forces (i.e., the
potential gradient) is small and expand the right-hand side
of Eq. (4.7) around the point n applying the following gen-
eral formula:

(4.8)

Here 5g'"' is the deviation caused by the potential gradient
of g'"' from the equilibrium value g,'"', and g is the spatial
derivative with respect to n. Applying this to Eq. (4.7)
(note that v and n are related by n =v+ —, ), we can ex-
press Eq. (4.7) as

(n) (n)g(n) q(n)
(n) A3 ~3i zai yPi2' =2ZiePEa+5ln

( ) ( ) ( ) ( )
3'3i ~is AzPi~yai

(4.13)

3

5lnp, (")= g
3

5inq, '"'= g

(n —1)
ije

g l (n —1)
(~)

Pie
(n)

Ji~
5 1

(n)
(~)

9'ie

(4.14)

Noting that at equilibrium

(n)
(n) ~ 3je (n)51nAy~, .——g ( )

51ny,J
j=1 P3e

(n)
(n) &J3e (n)

51nAyp; ——g („) 5lnyj, .

j=l 93e

Similar expressions are obtained for 5 lnA,'"'; and 5 InA,'"&;

by replacing y by z. Doing the same for p's and q's in Eq.
(4.13), we obtain

—(d /dn) [3in(A.'",,'A,'",,') —2 in(p, ',"'q,',"'}], (4.9) (n) (n +1) (~) (~+1)
JPie=pie =Pie =Pie =Pie

(4.15)
whcI c Aaie

(n)
aie

and Ap";, are given by
(n) (n)

P3e &i3e
(n)
33e

(n) (n)
0 3e 3ie

(n)+33e

Vie=qie =qie =9'ie ='Vie

+ije =3ije =~jie

hold, use of Eqs. (4.13), (4.14) and the related expressions
in (4.12) transforms the latter to

A's represent the effect of energy bonds being broken as
an A or a 8 ion jumps. When Eqs. (4.10) and (A12} are
used, the d /dn term is written as

(d ldn)[3 ln(An";,'Ap";,') —21n(p,"'q,"')]

2(4""'+a "' ZePEa.)—
(n) 2 (n)+3ke (n) k 3e (n)
(n) haik + g („) 4kj

k=1 P3e k=1 q3e
(4.16)

=2a;+(d/dn)ln(p&", 'q3", ') . (4.11)

Substituting Eq. (4.11) into Eq. (4.9), we obtain

(n) (n)~(n) p(n) (~) (~)
(n) 3 i 3 ~3i zai yPiP3 V3+' ZPE} 51 ()() () () ( )( )

3'3i ~i3 ~zPi~yaip3

(4.12)

for i= 1 and 2. To obtain the expression (4.12), we used
the relation

(&+1) (~+1)
(n) (n)ln(p3, qz, ) =51n

d72

Differentiating A's in Eq. (4.12) and using Eq. (&11) for
thc cquilibriuIQ values wc obtain

where g;'J"' is given by Eq. (4.2). It is noted that although
1(,z is written in a general form, the significant elements
among ((Ji;J. are p)2 and $2, for the order phase whereas be-
cause of the symmetry relation (4.4b), either $12 or $21 is
significant for the disordered phase.

B. The steady-state condition

In order to derive a relation between the flux 4I"' (or
qiI') and the force (a Z;eEa), we must e—liminate g;J. in
Eq. (4.16). The necessary equation is supplemented by the
steady-state condition. When the systeIn reaches a steady
state, there is no change of fractionals with time for a site
occupant. This means that hei and Aq; must vanish at
the steady state. As seen in Eqs. (3.6), hp; and hq; are the
functions of X's, X's, and Z's. It is convenient to intro-
duce the relations as was done befoxe:
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(4.17)

where the plus sign applies to the subscript ai and the
minus sign to pi W. hen bp; and hq; in Eqs. (3.6) vanish,
we can derive the following relations among 4's:

(4.18)

Because of Eq. (3.9), 4's in Eqs. (4.18) are related to (I),'"'

by

(4.19)

It should be noted that Eq. (4.19) is independent of n, as is
expected in the steady state, since the net flow defined in
Eq. (3.8) vanishes. In the steady state,

(4.20)

should also be satisfied for the pair-state variables. By
making use of Eqs. (C3), (4.5), (4.17), and (4.18) and the
related expressions for the most probable path, the
steady-state condition (4.20) can be expressed in terms of
the Q,J's and the equilibrium quantities

(n)
&~3e

(n)~(n)
q3e ie

(n) (n)
(n) ~ k 3e (n) @(n)

& 3je
(n) ~"J J (n) (n)

k=1 9'3e P3, Xj,

(n)

—AJ + $ („) Ak++(n) & 3ke (n) (n)

k=1 P3e
(4.21)

for i,j=1 and 2, where PIJ"' is given by Eq. (4.2). Rela-
tions (4.16) and (4.21) form the basic equations to obtain
the force-flux relation, and hence the kinetic coefficient
for the system.

2
(I''"'= —1.A viz 0"g"'———Q lJAJ,

j=1

A; =ct; Z;ePEa—,

(4.22a)

(4.22b)

for i= 1 and 2. The current 4U~; is defined as the flux
per unit area in a unit time. From Eq. (4.22) the Onsager
equation is given by

2

4 Uz ———L A viz (I)U&; ———$ L;~AJ,
(n) . ~ (n)

j=1

L,J =X~(,"'lJ/(V3ac b, t)

(4.23a)

(4.23b)

for i= 1 and 2. Here a is the distance defined in Fig. 1,
and c is the interplanar distance perpendicular to the plane
where diffusion and/or ionic conduction take(s) place.
The explicit expressions of ltJ's are complicated and only
the derivation of l,J s is given in Appendix D. Equation
(4.23) shows the linear relation between the currents and
the driving forces. The currents, 4~q; (i= 1 and 2), and
hence its linear coefficients L,J's, are evaluated across an
arbitrarily taken reference plane (indicated as n in Fig. 1)
which is perpendicular to the direction of the driving
forces. 4~~) and O'U&2 then represent the difference of
the jumps of 2 and B ions, respectively, across the refer-
ence plane in the two directions. The interactions among
ions create a certain distribution of two components and
vacant sites. This distribution is eventually determined by
the pair approximation of the cluster variation method

C. The Onsager equation

The relations between the fluxes and the potential gra-
dients (forces) are derived by eliminating four g,z's (ij= 1

and 2) from Eqs. (4.16) and (4.21). The resultant expres-
sions are of the form

(CVM) of equilibrium statistical mechanics (see Appendix
A). ' Equation (4.23) was obtained under the steady-state
condition where the current should occur without disturb-
ing the overall distribution of ions. Hence the jumps of
ions across the reference plane are calculated by knowing
the local environment of jumping ions. It should be noted
that the kinetic coefficients L;J s consist of four terms,
namely, the diagonal terms (L» and L22) and the cross
terms (L)2 and L2) ); the former elements are due to the
independent flows of A and 8 ions and the latter elements
are due to the interacting flows of A and 8 ions, respec-
tively. In the PPM, each element of the kinetic coeffi-
cients is given in an analytical fashion. We can therefore
obtain the detailed information about the conduction
and/or the diffusion mechanism(s) of the system by exam-
ining these elements. It should be noted that the kinetic
coefficients L,J's satisfy Onsager's reciprocity theorem,
i.e., L,J LJ, (i&j ). ——

V. EXPRESSION OF CONDUCTIVITY
AND ITS ANALYSIS

2

CUD; ——Pae g Z&L JE, (5.1)

where L,J is given by Eq. (4.23b). Hence the electric
current J; due to the conduction ion i is given by

2

J; =Z;e@Ug; ——pae g Z;ZJLtJE,
j=1

(5.2)

where i takes 1 and 2. The total electric current J is then
given by the current due to ions A and B;

Ionic conductivity is calculated under the steady-state
condition. Different from the diffussion treatment which
will be reported elsewhere, we do not have a concentration
gradient [i.e., a; =0 in A; defined in Eq. (4.22b)] so that it
is not necessary to specify the local ion of the reference
plane and we may drop the superscripts n and v. From
Eq. (4.23), the particle flux, CUD; (i =1 and 2), are given
by
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2

J= g Ji:u—lE . (5.3)

The last equation defines the conductivity ol of the sys-
tem as a whole, which includes the contribution from the
two kinds of ions A and B:

&r =01+02 (5.4)

where o i and 02 are the conductivity of the ions A and B,
respectively, given by

2 2
—itU '2

Z ie Sic Ax, aie

v 3c kgT pi
x», l» 1+

1 11

2 2
—PU

Z2e ~2e Ax, a2e

v 3c ksT p2,

Z1 I
,122 + Z l2 22

(5.5a)

(5.5b)

Here, w; (i =1 and 2) indicates the average jump frequen-
cies of an ith species at an a site. V; and W; are the cor-
responding vacancy availability factor and the bond
breaking factor (defined earlier as the effective jump fre-
quency factor ) and are, respectively, given by

TE+
&

g =&i3e ~

(5.8)

Pie

for i= 1 and 2. It is noted that in equilibrium, Eq. (4.6b)
holds so that the following relation is expected to hold:

A„p;,
(5.9)=&3ie&i 3e

9ieA'e

viz.

where A's are given by Eq. (4.10) and the derivation of
l,z s are illustrated in Appendix D. These quantities indi-
cate the average distribution of ions in the steady state and
hence can be evaluated by making use of the equilibrium
distributions of species, which are determined by the
CVM. They also include kinetic parameters U's and i9's
which indicate the basic jump frequencies of ions.

In defining the percolation efficiency, it is necessary to
refer to a random-walk system consisting of ions with ap-
propriately defined average jump frequencies. In our
treatments, these jump frequencies include the effect of
bond breaking of immediate surroundings due to the pair
interactions (effective jump frequency factor) and the dis-
tribution of accessible vacancies (the vacancy availability
factor). The basic jump frequencies of A and B ions, wi
and w2, are defined as

—U1/k~ T —U2/k~ T
w i =5ie, w2= i}2e (5.6)

respectively. Therefore, the average jump frequencies at a
fixed distribution are given in the form

for i=1 and 2. Therefore, the average jump frequencies
of ions so defined are the same for both from the a site
and from the P site. The percolation efficiency is defined
to that of the random walk. Therefore, the first factor of
each equation in Eq. (5.5) is the contribution from the
random walk of particles to the conductivity, but the
second factor fI s (i = 1 and 2) defined as

(5.10a)

Zi l2i
fI2=l22 1+

2 22
(5.10b)

1 1 1

2 f f (5.11)

from the partial correlation factors f, and f~, (these are
related to the jump of a B' atom from an a and a p site,
respectively) and these are given by

indicates the effect of the deviation from the random walk
of particles and is defined as the percolation efficiency
factors of individual species of ions.

There are contributions to the conductivity from the
"cross terms" 112 and l21. The importance of the cross
terms are often discussed in terms of irreversible thermo-
dynamics. ' ' The cross terms indicate the effect of a fin-
ite flow of one species to those of others. These terms are
often referred to as "wind" effects. ' The advantage of
the PPM is that these terms can be derived analytically
and their meaning can be unambiguously understood.
Referring to Eq. (5.2), the cross terms o i2 ——o2i can be de-
fined. These terms are mostly due to the correlation fac-
tor of different species of conduction ions. However, it is
also noticed that these terms do not necessarily vanish in
the limit of random walk (no interactions among ions).
This is due to the requirement of the reference system that
the total system be in the equilibrium state even if a mass
motion 4; is measured with respect to the reference sys-
tem. Therefore, in deriving the Onsager equations, the
reference system should be clearly stated.

The isotope diffusion and hence the "correlation factor"
is often utilized in identifying the diffusion mechanism
and hence its meaning must be clarified. In a general case
of diffusion, the correlation has been defined as the per-
colation efficiency of a single atoin of the observing
species with respect to the random walk. It is to be noted
that this definition of the correlation factor is not always
the same as that defined as the ratio of the diffusion coef-
ficients of isotope and of the self-diffusion or the Haven
ratio. The derivation of the correlation factor for a corre-
sponding case to the present one has been made by the
PPM (Ref. 2) and it is not repeated here. Because we deal
with two sublattice cases, we utilize the concept of partial
correlation factors f „and f~~ for each sublattice in order
to derive the correlation factor fs, of the system. In oth-
er words, the correlation factor for the tracer diffusion of
one of the components, fs„are calculated by
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g'ni' g'n''*=n. n" n- n~"'2+ 1 2+ 2

gaga gana
f"=n- n" n- n"g'1+ 2 2+ 2

(5.12)

Tc

1

, (~~—~—+~as). (5.13)

Here eg0 means an attractive interaction while a&0
means a repulsive interaction based on the present sign
convention. These parameters, along with the concentra-
tion of 2 and B ions and vacancies, are enough to deter-
mine the distribution of ions at a specified temperature by
the pair approximation of the CVM (see Appendix A). In
addition to this, 4's and U's appearing in Eqs. (5.5) deter-
mine the conductivity at a specified temperature and com-
positions. The actual calculations were made with the fol-
lowing values of parameters:

=EBB= —1.0, eAB
———0.8 . (5.14)

In other words, the interactions among ions are repulsive,
but the combination is such that it tends to create an or-
dered distribution among different kinds of ions at low
temperatures [Eq. (5.13)]. The phase diagram then takes
the shape represented schematically in Fig. 2. In the ab-

sence of vacancies, the critical point of order-disorder at
the stoichiometric composition (pz ——ps ——0.5) is given by
the pair approximation of the CVM:

E'

=logio
B C

(5.15)

where 2' is the coordination number of the lattice (2co =3
for the two-dimensional honeycomb lattice). As the con-
centration of the vacancies pv increases, the critical tem-
perature lowers. All these properties can be calculated
analytically by the pair approximation of the CVM.

where g's and n's are defined in Eqs. (Dl).
The actual calculations require the following parame-

ters. First, we need interaction parameters. These param-
eters express the nearest-neighbor pair interaction energies
among conduction ions and are denoted by eAA, eBB, and
eq~, where ezz, etc., stand for an A-A pair interaction en-

ergy, etc., respectively. Here e,J is an effective interaction
energy expressed in the form of a pair interaction energy
but it includes both direct and indirect interactions. It has
been found that the interactions among conduction ions
are to be repulsive in order to expect superionic conduc-
tion. We define that the positive sign of e,j s indicate the
attractive force so that the energy E is defined as
E = —eq~ and so on. We further assume that no apparent
interaction exists with respect to vacancy; eA& ——@BE

=sly ——0. The difference in the magnitudes of interac-
tions between the same kind of ions and different kinds of
ions creates either attractive or repulsive interactions be-
tween the two components. If no other interactions exist,
the former tends to create ordering while the latter tends
to produce phase separations. In view of several physical
evidences, let us tentatively assume that the former is the
case. Interaction between different kinds of ions are deter-
mined by the combination

However, we normalize the temperature utilizing Tc given
in Eq. (5.15). We calculated necessary quantities for cases
where p~ is 1X10 and 2X10 ' based on the formulas
(5.5a) and (5.5b). For the sake of simplicity, we further
assume that e~q ——e~~, that the jump frequencies of ions A

and 8 are the same, i.e., w
&

——w2 (or 8~ ——52 and U& ——U2)
and that these ions A and B are singly ionized
(Z~ ——Z2 ——1). The difference in the jump frequencies of
the two species in the solid would then be due to the
bond-breaking factor.

The results of calculation for p~ ——1 X 10 and
2X 10 ' at T/Tc =0.5 are shown in Fig. 3 as a function
of concentration of A and 8 ions pq and ps (pz +pz

——1),
respectively. The calculated quantities are

~I A +~B~ ~A ~AA +AB~ ~B BB+BA (5.16)

by making use of the formulas (5.5a) and (5.5b). It is to be
noted that the cross term cruz (=crzz ) is not negligible

compared to the diagonal term cr„z (or crss). In addition,
the percolation efficiency factor fz; (i = 1 and 2) defined in
Eqs. (5.10) (see Fig. 4) and the correlation factor for the
tracer diffusion of one of the components f, (see Fig. 6)

are also calculated. At T/Tc -0.5, for both pv ——1 X 10
and 2&(10 ', the system becomes ordered for concentra-
tions near pA ——pB

———,'. Further the distribution pA„pB„
etc. of ions and vacancies pz, and qz, on the two sublat-
tices are shown in Fig. 5 in order to make interpretations
easier. The calculated conductivity of the system, cri, crz,
oB, and o.AB ——oBA, shows a very sharp minimum, espe-
cially for pv= 1 X10, at the composition pq

——pz ———,'.
The change of the mobility or the change of the effective
(average) jump frequency indicated in the figures by
dotted-dashed lines also shows a minimum. This decrease
in the mobility is due to the increase in the bond-breaking
factor because of the increase of different ions at the
nearest neighbor as the composition approaches to
pA

——pB
———,

' and as a result of ordering. At the same time,
a very pronounced decrease in the percolation efficiency is
noticed. This decrease in the percolation efficiency is due
to the percolation difficulty created by the ordering

COMPOS IT ION

FIG. 2. Schematic phase diagram which separates the or-
dered (shaded) region from the disordered (unshaded) region.
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dashed line shows the case where the development of the long-range order is artificially suppressed in order to show the effect of or-
dering. (a) p~ ——1&&10;(b) py ——0.2.

among conduction ions.
The correlation factor (see Fig. 6) for the species 8, f~+,

also shows a sharp minimum at the same composition

range. As was discussed earher, '" that decrease is due to
the "physical correlation factor fr" or the percolation effi-
ciency. The correlation factor fz, is defined as the per-

colation efficiency of the motion of a single ion (of the

species 8) with respect to that of the random walk. The

ratio which differs from the value 1 of the percolation ef-
ficiency of a single ion and that of the assembly of ions
(th«aven ratio'4) is due to the difference in the statisti-
cal weight of the jurnp into a vacancy of the two cases. '

The correlation factor, f~„ is equal to 0.5 for the hmit

pz —+1, but is close to 1 for pq~l. For ps~1, f~,
should take the accepted value of the correlation factor
for self-diffusion [the exact value is, however, —,

' rather
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than —,

' (Refs. 4 and 28)], but for pq ~1, the value corre-
sponds to that for the impurity diffusion for the case
urz gym'. The condition mz gym~ is created by the
large bond-breaking factor for the 8* atom.

If pi increases, the vacancies provide the percolation
path and the percolation efficiency increases and the
minimum in the conductivity broadens. Nevertheless, a
considerable part of the decrease in the conductivity is yet
ascribed to the decrease in the percolation efficiency in the
ordered range. A conspicuous result for the case with a
large number of vacancies (pi ——2X10 ') is the appear-
ance of two minima in the conductivity. This situation is
an artifact and reflects the nonequal distribution of vacan-
cies for the two sublattices as shown in Fig. 5. The un-
equal distribution for the case e~~ ——ass is created in order
to make the pair interaction energy the minimum, and
hence the bond-breaking factor beconms maximum at this
condition. However, Fig. 3 shows the the percolation effi-
ciency yet plays a significant role to make the minima in
the conductivity more distinctive. As the number of va-
cancies decreases, these two minima eventually coinride
into one to make a broad minimum before it becomes a
sllarp cUsp as py~O.

It is to be noted that, in the present approximation of
the PPM, the percolation efficiency does not deviate from
1 unless the long-range order is created or the distinctive
sublattices are created. The effect of the short-range or-
der plotted. by broken lines in Fig. 3 is therefore solely due
to the change in the mobility. However, it is to be pointed
out that a substantial decrease in the percolation efficiency
is expected in a system with a developed short-range or-
der. The expressions of the PPM with respect to this
point has been corrected and will be published shortly.

We have developed a general theory of mass transport
for a two-component system based on the two-
dimensional honeycomb lattice-gas model by applying the
PPM of irreversible statistical mechanics and obtained the
Onsager equations. As far as we know, this is the first at-
tempt to calculate the many-body features of ion transport
in binary systems in a systematic fashion. Expressions of
the conductivity [Eqs. (5)] consist of two factors: the mo-
bility of ions and the percolation efficiency The forme. r is
equivalent to the expression of the random walk of parti-
cles with the average jump frequencies of A and 8 ions in-
cluding the bond-breaking factor which takes care of the
effect of immediate surroundings due to the mutual in-
teractions among ions, and the vacancy availability factor
which ensures the motion of ions via a vacancy of aver-
aged solid. The second factor expresses the efficiency of
the motion of ions towards the long-range diffusion rela-
tive to that of the random walk.

The theory shows quite generally that a substantial de-
crease in the percolation efficiency occurs if the long-
range order is developed in the system. A minor correc-
tion of the present approximation of the PPM further
shows that the development of the short-range order is
enough to expect a substantially equivalent result. The
decrease in the percolation efficiency is traced to the
development of the percolation difficulty due to the
development of ordered arrangements.

The percolation efficiency is an efficiency of ionic
motion toward the long-range diffusion and, hence, is ex-
pected to vanish if the measurement is carried out at high
frequencies. We have shown, within a limited degree of
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approximation and under a certain condition of the sta-
tionary state, that the value of the correlation factor de-
creases by conversion from the ensemble averaging at an
instant time to the time averaging [corresponding to the
conversion from cr(oo) to o.(0)]. If the major cause of
MAE is due to the percolation efficiency effect as expect-
ed, a substantial frequency dependence of MAE is expect-
ed. Indeed, the measurements by Hunter et al. on P-
alumina systems and Tomozawa et al. on glass sys-
tems ' indicate that this is the case. In other words, our

FIG. 5. Equilibrium distributions of (a) 3 and 8 ions and (b)

vacancies ( V) at an a and a P site, respectively, as a function of

expectation that MAE is mostly due to the percolation ef-
ficiency is quite likely. '

The second importance of the theory is that the de-
crease of the percolation efficiency is due to the (local) or-
dering of ions by mutual interactions of different kinds of
ions. If this is true, we do not expect the existence of
MAE in a binary system consisting of isotopes. Such an
isotope effect has been investigated, and so far no MAE
has been found in isotope mixtures. This also indirectly
supports our contention. On the other hand, this effect
cannot distinguish our model from those models dealing
with the decrease in the mobility by mutual interac-
tiOnS 1 1 12



356329 Y IN BINA RY SYSTEMNDUCTIVITIONIC CON

I.O

0.8—

0.6—

u estions.following suggs we mig
b hs can e cath of gasl

-dimensiona p n
T e

e of substitution, a su

further 't"dmust await u

0.4—

0.0 I

0.2
I

04
I

0.6
I

0.8 I.O

ENTSACKN OWLEDGM

Mr. A. Akbar in. Wada and M

for his help uk Dr.

F'"nd""n G
Labora olR hLd the Materia s04104 an

DMR-80-202No. D

I.o-

0.8

OF a; AND xijeA: DERIVATIONAPPENDIX A: D

of the sys tern byuili riu
' 'b '

in treatmthne the eqWe ou.
'

'
h Nlattice poin s

'
tern wit

0.6 ij
'' "e+~ije )g ~ij (Xije +VijeE=——

0.4
N g g Eij xije2

J
(Al)

0.2—

"o.o 0.2
I

04
I

0.6
I

0.8 I.o

o c '
n factorsof correlationpCompositio pn ep

d 1n

at

d 1s arti icia ye h long-rang
'

a seor er'
=1xorderingth ff t oorder to show t e

p =0. .2. L x) is defined aswhere t eh function L x is

(A2)

~ " '
the interaction0)

ndies and x" y"
f the pair a qthe state ra

to the pair approxim
given by

3 3
1

ie L(xije)+ 2L(ae) —TL (joie)+
i=1

L(x)=—x lnx —x . (A3)
or less beca

'
can more ot results of ca oThe present r

decl ease o a 0ct due to e
f the diffusion p . is

a}cu}ated r
A '"''" A

t the iom
substitution of a

Although a quan iions. ' A

3

P~e =ie = +ije~

3

qteie Xjie ~

j=i
(A4)

'
h of the fac-o arithm o

th ts of constructing

f }ito the fractionals o



AKIRA SUZUKI, HQROSHI SATO, AND RYOICHI KIKUCHI

Rnd Rre QoITDR11zed:

3 3

gp;, = gq;, =1. (A5)

Rnd P; SRtisfieS

3

g p;=1. (A7)

2' =Pie+Re ~ (A6)

The fractional of the concentration of the ith species p; is
then expressed in terms of p's and q's as

In order to derive the equilibrium state, we minimize
the Helmholtz free energy with the constraint given by
(A6). The free energy per site is given from (Al) and (A2)
as

T

F=——, g ge;jx,je kjiT—QL(/I;e)+ QL(q;e) ——', g QL(x,je)+ —,
'

J i i J

Introducing a Lagrange multiplier A,;, the minimization of F under the constraint (A6) is equivalent to that of

pF= ——,pgejxj, — QL(p;, )+ QL(q;, ) ——', QL(xj)+ —,
' +—', gA, ;(p;, +q;, —2p;) (A9)

with respect to x,J, .

a(PF) (A10)

fof l= I Rnd 2.
Next our task is to determine the Lagrange multiplier

A,;. Let us introduce Y/; and Y/; as

Eqllatloll (A10) glvcs tllc cqlllllbIIUII1 state xi e Rs

PE"—i'. —A, ~

Xije =(pieqie }

=(X/3eX3je/X33e)8 (Al 1)

where p=(k&T) '. The chemical potential p; is derived
from (A9) as

B(pF)/Bp—:'a =p/I =3(&3—& )

=
2 ln(x(3ex3ie/x 33e ) —ln(pieqie /pleq3e ) (A12)

I

exp(3Y/;)—:p;, /q;, ,

Y/i =(Pieqie } CXP( ~i) .

Tllcll tllc cxpl'csslolls (A 1 1) Rlld (A 12) RI'c, I'cspcctlvcly,
written in terms of these quantities and Kij defined by Eq.
(C4):

xij, ——I/;Y/jKij 'exp(Y/; Y/I ) for i,j—=1, 2, and 3, (A14)

P

Y/I Y/iK I( cxp(Y/I —I/( )+Y/2Y/IK2i cxp('Y/2 Y/I ) + / Y/i3cYxp( Y/3 Y/I )
a; =3 ln(Y/;/Y/3) —3(Y/; —Y/3) —2 ln

8183exP(n I
—n3)+ I/283exP(n2 —n3)+8»3

(A15)

for i =1 and 2. Determination of jL,; and hence (A14) and (A15), is equivalent to expressing them in terms of the known

parameters Kj's and p s. We can obtain the equations for unknown quantities Y/; and Y/;, where i takes 1, 2, and 3, when

Eq. (A14) is substituted in Eq. (A4) and further in Eq. (A6), we have the equations

pl q 1K11 +Y/IY/2K12 cosh(Y/I Y/2)+ Y/IY/3cosh(Y/I Y/3) i

p2 ——I/IY/2K 12'cosh(Y/I /)Y+2/ KY2+22—/Y/2c Y3sho( /Y2Y/3),

p3=11'g3cosh( l1 93)+'9283cosh('g2 —'g3)+'g 3 .

(A16)

When Eq. (A14) is substituted in Eq. (A4) and the first equation in (A13) is used, we obtain the following equations:

Y/ IK I I' +Y/ IY/2K 12' exp(Y/ I
—I/2) +Y/I Y/3exp(Y/I —Y/3)

—2 —1 —— —I
I/ IK11 +Y/ IY/2K 12 cxp( I/2 —I/I )+Yl IY/3cxp(Y/3 —I/I )

882K 12'exp(n2 —I/I }+I/2K22'+ Y/253exp(n2 —n3)
—I —2 —1

I/I Y/2KI2 exp(Y/I —I/2)+ Y/2K22 +Y/2Y/3exp(1/3 —I/2}

%%exP(~3—nl)+8253exP(n3 —n2}+83
cxp 3Y/3

9193 P( 91 93)+9293exP( 92 93)+ / 3

(A17}

Solving these simultaneous equations for Y/'s and Y/'s for given values of p's and K's (i.e., e's and T) we can, in principle,

express x,je and a; in terms of these values and hence we can evaluate the kinetic coefficients derived in the text. For the

disordered phase, p;, /q;, =1 holds and hence from the first equation in (A13},Y/; =0 holds. Then Eqs. (A14) and (A15)
are reduced to the function of Y/ s and Eqs. (A16) and (A17) to the three equations for Y/; (i = 1, 2, and 3).
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APPENDIX B: RELATIONS BET%'EEN
THE PAIR-STATE FRACTIONALS AND THEIR

CONJUGATE PATH FRACTIONALS

(v) (v) (v) (v)x;, (t)=X,, „+ g X,, ;, +X„;, ,
R,L,j

(v) (v) (v) (v)
x3i (t}=X3il3+, g X3,j(+X3i,»

R,Lj

xlj (t +Et):g Xl3 ij + g X3j lj +Xij ij
R,L R,L

x(3 (t+«)=X3il3+ g Xij,(3+X(3,(3(v) (v) (v) (v)

R,L,j
x3; (t +At) =X;33;+ g Xj; 3;+X3;3;,(v) (v) (v) (v)

R,L,j
(v) (n) (n) (n)

yij (I) g ~ij, 3j + g ~ij,i 3+ ~ljij r

L, C R,c
(n) (n) (n) (n)

yl3 (t}—~l 33l +g ~l3, lJ + l3.r3
R,Cj

(n) (n) (n) (n)
y3; (t)=I'3;„3+ X I'3;,j;+I'3;,3;

L,cj
(j )(tn+gt) y I (n) + y Ir~(n) +Ir(jn)

LC RC

(81a)

(82a)

R, Cj

y3 (t+~t)=I 3, 3 + g Iji,3(+I 3,3i ~

L, Cj

Similar expressions are obtained for the relations be-
tween z's and Z's by replacing y by z and F by Z, and the
subscripts (ij)'s by (ji)'s in Eqs. (82). It is noted that in
thc above cxprcss1ons l aIld J take I aIld 2, a11d thc suITl-

mation over I., R, and C means the sum over possible mi-
gration activities of a vacancy in a summand from the
left, the right, and the center, respectively. These relations
are used to obtain the condition for the steady state (see
Secs. III 8 and IV 8).

APPENDIX C: THE PATH VARIABLES
AND THE MOST PROBABLE PATHS

The standard procedure of the PPM is to formulate the
path probability function in terms of the path variables
and then to n1aximize it with respect to the independent
path variables kccp1I1g thc state at, t flxcd. Th1s corre-
sponds to the process of selecting the most probable values
of state variables which make the free-energy minimum in
the CVM. ' It was shown in Ref. 1, that, when the pair
approximation is employed, it is not necessary to go
through the maximization procedure but the most prob-
able path expression can be written down by inspection
applying a superposition relation. This technique is ex-
plained in detail in Ref. 1, and we will present the results
using this short-cut procedure.

When 0; is the vibrational contribution to the jump fre-

The state fractionals of bonds (x's, y's, and z's) and
thrir conjugate path fractionals (X's, Y's, and Z's) are re-
lated as follows

(v) (v) (v) (v)
x;J (t}= g X;J 3J+ Q X;J;3+X(J,J,

L,R L,R

quency for an ith species (i =1 and 2) and U, is the activa-
tion energy for a jump of an ith species into a nearest-
nelghborlng vacaII't site, 'the probabtllty of a IIIllt juIIlp Is
given by

where p=(kJJT) ' is the reciprocal temperature. This
jump frequency is referred to the spatial jumping condi-
tion where the jun1ping ion is completely surrounded by
the vacant sites. %hen the system is subject to the con-
stant electric field E pointing to the right (see Fig. 1), the
activation energy for the jumping ion i with charge Z;e
along a y and a z bond is changed by +Z; eEa/2 depending
on the sites where the ith ion is located. Then the proba-
bility of a unit jump is expressed by

r r (Clb)

for i= 1 and 2. The effect of surrounding [which is not
taken into account in either (Cla) or (Clb)] is assumed to
be entirely due to the interaction with nearest-neighboring
ions. Introducing the nearest-neighboring ions s bonding
energy e;J and applying the superposition relation, we easi-
ly write down the expressions for the most probable path
of individual path variables defined for the jump of the ith
SPCC1CS:

X(v) r). e
t igt x(v)A(n) A(n —I)j( (v))2

l 3 g &l ZIO'. / I l

y(n) y e
t(+i ZrnEn~2)

j( (n)A(n —I)A(v) J( (v))2
m = ie tA3 z, ar x,as'~ &A

~(n) a. t Ui+Zi'E 2 ~ (n) i(n+)) i (v+)) n (v+1))2

a. t +'+Z' En ) ~ (n) p (v+I) (n+I) (v+1))2

Z(n) y t(+i in n~2)g (n)A(v) A(n —I)j( (v))2
I3~

=
~ t z3~ x,P» y, ys 9')

for i = 1 and 2, where A's are defined by

3
(v) (v)

Ax, ai —= g +ijxij
j=l

3
(v)A„ ttr g EJ,xJi

j=1

(C2)

(C3}

It is ~oted that e;3——e33=0 for i =1 and 2 is assumed. As
seen from Eqs. (C2) a jump of an ith ion across the vth
reference plane, is proportional to b, t, to the jump frequen-
cy of the ith ion, 8;exp( —PU; ), to the vacancy availability
factor, i.e., the probability of having a vacancy at its
nearest-neighbor distance across the reference plane at
time t,x,(3, and to the bond-breaking factor, i.e., the effect
of breaking bonds with the nrighboring ions at time t.

Similar expressions are obtained for Az's and A, 's. Here i
takes 1 and 2 and IC;J is defined by

E"—:exp( —Pe" )PJ lJ

and is assumed to satisfy
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The similar interpretation is applied for the jumps F's and
Z's. It is noted that the activation energy for a jurnp of
all 1011 I Rlollg y Rlld z llollds Is lowcrcd by Z; eza/2 fol' tllc
F; and Ztt; jumps, and is raised by the same amount for
the Fp; and the Z~; jumps, respectively. The second
group of the most probable path variables we need in for-
Inulating kinetic coefficients are those in Eq. (3.7). These
are listed in Table IV.

where'; is defined by Eq. {4.22b) andi takes 1 and 2.
Substltlltloll of % I glvcll by Eq. (D3) lllto Eq. (4.21)

and use of Eqs. {Dl) and (D2) lead to

(„) O;P;(ot)+&;P;(P)+&j~P,(~)+f)j~f;(P)

A;Q; —2)Qj~
(D4)

APPENDIX D: DERIVATION OF /;J's

I.et us define the quantities

ga X(n)karla g (n) (n)g (n)
~e ~~ — se 93e &s 3e ~

fit) X(n)yrl)S g (n) (n)g (n)
M Ml M P 38 3l8

and further introduce the quantities

k=1
2

0 (p)= QQk—A'"'.

(Dl)

(D2)

Substituting Eq. (D4) into Eqs. (D2), we obtain the four
slIIlllltRIlcous cqllatlolls fol' Q)((I), Itj2(ct)~ 'lj)I(p)q Rnd $2(p)
Solving these equations for 1t;(a)'s and g;(p)'s and substi-
tuting these results into Eq. (D3), we obtain the flux ex-
pression in terms of the known quantities 0; 's, Q~ s, Q; 's,
and QP's which are the function of the equilibrium distri-
butions obtained in Appendix A and the given physical
parameters 5; and U; (i= 1 and 2). After rearranging the
flux expressions, we can write the fluxes in the form

(D5)

It is noted that q3, and p3, are related to the equilibrium
distributions by Eq. (A4) and &;, ls given by Eq. (4.6b).
The flux [Eq. (4.16)] can then be expressed in terms of Eq.
(D2) as

(D3)

and hence we can obtain the explicit form of I;J's in terms
of the known quantities by identifying the resultant ex-
pressions for the fluxes to Eqs. (D5). Explicit expressions
of I;i's are given by the author (A.S.) upon request.
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