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The bond-deformation model is developed for compounds having the rocksalt structure —namely,
the alkali halides and the alkaline-earth oxides. The full set of nearest-neighbor bond-deformation
parameters is presented, and the parameters are related to the Lagrangian and internal strains and
to the atomic displacements. The next-nearest-neighbor bond-stretching parameters are shown to be
reducible to the nearest-neighbor parameters. A variety of central-force and non-central-force in-

teractions is identified in the expansion of the short-range portion of the strain energy. By a
transformation of variables the short-range contributions to the dynamical matrix are obtained. Ex-
pressions are derived for the elastic constants and for the force constant associated vnth the homo-

gcncous polarization of thc lattice.

I. INTRODUCTION

The interactions between ions in a crystal are generally
assumed to consist of a long-range electrostatic interaction
and of one or more short-range and intermediate-range in-
teractions. These latter interactions may derive from
overlap repulsions of closed electronic shells on adjacent
ions, from van der Waals interactions, and from covalent
bonding. The high symmetry and simple crystal structure
of ionic compounds with the rocksalt structure —that is,
the alkali halides and the alkaline-earth oxides —facilitate
theoretical treatments of these interactions. Moreover, re-
liable experimental data for these compounds permit
theoretical models to be tested.

The long-range interaction and a large part of the
short-range interactions in ionic compounds can be treated
as central-force (CF) interactions between pairs of atoms.
Nevertheless, it is found empirically —for example, by the
fact that the elastic constants C&2 and C4& are not
equal —that many-body (MB) or noncentral-force (NCF)
interactions' are present in these materials. Consequently,
a variety of models of these interactions, usually in a
three-body approximation, has been introduced into
descriptions of ionic bonding: charge-transfer models, '

angle-bending models, a multiple bond-stretching
model, deformable shell models, ' multipole
models, "' and triple-dipole models. ' " The number of
NCF coefficients introduced into the overall ionic bonding
model must be limited by the necessity of evaluating all of
the coefficients from the experimental data.

In this paper this restriction of the number of empirical
coefficients will be relaxed for the moment so that the
variety of possible short-range interactions can be exam-
ined. A large set of phenomenological coupling constants
will be obtained which will describe all of the nearest-
neighbor (NN) bond interactions and many of the next-
nearest-neighbor (NNN) bond interactions for the com-
plex of atoms shown in Fig. 1(a). This complex consists
of a fiducial central atom, which may be on either sublat-
tice in the case of the rocksalt structure, and its six NN
ions on the opposite sublattice. Changes in length of indi-

vidual NN bonds, shown in Fig. 1(a), and of NNN bonds,
shown as the heavy solid lines in Fig. 1(b), constitute the
short-range CF interactions. NCF interactions involve de-

formation of one or more bond angles, coupled changes of
different bond lengths, and coupled deformation of bond
angles and bond lengths. It is apparent that NCF interac-
tions may be complicated even for structures as simple as
that for rocksalt.

The formalism of the bond-deformation model (BDM)
offers a convenient means for obtaining a phenomenologi-
cal description of the short-range interactions in the com-
plex of atoms shown in Fig. 1. The BDM was introduced
by Keating as a microscopic description of elastic strain
in crystals having the diamond structure. The bond-
deformation parameters of his model are scalar quantities
which are easily related to components of the Lagrangian
strain. An expansion of the strain energy in powers of
these parameters is rotationally invariant. Keating spe-

(&)

FIG. 1. Arrangement of atoms in a NN complex in the rock-
salt structure. (a} Labeling scheme for NN bonds. (b} Labeling
scheme for NNN bonds.
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cialized the BDM to a case of two coupling constants: a
bond-stretching constant and a bond-bending constant.
Martin' applied Kcating's model to an analysis of the
elastic constants of zinc-blende —structure semiconductors.
Fuller used an expanded set of coupling constants to
deriv the second- and third-order elastic constants for
CdS. Dragoo applied the BDM to an analysis of NN
noncentral-force interactions in the alkaline-earth oxides.
The treatment of the BDM given here expands the earlier
work on the alkaline-earth oxides, in particular, by
demonstrating that NNN CF interactions are included in
the BDM and by showing how a formulation of lattice
dynamics can be obtained from the BDM.

Once the phenomenological coupling constants are
identified, we proceed toward obtaining a properly con-
strained model —that is, a model in which no coupling
constants remain undetermined. As a first step, con-
stl a1nts 1cqu1I'cd by symmetry and equ111brlum arc lIn-

posed to obtain a reduced set of independent coupling con-
stants. Further constraints which are needed to obtain the
requisite number of BDM coupling constants must be in-
troduced as heuristic conditions or from microscopic
models of the interactions. However, as will be shown in
this work, it is not necessary to specify all of the required
constraints before ideas about the NCF contributions to
1onic bonding can be obtained.

This paper presents the formal development of the
BDM. In Sec. II the bond-deformation parameters are in-
troduced and are related to the atomic displacements and
to the Lagrangian and internal strains. These parameters
are defined first according to Keating, ' but a very useful
set of transformed parameters also is given. The strain
energy is expanded in the bond-deformation parameters in
Sec. III. The coefficients of this expansion, the "coupling
constants, " are analyzed in detail. In Sec. IV certain
NNN interactions are shown to be contained in the
description given by the full set of NN bond-deformation
parameters and coupling constants. The central-force
contributions to the coupling constants are examined in
Sec. V. In Sec. VI an expansion of the strain energy in the
transformed bond-deformation parameters is used to pro-
vide the basis for deriving the short-range force constants
required for the lattice dynamics of rocksalt-type com-
pounds. In Sec. VII expressions are obtained for the elas-
tic constants and for the force constant associated with
the homogeneous polarization of the lattice.

NCF contributions to these empirical coefficients are
compared, and it is shown that the NCF contributions to
the inequality of C&2 and C44 and to the force constant for
homogeneous polarization of the lattice do not necessarily
derive from a single NCF interaction.

In contrast to the customary formulation of lattice
dynamics —for example, Born and Huang' and Maradu-
din et al. —the BDM emphasizes the changes in bond
lengths and bond angles, collectively called "bog.d defor-
mations" here, rather than the displacernents of the atoms
themselves. For the compound A8 the bond-deformation
pal amctcr

A(a, p;v)=[r '(a, v) r '(p, v) —r(a, v) r(p, v)]/0,'

(2.1)

describes the deformation of the bonds a and p about the
central atom v. The index v identifies the central-atom
site (l,z) where in the notation of Born and Huang l is the
cell index and x is the basis index. Since the terminal
atoms of the NN bonds and the central atom are on dif-
ferent sublattices, the index of a terminal atom uniquely
specifies its NN bond to the central atom. Frequently it is
sufficient to identify the central atom only with respect to
its type (for example, +, —,or A, B), in which case the
appropriate designation will be used for v. A labeling
scheme for the NN bonds is given in Fig. 1(a). The in-
dices a and P run over numerical values from 1 to 6. The
numbering of the bonds is ordered so that

where the complement, a, of a labels the bond on the re-
verse side of the central atom. An alternative numbering
scheme in which a,P, . . .=1—3 and a,P, . . . =4—6 will
be used as required.

For atom ~ 1ts equ1librium position with respect to the
central atom is r(a, v); its displaced position is r (a,v)

r '(a, v) = r(a, v)+ u(a, v), (2.3)

u(a, v) =u(a) —u(v) (2.4)

is the displacement of atom a with respect to that of atom
v. The equilibrium angle between bonds a and p is 8; 8 is
the angle after a displacement of the bonds. The volume
per atom is

1 30,= —,Q, =a (2.5)

A,(a,a)=[[r'(a)] —[r(a)] J/a, a=p
(2) axial-stretching tensor Az .

A(a, a) =[r'(a)r'(a)cos8'+r (a)r (a)]/a,

(2.6a)

(3) bond-bending tensor A q
..

8= 180' (2.6b)

where 0, is the volume of the unit cell for one formula
unit AB, and a =

~
r(a, v)

~

.
Since in the A8 compounds having the rocksalt struc-

ture both A- and 8-type atoms have the same coordina-
tion, the sets of bond-deformation parameters associated
with the two sublattices are formally similar. Where the
designation on the central atom is not required for clarity,
it will be ignored for convenience.

Although A, (a,P;v) is a scalar quantity in Cartesian
space, it can be viewed as a component of a symmetric
6&&6 tensor in the space defined by the six NN bonds.
The relationship between the bond-deformation tensor A
and the Lagrangian strain tensor mill be given later in this
section. The bond-deformation tensor can be decomposed
into three tensors as follows:

(1) bond-stretching tensor As ..
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A(a, P) =r'(a)r'(P)cos8'/a, 8=90 . (2.6c) according to the following scheme

There are 36 bond-deformation parameters associated
with each central atom; only 15 of these parameters are
required to specify fully the displacements of the six NN
bonds if rotations of the complex are excluded.

The bond-stretching tensor A q has nonzer'o components
along its major diagonal. These components X(a,a)
describe the dilation of the six NN bonds. From the label-
ing scheme in Fig. 1(a) it is evident that

Central (apex) atom Bond atoms

the bond-deformation parameters obey the relationship

A(a, a;2) =isa, a;8) . (2.7) A, '(a, a;P) =A(a, a;v)+A(P, P;v) —2A(a, P;v), (2.10)

The axial-stretching tensor A& has the components
A, (a,a ) along its minor diagonal which describe the
changes of the three axial lengths through the central
atom. These parameters also include the change in the
180 angle between pairs of bonds on opposite sides of the
central atom. Since A,(a,a) and A.(a,a) are similar, it will
be convenient to include Ag with A g in this model.

The bond-bending tensor Az is symmetric, A, (a,P)
=A(p, a), with 0's along both the major and minor diago-
nals. Thus of the 24 bond-bending parameters 12 are
specified by symmetry. Requiring that NN and NNN
bonds remain coherent after a deformation specifies six
more of the bond-bending parameters. With the use of
the six bond-stretching parameters, the three axial-
stretching parameters and six of the bond-bending param-
eters, the 15 bond-deformation parameters are obtained,
which are needed to describe the deformation of the com-
plex in Fig. 1(a).

To relate the BDM to conventional CF models which
include NNN displacements, it is desirable to show that
the NN bond-deformation parameters contain the NNN
bond-stretching parameters. A labeling scheme for these
bonds ls glvcll 111 Flg. 1(b). Tllc bond-stretching pal'alllc-
ters for these bonds can be specified in terms of the bond
index e= 1—12 as 1,'(e, e;v), or in terms of the atom pairs
as A, '(a, a;p). Since NNN atoms are on the same sublat-
tice, either atom may be taken as the reference atom, thus

A, '(a, a;p) =A, '(p, p;a) . (2.8)

k'(a, a;p) = I [r'(a, p)] —[r(a,p)] ] /a, (2.9)

where r(a, p) and r '(a, p) refer to the undeformed and de-
formed NNN bonds, respectively.

The dependence of the NNN bond-stretching parame-
ters on the NN bond-deformation parameters follows
from the law of cosines. For a triad of atoms designated

There are 24 parameters if the NNN bond-stretching pa-
rameters are specified with respect to the atom pairs, such
that both types of parameters appearing in Eq. (2.8) are
counted, but parameters with crossed indices —for exam-
ple, A,(a,P;P)—are not counted.

The bond notation is convenient for counting the in-
teractions of the NNN bonds and will be used in Sec. IV,
where the NNN portion of the strain energy is treated in
detail. The atom-pair notation will be used in this section
to define the NNN bond-stretching parameters and to ob-
tain a reduction of these parameters to the NN bond-
deformation parameters. We define the NNN bond-
stretching parameters as

where the bond-stretching parameter on the left of the
equahty can be taken to be a NNN parameter while those
on the right can be identified with the NN parameters.

Although the bond-deformation parameters can be ex-
tended to neighbors of any degree of remoteness, this
method is unwieldy. Since all unit cells are considered to
be equivalent, it is formally simpler to restrict the bond-
deformation parameters to the NN parameters. Interac-
tions involving atoms more remote than those associated
with NN bonds are then handled through the coupling
constants, which will be discussed in the next section.

It is convenient to introduce a new set of bond-
deformation parameters, III, I. These parameters can be
shown to be related simply to the relative atomic displace-
ments given by Eq. (2.4). The p parameters are obtained
by the tensor transformation

p(a, p) =a,aiI~A(e, g),

0 0 0 0

0 0

0 ——,'i —,i 0 0
(2.12)

0 ——,i 0 0 —,i 0

0 0 —,i

x (a,v)=JJxf(a, v)+w;a, (2.13)

where suITlmat1on over rcpcatcd 1ndlccs 1s 1rnpllcd. Thc
transformation coefficients IJJ I are given by

is the array of transformation coefficients. The
transformed parameters form a bond-stretching tensor
M ~ and a bond-bending tensor M &.

The atomic description of homogeneous strains —see
Born and Huang, ' Chap. III—can be used to express the
bond-deformation parameters in terms of the Lagrangian
strain components, III;~' ij =1,2,3], and to the internal
strain components, t w;: i = 1,2,3 I through the transfor-
mation of the d1splaccd atomic pos1t1ons to the undis-
placcd posltlolls. Tllc Cartcslall coIllpoIlcIlts, Ix I, of tllc
position vector for the displaced position can be expressed
in terms of the components of the undisplaced position by
the transformation
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(2.14)
A(a, p)=2il „x (a,A)x„(p A)/a+(w) a,
X(a,p)=w„[x„(a,A)+x„(pA)] .

(2.20a)

(2.20b)

Thc BltcITlal stI aIIl

w = [u(8)—u(A)]/a (2.15)

With the use of Eqs. (2.11), (2.12), and (2.18), the parame-
ters p(a, p;v) can be expressed in the strains. We give
here the unit-cell bond-deformation parameters.

N) =JJ)N) (2.16)

is defined so that the sign before the second term on the
right-hand side of Eq. (2.13) is "+"if v=A and "—"if
v=B. Following Born and Huang, we define a new inter-
nal strain m, whose components are given by

p(a, P) =(w )'a,

P(a, P)= —iw„x„(P,A ),
P(a, P) = iw—„x„(a,A),

p(a, P) = 2ri —„x (a,A)x„(P,A)/a,

(2.21a)

(2.21b)

(2.21c)

(2.21d)
The ri,z component of the Lagrangian strain is given by

Iri;= 2(&k Jk 5,—) . (2.17)

Substituting Eq. (2.13) into Eq. (2.1) and rewriting the re-

sult in terms of the strains yields

A(a, P;v)=2' „x (a,v)x„(P,ri)/a

where a,P=1—3; a,P=4—6. The remaining parameters
can be shown to vanish. Useful derivatives of A,(a,P;v)
and p(a, p;v) with respect to the atomic displacements,
strains, bond lengths, and bond angles are given in Appen-
dix A.

+w„[x„(a,v)+x„(p,v)]+(w )'a . (2.18)

A(a, p) = [A(a,p;A)+A(a, p;8)]/2,

X(a,P) = [A(a,P,A) —A(a, P;8)]/2 .

(2.19a)

(2.19b)

For homogeneous deformations l(a, p) and A.(a,p) be-

Since atoms on either sublattice undergo similar displace-
ments, it is convenient to sum the bond-deformation pa-
rameters over v to obtain symmetric and asymmetric
unit-cell bond-deformation parameters

III. COUPLING CONSTANTS

Keating wrote the expansion of the strain energy & in
powers of A, for diamond in a very general way [see his
Eq. (6)] but retained only those terms involving deforma-
tions of bonds about a single atom. He further restricted
the series by ignoring all cross terms. Fuller' expanded
the strain energy for CdS in a similar way but included
some cross terms. Fuller's notation is adapted here to the
rocksalt structure. The expansion of the strain energy is

&=f(a,p;v)w pA(a, p;v)+ ,'f(a, p;y, 5;v—)w p wAr(spa;v)A(y, 5;v)+, a,p, . . .=l—6, v=A, B . (3.1)

Summation ovcI' Icpcatcd indices, including v, ls implied.
The parameters w~p are weights which have the following
values: for bond stretching, w =1; for axial stretching,

= —,'; for bond bending, w p
——,'. These weights com-

pensate for double counting of interactions.
The summation over v can be carried out formally by

using the following definitions for effective unit-cell cou-
pling constants:

P"=f(a,P)A(a, P)+f(a,P)A {a,P)

+ —,'f( pa;y, 5)[&( pa)&(y, 5)+A(a, p)A(y, 5)]

+-,f{a,P;y, 5)[~(a,p)X(y, 5)+X(a,p)X(y, 5)]

(3.3)

or in tensor natation

f(a,P) =w p[f {a,P;A)+f(a,P;8)],

f{a,P) =w plf(a, pA) f(a,p;»], —

{3.2a)

(3.2b)

f(a,P;y, 5)=w pwrs[f (a,P;y, 5;A)+f(a,P;y, 5;8)],
(3.2c)

f(a, P;y, 5) =w pw„s[f (a,P;y, 5;A) f(a,P;y, 5;8)] . —

(3.2d)

Employing these definitions in Eq. (3.1) yields to second
ordcI

P =E A+E, .A+ —,A.E A —A.E V,

whclc ' slgn1f les a cont1act1on. Thc tcnsors E1 and E~
can be decomposed into bond-stretching, axial-stretching,
and bond-bending -tensors, such as Ez, Eq, and Ez,
whereas, E2 becomes E~~, Ezz, E&z, etc.

The various coupling constants of the Keating-Fuller
expansion can be identified by inspection of the various
configurations of interacting NN bonds in the complex.
With the use of the set of 36 bond-deformation parame-
ters, there are 36 first-order coupling constants and 1296
second-order couphng constants per central atom. These
coupling constants can be subdivided as follows:
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First order Second order

6 bond stretching
6 axial stretching

24 bond bending

36 bond stretching
36 axial stretching

572 bond bending
72 bond stretching with

axial stretch1Qg

288 bond stl etching with
bond bending

288 axial stretching with
bond bending

E(r', 8') = aM(Ze) —/r'+ &0+F (A, ), (3.5)

where aM is the Madelung constant, 1.747558, Z is the
magnitude of ionic charge in units of the charge e, and
A, =A,(r', 8') according to Eq. (2.1). The equilibrium condi-
tions are

(3.6a)

(3.6b)

I'
q is a symmetric, second-rank tensor containing two

types of first-order bond-stretching constants. Since all
six bonds are equivalent, the coefficients along the major
diagonal, which describe the tensions associated with sim-

ple bond stretching, are equal so that a single coupling
constant fs f c——an be defined. Similarly, the axial-
stretching coefficients f are all equal so that we can de-

fine fz =f-
F & is a symmetric second-rank tensor containing the

first-order bond angle bending coefficients, f~p (a&is).
Twenty-four of the off-diagonal constants associated with
the deformation of the NN bond angles are equal,

f~iI =flI, and the 12 remaining elements are 0.
Constraints are imposed on the first-order coupling

constants by the condition that the energy E(r', 8') per
unit cell have a minimum at the equilibrium values of the
coordinates: r'=r, 8'=8, which implies A, =O. The total
energy E per unit cell is given by

under the category of NCF interactions, and CF interac-
tions will be restricted to pairwise interactions. Axial-
stretching interactions (f) and bond-bending interactions
(Q may contain both CF (bond-stretching) and NCF (an-
gular deformation) components.

Second-order interactions are indicated by combining
pairs of these symbols. Thus (t I ) indicates coupling of
bond-stretching and bond-bending deformations. The in-
teraction indicated by (t Q) can be subdivided into three
geometrically distinct interactions: Q, , and A

The first of these interactions involves coupling of a
change in bond angle with the changes in length of one of
the bonds which form the bond angle. The second in-
volves a bond which is normal to the plane of the bond
angle. The third involves a bond which is coplanar with
the bond angle but oppositely oriented with respect to one
of the bonds which form the angle. Superscripts are used
on the coupling constants to distinguish between geometri-
cally different interactions of the same general type.

The multiplicities are listed in the fourth column of
Table I. To obtain the multiplicity for an interaction a
convenient scheme for counting is the following: set
a=1; set P=1 if u=d8, otherwise, P=2; allow y and 5 to
run over those indices which yield geometrically
equivalent orientations with bonds a and P. This number
of equivalent orientations is multiplied by 1 if P=a, a or
by 4 if alP. The resulting product is multiplied by 2 if
tllc dcfoIIIlatlolls (Ix,p) and (1,5) 81'c llot slmllal. Tllc
product is multiplied by 6 to obtain the final result.

Musgrave and Pople ' gave an alternative phenorneno-
logical description of the covalent interactions in the dia-
mond structure. They termed their description the
"valence force-field model" (VFFM). The expansion vari-
ables for their model are the bond lengths and bond an-
gles. The VFFM can be used, also, as an alternate
description of the short-range interactions in ionic com-
pounds, and it is evident from Eq. (2.1) that there is a sim-
ple transformation between these two descriptions,

IV. NNN BOND-STRETCHING INTERACTIONS

It can also be shown that within the BDM formulation
the force on any ion is unaffected by a uniform translation
of the lattice.

Fss, I' @II, ctc.„al'c six-dlIIlclls101181, follltll-lank tcllsors
containing the second-order coupling constants. A nota-
tion for the second-order interactions, the designation of
the coupling constants, and their multiplicities are sum-
marized in Table I. The multiplicity of a coupling con-
stant is the number of times it is counted in Eq. (3.1).

The three types of bond deformations can be represent-
ed by the following symbols: bond stretching, f; axial
stretching, f; bond bending, L. Each of the interactions
involving simple bond stretching (f ); regardless of the
number of atoms involved, may be presumed to be of a
central-force type Thus the. coupling constant fss ' while
coupling the displacements of three atoms describes a cen-
tral force interaction. However, as stated in Ref. 1, all
three-body and higher-order interactions will be included

We first split the strain energy P' into an NN part
P NN and an NNN part,

X NNN
——gs(a)A, '(e, e;Il)+ —,

'
gs~~s'(Il)[A, '(e, e;a)]I

+ —,gJ"(~)A,'(e, e;Ir)A, '(g, g;Il),

a=A, B, t =a, b . (4.1)

The indices e and g, which run over the integers from 1 to
12, label the NNN bonds. These bonds are assigned as
shown in Fig. 1(b). We have not followed the customary
assignment in which each of the 12 NNN bonds has a ter-
minus at the central atom; rather, we have selected the 12
NNN bonds which connect the 12 pairs of NNN atoms
formed by the six atoms that are nearest neighbors to the
central atom. It is obvious that in forming quantities such
as the lattice energy the two methods of assigning NNN
bonds lead to identical results.

The NNN bond-stretching parameters and coupling
constants are the effective unit-cell quantities and, as in
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TABLE I. $econd-Order Interactions

Interactions Coupling
constants

Multiplicity Inter actions Coupling
constants

Multiplicity

1. Bond stretching
f (0)

4. Bond stretching with
axiai stretching

f(la)
$$

f(lb)'$$

fSA
(0)

f SA
(I)

2. Axiai stretching

fAA
(0)

5. Bonding-stretching w ith
bond bending

3. Bonding-bending

fBB
(0)

24 (0)
fSB

(la)
fSB

(Ib)
fSB

BB
(Ia)

fBB
(Ib)

192

6. Axiai stretching wi th
bond bending

f(2a)
BB

(0)
fAB

f (2b)
BB fAB

('I)

(0) & (0)
Rss =

4 ggss (&) ~
(4.2b)

gss = gRss ( (4.2c)
K

For the case of gzz", there are two distinguishable bond-
stretching interactions which are symbolized in Eq. (4.1)
and (4.2c) by t =a or b These two intera. ctions are includ-
ed to illustrate how NNN bond-stretching interactions

Eqs. (2.19a) and (2.19b) and (3.2a)—(3.2d), have symmetric
and asymmetric parts. However, for simplicity the asym-
metric part of each quantity will be ignored here. An
NNN bond-stretching deformation A, '(e, e;Ir) for the basis
~ can be considered to be shared equally between two unit
cells, as is the case for the NNN displacements in the
rocksalt structure, so that each A, '(e, e;~) has an associated
weight of —,'. These weights are subsumed into the effec-
tive unit-cell coupling constants in passing to the unit-cell
formulation in Eq. (4.1); thus

gs= & ggs«» (4.2a)

other than the one characterized by g~~' may enter the
problem. Other couplings of NNN bond stretching in the
complex may be possible but will not be considered here.

First, the coupling constant g~~' measures the magni-
tude of the interaction between two adjacent bonds lying
in orthogonal planes. These bonds intersect at a 60' angle.
There are 24 of these interactions implicit in Eq. (4.1),
which can be readily ascertained from the 24 90' dihedral
angles formed by these intersecting planes. The dihedral
angles in each of the octants are counted separately.

Second, the coupling constant g~~
' measures the in-

teraction between the adjacent coplanar NNN bonds.
These bonds intersect at a 90' angle. There are 12 of these
interactions: four such interactions in each of the three
orthogonal planes.

The reduction of Eq. (4.1) to the NN interactions
described in Sec. III is carried out by substituting Eq.
(2.10) into Eq. (4.1). Before doing this, it is desirable to
convert Eq. (4.1) to the atom-pair notation which was
used in the previous section. For example, using the
NNN bond @=3,
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A, '(3,3) (bond notation)

~
2 [g'(2, 2;1)+A,'(l, l;2)] (atom-pair notation)

~A(2, 2)+g(1, 1)—g(1,2) —A(2, 1) (NN notation) . (4.3)

(4.4)

where f is a remaining NN term which measures the ef-
fect of the NN deformation at the central atom, and C is a
numerical constant. Using the transformations detailed in
Table II, Eq. (4.4) can be treated explicitly for each of the
NN coupling constants:

fs =fs+4gs

fB =fB gs-
fss =fss+4gss+ggss +4gss(0) (0) (0) (la) (lb)

fss =f ss +gss+6gss +2gss(la) (la) (0) (la) (lb)

(4.5a)

(4.5b)

(4.5c)

(4.5d)

The NNN bond-deformation parameters in atom-pair no-
tation, given in the first line, were transformed to NN
bond-deformation parameters in the second line by means
of Eq. (2.10). For the first-order interaction with the cou-
pling constant gq the 12 NNN terms go over to 24 NN
bond-stretching terms and 24 bond-bending terms. The
transformations of the second-order terms in Eq. (4.1) are
summarized in Table II. In making these transformations
for the second-order terms the cross products
A, '(a, a;P)A, '(P, P;u) are not distinguished from the prod-
ucts [A,'(a, u;P)] and [A, '(P,P;a)] and are not counted.
This implies that the number of terms increases by a fac-
tor of 2 rather than a factor of 4 in going from the NNN
bond notation to the NNN atom-pair notation.

A NN coupling constant f can be written in the general
OH11

fss f ss +4gss( lb) = ( lb) ( lb)

fBB=fBB+gSS
(0) (0) (0)

(la) (la) (la)fBB =f BB +gSS

(lb) (lb) (lb)
fBB =fBB +gss

{0) (0) & (0) (la) (lb)fsB =f sB 2 gss 2gss gss

(la) (la) (la)fsB =f sB —2g'ss

fsB f sB 2gss
(lb) (lb) (lb)

(4.5e)

(4.5f)

(4.5g)

(4.5h)

(4.5i)

(4.5j)

(4.5k)

V. CENTRAL FORCES

Since pairwise CF interactions can be expected to con-
tribute significantly to the coupling constants, these in-
teractions are considered in this section. Thorough treat-
ments of NN and NNN CF models for rocksalt-structure
crystals have been given elsewhere. ' ' ' The relevant
portions of the CF theory will be summarized before
deriving the CF contributions to the coupling constants.

Let %(r'(e, g)) be a CF potential between a pair of
atoms e and g, where r'(e, g) is the separation of the atoms
such that

r(e, g) =
~

r(e) —r(g)
~

. (5.1)

The first and second derivatives of %(r'(eg)) with respect
to the separation r'(e, g) of the displaced atoms and
evaluated at r'(E, g) =r (e,g), are given, respectively, as

The three NNN second-order bond-stretching interactions
do not contribute to the NN coupling constants fBB' and

(2b)
fBB

TABLE II. Transformation of NNN sums to NN sums.

Bonds
Term No.

Atom pairs
Term No.

Coupling
constants

Bonds
Term No.

Coupling
constants

12

24

12

[~' (p)]'

~' (y)~pp(y)
LayP =60'

A,
'

(y)i,pp(y)
LayP=90'

24

24

24

(0)
gss

(ia)
gss

(1b)
gss

~aa

A~p

~aa

A ~~A pp
2

A~p

k~~kap

~aa

k~rrxA pp

A apt py

A ~~A (gp

A +zan py
2

~aa

ArzA yy

A ~~A pp

A ~yA yp

Af(gQAIQy

A (g~A py

24

24

24

24

48

48

48

144

192

192

192

24

48

24

96
96
96

fs
fs
fss(o)

fss'
fBB

(0)

fss'

fss(0)

fBB

fss(0)

fsa"

fss"
(&b)fss

fsB
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y ( ( g)}
Bql(r'(e, g)}

( ( g))
B q (r (&ig)}

(5.2a)

and

f.B"(——) =(I/r)q' (r),

f.~"(++) =q,",(r),
f,B"(++) =( I lr)+'~+(r),

&"=&"(++)+&"(——),
B"=B"(++ )+B"(——),

(5.4b)

(5.4c)

(5.4d)

(s.sa)

(5.5b)

X;XJ
0 "(r)——0"(r) +5; —ql'(r),

2 p
'

&J~
where f, is given by Eq. (3.7). We also define the asym-
metric quantities

(5.2b) 3 "=2"(++)—2 "(——), (5.6a)

f A'=4+ (r),

f,B'=(1/r)%+ (r),
(2) NNN interactions,

f,A "(——) ='0" (r),

(5.3a)

(5.3b)

(5.4a)

where a priine on ql(r) denotes differentiation with respect
to the arguinent r. In parametrizing the derivatives 4"(r)
and ql"(r) we follow the notation of Hardy and Karo,
who used the letters A and 8 to designate the second and
first derivatives, respectively; a prime ( ) to designate NN
interactions; and a double prime (") to designate NNN in-
teractions. Thus the derivatives 4"(r) and 4"(r) may be
parametrized as follows.

(1) NN interactions,

B"=B"(++) B"( — ),—— (5.6b)

which can be used to parametrize some of the CF terms in
lattice-dynamical expressions.

The derivatives of a central-force potential are expected
to be associated with coupling constants which are coeffi-
cients for the stretching of single NN and NNN bonds.
With the use of the results of Sec. IV the coupling con-
stants are split into NN and NNN parts. These parts are
associated with the appropriate derivatives of the short-
range potential @sR.

Considering first the NN terms, the BDM expansion of
the NN part, ANN, of ksR can be differentiated with
respect to the components of x (e,v), according to Eqs.
(A7a) and (A7b). The derivatives of 4NN are

NN(e, v) =(Ev, l')[2fs(v) —fg(v)],

O'NN, |j(& v) =2fs(v}5ij «+ [4fss'(v)+fan(v) 4fsw'(v)](&v—'&) 5'+ T'[f aa(v) f a'a'(v)1[1 ——(&»&) ]5j

(S.7a)

(5.7b)

where the summation formulas, Eqs. (A4a) —(A4c) and
(A6), have been used in obtaining Eq. (5.7b). Requiring
that ANN;(e, v) and 4NN;j(e, v;e, v) contain only coupling
constants associated with NN pairwise interactions yields
the conditions

( ')
~'NN, i «») =—

2 Bxg

,
'

(ev,i )af,B'(v)—, (5.10a}

f~(v}=0

f„'„'(v) 4fs„'(v) =0, —

fBB(v) fBB (v)

Equation (5.7b) becoines

+NN, ij(&») =2fs(v)5~'j «+ 4(e»&) f ss'(v)5'

(5.8a)

(5.8b)

(S.8c)

B 4+ (r')
@NN, ij(eiv)—

BXI. BXJ

= —,
'

I (ev, i)(ev, i)f, [2 '(v) —B'(v)]

+5;jf,B'(v)I, (5.10b)

(5.9)

The matrix @NN(e,p;e,p, ) can be identified with the CF
matrix 4(0,0,0;0,0,0) for the rocksalt structure —see Eq.
(6.3.3b) of Ref. 20. The first term on the right-hand side
of Eq. (5.9) applies to both longitudinal and transverse
displacements of the atoms with respect to the bond direc-
tion, whereas the second term only applies to longitudinal
displacements. Since ANN is assumed here to consist of
CF interactions, Eqs. (2.1.37), (2.1.38), and (2.1.39) of Ref.
20 can be used to write the derivatives of ANN as

4fs(v) =~foB'(v) . (5.11)

Since B' does not depend on the choice of bond origin,
that is,

B'(+)=B'(—) =B' (5.12)

where the factor —,', rather than —,', is required in Eq.
(S.10b) since the order of differentiation is immaterial.

Identifying coefficients in Eqs. (5.7a) and (5.10a), we

obtain
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it follows that

fs(+ ) =fs( —) (5.13)

(4.5d), (4.5f), and (4.5i), respectively. If we require that
fss' arises only from pairwise CF interactions, then it is
necessary to impose the condition that

and with the use of Eq. (3.2a), it follows that 2gss +gss =o(la) (1b) (5.22)

2fs =af,B' . (5.14)

By the identification of terms in Eqs. (5.9) and (5.10b),
the second-order coupling constant f ss(v) can be ex-(0)

pressed in terms of the derivatives A ' and 8':

8f ss(v) =f, [A'(v) B'(v—)] . (5.15)

4f s's =f.[A' B']— (5.16)

for the unit-cell coupling constant.
Taking Eq. (4.1) to represent the contribution of NNN

bonds to 4sR, we proceed as for the NN part to find the
CF terms by taking derivatives of 4NNN. From
CNNN;(e', v) we obtain

2W2gs(v) =4' (r) =av 2f,B"(v), (5.17)

where v identifies the sublattice. The unit-cell coupling
constants can be obtained by summing over v, thus

4gs= af,B" .

From C&NNN;J(e, v;e, v) we obtain

4gss (v) =f0 [A (v) B(v)]—
and summing over v,

(5.18)

(5.19)

16glso'=f. [A"-B"] . (5.20)

Equations (5.14), (5.16), (5.18), and (5.20) can be substi-
tuted into Eqs. (4.5a) and (4.5c) to obtain

2fs af, [B'+2B"]-—,
4fss =f0[A'+A" B' B"l+16[2gs—s +—gss ]

(5.21a)

(5.2 lb)

where the first term on the right-hand side of Eq. (5.21b)
represents the pairwise central forces. Similarly Eq. (5.20)
can be used to incorporate the derivatives of %NNN into
the expressions for fss', fzs', and fsz' by using Eqs.

I

Since A'(v) and B'(v) are independent of the basis of the
central atom, it follows that f ss(v) is independent of v
and that

The three-body coupled bond-stretching interaction
described by fss '(v) may be similar to the first-order
axial-stretching interaction described by fz(v), if this
latter interaction does not contain a NCF component.
Since by Eq. (5.8a) fz (v) vanishes, it may be expected that

fss '(v) vanishes as well.

VI. LATTICE DYNAMICS

The natural variables for lattice dynamics are the atom-
ic displacements, I u(a) j, in which the potential is usually
expanded to second order for the harmonic approxima-
tion. 2o The coefficients for the expansion of the potential
energy of the lattice in these variables are the atomic force
constants. The lattice dynamics of ionic crystals, particu-
larly of the NaCl-type, have been discussed by a number
of authors; for reviews of this subject see Born and
Huang, ' Maradudin et al. , and Hardy and Karo, as
well as Cochran ' and Basu et al. Hardy and Karo,
Cochran, Basu et al. included discussions of noncentral
forces in their reviews. The ground work will be estab-
lished here for obtaining the short-range force constants
of the dynamical matrix from the BDM.

An expansion of the potential energy in the bond-
deformation parameters mixes several orders of atomic
displacements so that the BDM, as presented in Sec. III,
cannot be used easily to describe the dynamics of a crys-
tal. However, the set [pj of new bond-deformation pa-
rameters can be easily related to the atomic displacements.
We will examine first the relationship of the p parameters
to the atomic displacements and then will give the
transformation of the old set of coupling constants [fj to
a new set Ihj, the elements of which are the coefficients
for the expansion of the strain energy in the p parameters.
The harmonic short-range potential can be extracted easily
by neglecting terms which are higher than second order in
the atomic displacements. The coefficients of the dynami-
cal matrix of short-range force constants will not be de-
rived here.

The new bond-deformation parameters given by the
transformation defined by Eqs. (2.11) and (2.12) are readi-
ly expressed in terms of the relative atomic displacements,
u(a, v), by using Eqs. (2.1) and (2.3). Thus

p(a, P;v) = [u(a, v)+ u(a, v)] [u(P,v)+ u(P, v)]/4a,

p(u, P;v)= —[r(a, v) [u(P, v) —u(P, v)]+r(P, v) [u(a, v) —u(a, v)]j/2a
—[u(a, v) —u(a, v)] [u(P, v) —u(P, v)]/4a,

p(u, P;v) = —i[u(a, v)+ u(a, v)] [2r(P, v)+ u(P, v) —u(P, v)]/4a,

p(a, P;v) = —i[u(P, v)+ u(P, v)] [2r(a, v)+ u(a, v) —u(a, v)]/4a .

The atomic displacements I u(a) j can be assumed to have plane-wave solutions.
The strain energy can be expanded in the p's in a manner analogous to Eq. (3.1):

W=h (a,P;v)w' pp(a, P;v)+ —,
'

h (a,P;y, 5;v)w' pwzsp(a, P;v)p(y, 5;v), a,P, . . . =1—6 .

(6.1a)

(6.1b)

(6.1c)

(6.1d)

(6.2)



The weights w'
p are analogous to the weights introduced

in Sec. III. The first-order constants h (a,P;v) can be ob-
tained from the first-order f-type constants by the
transformation

h (a»;v)w' p b——,bp~f (e,g;v)w, g,
and the second-order constants h (a,P;y, 5;v), by

h (a»;y, 5;v)w' pw'rs

=b~~bprbrvbsef (e,g;vf&8;v) wggwve,

where

100 0 0 1

010 0 1 0

(6.3)

(6.4)

001 1
-'= oo

0 i 0 0
i 0 0 0

0 0
0 0 (6.5)

According to Eqs. (3.1a)—(3.1d) and (6.5), the unit-cell
h-coupling constants and f-coupling constants are related

h (a,P)=b,bpgf (e,g)

for the first-order constants, and

h (a,P;y, 5)=b,bpgbrvbsef (e,g;rI, e)

(6.6)

(6.7)

h (a,a) =—h (a,a)=2fs,
h(a, a) =2fs,

(6.8a)

(6.8b)

for the second-order constants. Similar transformations

apply to the asymmetric unit-cell coupling constants. The
nonzero symmetric unit-cell couphng constants, h(a, P)
and h (a,P;y, 5), are given in Table III. In Table III, we
use the convention that a,P, . . .= 1—3 and
a,P, . . .=4—6. We note from Table III that if the f-type
constants are real, the h-type constants also are real.

Using the first-NN pairwise interaction condition, Eq.
(5.8a),

where fs is given by Eq. (5.21b) and

(6.9)

The second-NN pairwise interaction condition, Eq. (5.8b),
can be used to simplify the expressions for h(a, a;a,a)
and h (a,a;a,a); thus,

h «a'a a}=2fss'+2fss" +8f~,
h (a,a&a,a) =2fss +2fss

(6.10a)

(6.10b)

r(a, v)+r(a, v)=0 . (6.1 1)

Cross products of p(a, P;v) and p(a, P;v) do not appear
because the associated coupling constants are null. We see
from Table III that there are three types of second-order
p-coupling constants which appear in the second-order
part, 7"2, of the harmonic potential &i, . h(a, a;a,a),
h(a, a;P»), and h(a, P;a,P). After some manipulation
and explicitly noting the sum over the basis index v, we
obtain

Since NN CF. interactions are symmetric with respect to
the basis, it follows that terms for these interactions will

appear in symmetric coupling constants such as
h(a, a;a,a) and h(a, a;a,a} but will not appear in the
asymmetric analogs of these constants. However, NNN
CF terms are not generally symmetric with respect to the
basis so that NNN CF terms can be expected to appear in
both the symmetric and the asymmetric coupling con-
stants.

It is apparent from Eqs. (6.1a)—(6.1c) that Eq. (6.2) is
quartic in the atomic displacements. To obtain the har-
monic potential it is necessary to extract the quadratic
portion from Eq. (6.2). The first-order terms in the har-
monic potential go over the equilibrium condition Eq.
(3.6a) when the electrostatic part of the potential is includ-
ed. The second-order terms arise from terms in Eq. (6.2)
which are first-order in p(a, P;v) [see Eq. (6.1a)] and
second-order in p(a, P;v) [see Eq. (6.1b)]. It can be shown
that second-order terms in p(a, P;v) [see Eq. (6.1c)] do not
contribute bccaUsc their sums van1sh duc to thc condlt1on

F 2 (fs/a) I [u (a,v——)) + [u (a,v)]2I+ —,
'

h (a,a;a, a;v)[uL (a,v)+ul (a,v)]

+ —,
'

h (a,a;P,P;v)[ui (a,v)+uL, (a,v)][uJ. (P,v)+uL, (P,v)]

+ „',h(a, l3;a,P;v)[uT(a, v t3)+up(a, v;P)+up(P, v;a)+uz(13, v'a)]

——,
'

h (a,a;a, a;v)[uL, (a,v) —uL (a,v)] —», h(a, P;a,P;v)[uT(a, v») —uT(a, v;P)]

—», h (a,P;a,P;v)[ur(P, v;a) —uT(P, v;a)]~

—
»8 h «»'» }'»)[ur«v'P) — ( uT, aP)v][ (AT, P)vuT(y, v»)]— (6.12)

where
u(a, v)=

i
u(a, v) i,

uL, (a,v) = r(a, v) u(a, v)/a,

uT(a, v;P)= r(P, v) u(a, v)/a, aJP .

(6.13a)

(6.13b)

(6.13c)

Equation (6.13a) defines the magnitude of the displace-

ment, u(a, p); Equation (6.13b), the longitudinal com-
ponent of the displacement; and Eq. (6.13c), a transverse
component which is parallel to the bond direction r(P,p, }.
Note that the use of Eq. (6.11) in obtaining Eq. (6.12) re-
quires changes in sign before displacement terms contain-
ing a or P. Equation (6.12) can be used to derive the
short-range components of the dynamical matrix.
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TABLE III. h-type coupling constants and equivalent combinations of f-type coupling constants.
Indices a,P, . . .= 1—3; a,g, . . . =4—6.

h(a, a)
h (a,a)

TerIIl
h type

No.
Equivalent f-type expression

First-order coupling constants

2fs+2f~
2fs—+2f~

Term

h(a, a;a, a)
h(a, a;a, a)
h(a, a;a, a)
h (a,a;a, a) =h (a,a;a, a)

h(a, a;p, p)
h(a, a;P, P)
h(a, a;p, p)=h(a, a;p, p}
h(a, p;u, p}
h (a,P;a, P)
h (a,p;a, p)=h(a, p;a, p)
h (a,P;P, y)
h (a,P;P, y)
h (a, a;a, p)
h (u, a;P, y}
h (a,a;a, p}

No.

3
3

12
6

6
6

12
12
12
24
24
24
24
12
24

Second-order coupling constants

2fss'+2fss" +4f~~ 8fs~'—
&fss'+ —2fss"
2fss 2—fss —+4f~~(0) (1b) (0)

8fss +8''s"
4fss 4fss +—~f~s—(0) (&b) (O)

In addition to the first-order parameter given by Eq.
(6.8), the short-range harmonic potential is specified by six
symmetric second-order unit-cell coupling constants:

h (a,a;a,a), h (a,a;P,P), h (a,P;a,P),
h (a,a;a,a), h (a,P;a, P), h (a,P;P,y),

The term f ss' may be calculated [see Eq. (5.16)] from the
derivatives A

' and Ij' of the NN-CF potential.

VII. ELASTIC CONSTANTS AND
EMPIRICAL FORCE CONSTANTS

and by six asymmetric second-order unit-cell coupling
constants Since the bond-deformation parameters are closely asso-

ciated with the lattice strain q and the internal strain w,
according to Eq. (2.18) or according to Eq.
(2.20a)—(2.20d) the BDM coupling constants can be easily
related to the elastic constants and to the force constant
for the homogeneous polarization of the lattice (internal
strain). Proceeding in the manner of Brugger we take
derivatives of the potential energy 4 of the lattice with
respect to the strains q and w. The first derivative of 4
with respect to rj is the tension, which must vanish; this
condition is equivalent to Eqs. (3.6a) and (3.6b). With the
use of Eq. (6.2) to express F in the p parameters, the
second-order derivatives of P" can be taken with respect
to the lattice strain components and then evaluated with
the help of Eq. (A3b). For ionic crystals the long-range
electrostatic contributions to the strain derivatives must be
included. These were evaluated for the rocksalt lattice by
Fuller and Naimon.

The second-order Brugger elastic constants are defined,
in tensor notation, as

h(a, a;a,a), h(a, a;P,P), h(a, P;a,P),
h(a, a;a, a), h(a, P;a,P), h(a, P;P,y) .

The asymmetric coupling constants can be formed from
the f-coupling constants in a manner analogous to that For
the symmetric constants by substituting the appropriate
f-coupling constants, as defined by Eq. (3.2d), into Eq.
(6.7) or into the expressions for the corresponding sym-
metric coupling constants in Table III. In the special case
where the NNN-CF and -NCF interactions are centered
only on the anions (B-type atoms), the asymmetric cou-
pling constants can be obtained from the symmetric cou-

ing constants since

h «a a a) =fss —h(a, a;a, a), (6.14a)

h (a,a;a, a) = —2f ss —h(a, a;a,a), (6.14b)

(6.14c)

(6.14d)

(6.14e)

h (a,a;P,P) = —h(a, a;P,P),
h (a,P;a,P) = h(a, P;a,P), —

h (a,P;a,P) = —h(a, P;aP),
h (a,P;P,y) = h(a, P;P, y) . —

Q2 U'

~ij,hl 7

~9ij~ Ihl p

(7 1)

(6.14f} where U =P"/0, . These can be expressed in the matrix
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tensor
matrix

22
2

33
3

2 3'3 2
4

3,1;1,3
5

1,2;2, 1

6

The elastic constants are

C» ——C2z ——

= [2h (a,a;a, a)+ C~ i(ES)f,Z ]/a,
C12 =C23 =C3]

= [2h (a,a;P, P)+ C&2(ES)f,Z ]/a,

(7.2a)

(7.2b)

notation of Voigt by using the following correspondence: d @NN(&)
f08(NCF) =

df j r=a
(7.7)

where dri refers to a variation perpendicular to the bond.
This further assumption applies if only the coupling con-
stant f~~' is significant, such as in the model proposed by
Cunningham, in which the inequality Ciz&C44 arises
from an angle-bending interaction.

The force constant R for the uniform compression of
the lattice is proportional to the bulk modulus A [see Eq.
(9.29) of Ref. 19], where for a material with a cubic crys-
tal structure

C44 =Css =C66

=[2h (a,P;a,P)+C~(ES)f,Z ]/a,
where ES represents electrostatic, and where
Cii(ES)= —6.277 117, Ci2(ES)=C~(ES) = 1.390994,
and

A =(Ci)+2Ciq)/3 .

The force constant can be written as

R =6a O' =R(CF)+R(NCF)

where

(7.8)

(7.9)

C) i (ES ) +2C)2(ES)= —2a~ . (7.3) R(CF) =2fo(A'+2A" —8' —28"—2a~Z ), (7.10a)

Comparing Eq. (6.12) with Eqs. (7.2a)—(7.2c) it is evi-
dent that the elastic constants determine three symmetric
second-order unit-cell h-coupling constants which are re-
quired for the dynamical matrix. Harmonic values of
the elastic constants, or to a good approximation, the
liquid-helium temperature values of these parameters, '

are the appropriate experimental quantities for use in
evaluating the coupling constant considered here.

Using the expressions for h (a,a;a,a), etc. , in Table III
and the results of Sec. V, we define the short-range CF
coefficients

f.Cii «F)=4f s's+16gss'

=f, (A'+A" 8' 8"), — —

f.ci2«F) =ggss'= 2f0(A" —8"»
C44(CF) =Ci2(CF),

and the short-range NCF coefficients

fo~ii(NCF) =4f 's's '+16gss '

f,~]2(NCF) =If 'ss '+fAA 2fsA gss

foC~(NCF) = —&(fss fBB +2gss—

(7.4a)

(7.4b)

(7.4c)

(7.5a)

(7.5b)

(7.5c)

f,B(NCF) =a (C44 —Ci2), (7.6)

generally is obtained. 8(NCF) is defined according to the
first equality in Eq. (7.15) of Hardy and Karo. 3 They
make the further assumption, following Woods et al. ,
that

The expressions for the NCF terms, Eqs. (7.5a)—(7.5c),
were simplified here by assuming that fss' results only
from CF interactions [see Eq. (5.22)] and by using Eqs.
(5.8b) and (5.8c).

In the special case of CF conditions, where Ci i(NCF),
Ci2(NCF), and C44(NCF) vanish, the Cauchy condition,
C~2 ——C44. , is recovered. Empirically, however, these two
elastic constants are not found to be equal so that a finite
value for a so-called "Cauchy discrepancy, "

R(NCF)=g(4f s's'+f s's'+4faw 8fsA) (7.10b)

The electrostatic term a~Z in Eq. (7.10a) can be elim-
inated with the use of Eqs. (3.6a), (5.8a), and (5.2la).
Equation (5.22) was used in obtaining Eq. (7.10b). Equa-
tion (7.10b) implies that there can be NCF contributions
to the bulk modulus, which arise from coupled dilations
and contractions of adjacent bonds. Since the derivatives,
A" and 8", of the NNN-CF potential are usually small
relative to the derivatives A' and 8', and since the poten-
tials from which A' and 8' are obtained often have two
parameters to be determined empirically, a further practi-
cal assumption is

R (NCF) =0 . (7.11)

This assuxnption then allows A' and 8' to be estimated
from Eq. (7.9) and the equilibrium condition, Eq. (3.6a),
so that the two disposable parameters in the NN-CF po-
tential can be evaluated.

Values of R and f,B(NCF) are given in columns 2 and
3, respectively, of Table IV. R and f,B(NCF) for the al-
kali halides were computed from values of elastic con-
stants at 0 K, which were compiled by Sangster and At-
wood (see their Table 5 for citations of sources), and
from values of the lattice parameter at 0 K as given by
Ghate. R and f,B(NCF) for the alkaline-earth oxides
were computed from estimated harmonic values of the
elastic constants and from the lattice constants at 0 K,
which are tabulated in Appendix B.

Assuming that the NCF interactions involve primarily
the anions, the trend in f,B(NCF) with the separation of
the anions, r =rNNN ——av 2, was examined for each
type of anion. f,B(NCF) is plotted versus the NN equi-
librium bond length a for each of the series of halides and
for the oxides in Fig. 2. For a given anion, f,B(NCF)
generally decreases toward larger values of the bond
length —that is, toward the compounds with the larger
cations in each series.

For the chlorides, bromides, and iodides, the values of
f,B(NCF) are small, and the trends of these values are
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TABLE IV. Force constants, in J/m .

f,8(NCF)
Eq. (7.6) Eq. (7.14)

g
Eq, (7.21)

L1F
LiC1
LiBr
Lil

83.6
53.9
42.9

(a) Alkali halides
4.49 81.0
1.07 44.8
1.25 35.3

93.2
48.7
40,3
29.7

9.6
—5.2
—2.6

NaF
NaCl
NaBr
NaI

70.82
44.51
40.01
34.22

1.398
0.58
0.25

—0.05

75.7
44.5
37.6
30.0

87.8
50.1

42.4
33.7

17.0
5.6
2.4

—0.5

54.4
36.8

—0.04
0.38

56.3
38.5
34.8
30.2

63.7
43.7
39.2
33.5

9.3
6.9

RbF
RbCl
RbBr
RbI

50.41
36.47
32.81
28.5

49.4
36.4
32.5
28.4

55.0
40.8
36.3
31.6

4.6
4.3
3.5
3.1

MgO
CaO
SrO
BaO

213.6
176.6
140.3
105

(b) Alkaline-earth oxides
13.64 225.5
4.64 144.1

3.85 113.6
1.4 (73)

3.4g 10
251.9
177,7

(87)

75.3
37.4

( —is)

0

0

O

0

C» &c~ (.
F~ J~«8
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0.)0 0.(5 0.20

FIG. 2. f,8(NCF) vs

Fluorides are indicated by
iodides, by I; and oxides, by
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NN equilibrium bond length, a, .
F; chlorides, by C; bromides, by 8;
0.

very similar. f,8(NCF) decreases more rapidly for the
fluorides and most rapidly for the oxides. These trends
suggest that for the oxides the short-range repulsive in-
teractions contribute significantly to f,8(NCF); whereas,
for the chlorides, bromides, and iodides, van der
Waals —type interactions make the major contributions to
f,8(NCF). The oxide data can be approximated very well
(correlation coefficient, —0.98) by an expression

f08 (NCF) =f080 (NCF )exp( —rNNN /p ), (7.12)

with values of 12920 J/m for f,8,(NCF) and 0.0434 nm
for g. This value of p compares favorably with values of
p(O:0 ) computed by Mackrodt and Stewart, as quot-
ed by Harding, 3 which range from 0.0384 for MgO to
0.0426 for BaO.

Vukcevich assumed that the angle-bending function
had a Gaussian dependence on the sine of the angular de-

viation; see his Eq. (8). Exponential functions of ionic
separation, which resemble the Born-Mayer functions for
overlap repulsion, were assumed by Sarkar and Sengupta'
for the three-body interaction term of the deformable shell
model of Basu and Sengupta and by Buecher for aligned
and angular triples; see his Eqs. (5) and (6) and Fig. 5.
Monopole-quadrupole interactions" '2 and triple-dipole
interactions' ' have been suggested as important three-
body —type van der %aals interactions. The relationships
between various model potentials for NCF interactions
and the BDM couphng constants will be considered fur-
ther in a subsequent paper.

The internal strain which results when the lattice is
homogeneously polarized introduces one further condi-

tion. In the limit of long wavelength, wave vector k-+0 a
transverse electric field ET causes the oppositely charged
sublattices to be displaced rigidly antiparallel to one

another, whereas a longitudinal field EL causes the sublat-
tlces to be d1splaced rigidly against one another. Since the
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lattice strains are absent in the limit of long waves, the
matrix J of lattice-transformation coefficients reduces to
the identity matrix I, and the Born-Huang internal strain

w, given by Eq. (2.16), reduces to the internal strain w,
given by Eq. (2.15).

The polarization of the lattice associated with the inter-
nal strain is

PD = (eZa /0, )w, (7.13)

Mcoo[e(0)+2]/[e( oo )+2]=F* . (7.14)

In Eq. (7.14), M is the reduced mass; e(0) and e( oo ) are the
low- and high-frequency dielectric constants, respectively;
and co, is the optic mode frequency.

For a lattice with all ions at sites having a center of
symmetry, the lattice is unpolarized in the absence of a
field so that

U =BU/Bw=o. (7.15)

Since BU/BE;-P; and w;-E;, U must transform

like the dielectric susceptibility tensor which for cubic
symmetry is isotropic. Thus it is only necessary to evalu-

ate a single component, U, of U . This second-order

term in w can be obtained by substituting Eqs.
(2.19a)—(2.19d) into Eq. (6.2). From Table III we find
that the nonzero h-coupling constants are h(a, a;a, a),
h (a,P;a, P), and h (a,P;P, y ). It is important to recognize
that

h (a,a;a, a) =h (a,a;a, a) =h (a,a;a,a)

=h(a, a;a,a),
h (a,P;a,P)=h (a,P;a,P),
h (a,P;a,P) =h (a,P;a,P) =h (a,P;P, y)

=h (a,P;P, y ) =h (a,P;Py) =0 .

(7.16a)

(7.16b)

(7.16c)

After carrying out the summations over the bond indices
with the aid of the summation formulas in Appendix A,
and after summing over the central-atom index v, the
second-order internal strain energy term can be differen-
tiated with respect to w& to obtain

which can be expressed as a sum of ionic displacement di-

poles located on the lattice sites. The total polarization P
is the sum of PD and terms from the electronic dipole mo-
ments of the ions and from the "distortion dipoles" pro-
duced by the mutual distortion of the electronic charge
clouds on neighboring ions when the ions are dis-

placed. ' The product of P with the macroscopic field

E in the crystal yields the long-range, electrostatic contri-
bution to the change in the internal energy as the result of
the internal strains.

The second-order derivatives of the short-range part of
the internal energy with respect to the internal strain com-
ponents yield a force constant R* for the long-wavelength
limit of the optic modes. A second force constant F*,
which is equal to R' under the special conditions of rigid
ions and NN central forces, is given by the Szigeti rela-
tion

Q, U =6h (a,a)a —4[h (a,a;a, a)+2h (a,p;a, p)

+2h (a,P;P, y)]a (7.17)

for the second-order derivative U . A force constant R*

can be defined as

R*=Q, U /a (7.18)

R' can be expressed in terms of the f-coupling constants

by use of the relationships in Table III. Using Eqs. (7.6)
and (7.9) to replace some of the coupling constants by
empirically determined coefficients, we obtain

R*=R +R*(NCF),

where

R (NCF) = 8(fss —8''a'—+8fss' 24gss —)

(7.19)

(7.20)

Although R (NCF) contains four NCF terms, it is possi-
ble that one or more of these terms are negligible for prac-
tical materials. An examination of this possibility re-

quires the estimation of R' both from dielectric and from
elastic constant data.

As first noted by Lyddane et al. , the ions in a real
material are deformable, which implies that the polariza-
tion of the ions will modify the short-range forces between
the ions. Consequently, R* must be obtained from F* by
a model which relates the ionic polarizabilities to the
short-range force constant, such as one of the shell
models —see reviews by Cochran and by Basu et al.
or the deformation dipole model. We confine our dis-
cussion to an estimate of R' from F' using the shell-
model equation

F"=(1/R*+ I /E) + I /E2) (7.21)

where E&,K2 are the shell-core force constants.
Values of F" and R" are given in columns 4 and 5,

respectively, of Table IV. These values were obtained
from the work of Sangster et al. who used the low-
temperature experimental data compiled by Lowndes and
Martin. F* for the alkaline-earth oxides was computed
according to Eq. (7.21) from data compiled in Appendix
B. Since the optic mode frequency ro, for BaO was es-
timated, the values of F* and R * are enclosed in
parentheses for this compound. The values of R* for the
alkaline-earth oxides were computed according to Eq.
(7.21) using the values of the shell-core force constants
computed by Mackrodt as quoted by Harding. The very
large and negative value of R' for MgO suggests either
that the simple shell model breaks down for MgO or that
the assumption that I/IC(Mg) =0, made only in the case of
MgO, is untenable.

Values of R*(NCF), in column 6 of Table IV, were cal-
culated from R* and R, columns 5 and 1, respectively. It
is evident in comparing f,B(NCF) and R*(NCF) that
there is little correlation between these values. The corre-
lation coefficient for the alkali halides is 0.25. As shown
in Fig. 2, for a given anion f,B(NCF) generally decreases
as the NN bond length increases —that is, as the cation
size increases. This is not the case for R "(NCF). This
comparison suggests that more than one significant NCF



interaction is present in the alkali halides and the
alkaline-earth oxides.

Since the number of NCF coupling constants exceeds
thc ngglbcr of empirical parameters and phcnomcnologi-
cal constraints, an estimate of these undefined coupling
const, ants requires recourse to models which interpret the
coupling constants in terms of known parameters, such as
those for the short-range CF potentials and for the atomic
polarizabilities. To relate the atomic polarizabilities to the
BDM coupling constants, it appears that the "distortion
dipoles also may be expanded ln the bond-deformatlon
parameters. Further constraints may be introduced by ex-
pressing the NCF coupling constants in terms of a model
for multipole interactions or for three-body interactions.

VIII. SUMMARY

The BDM is an effective means of phenomenologically
describing short-range interactions and can efficiently ac-
count for multiple interactions in an expansion of the
strain energy in variables called "bond-deformation pa-
rameters. " The coefficients, or coupling constants, of this
expansion were examined in detail here for the complex of
the six NN atoms about a central atom. in a rocksalt-type
crystal. Relationships were obtained between these cou-
pling constants and derivatives of NN and NNN central-
force potentials, the elastic constants, and the force con-
stant for homogeneous internal strain (polarization) of the
lattice.

By considering the short-range interactions in the detail
permitted by the BDM, a variety of noncentral force in-
teractions was shown to be possible. Since the BDM j.n-
troduces more coupling constants t4an can be evaluated
from empirical data, either simplifying assumptions or
theoretical estimates of coupling constants are required.
In either case, the present BDM indicates the interactions
which either must be neglected or must be calculated. .
Two heuristic assumptions were introduced, Eqs. (5.22)
and (7.11), to obtain an expression for the bulk modulus,
A, which contained only derivatives of NN and NNN
central-force potentials.

By comparing estimates of the force constant for homo-
geneous polarization of the lattice, it was shown that these
force constants for the alkali halides contain noncentral
force terms in addition to those introduced when an ad-
justment is made for the Cauchy discrepancy (C~ —C&2).

Since the BDM as originally formulated by Keating'
was not convenient for an introduction of its short-range
forces into a lattice-dynamical treatment, a transforma-
tion was presented here which yields a new set of bond-
deformation parameters and a corresponding set of cou-
pling constants. The new bond-deformation parameters
are easily related to the atomic displacements. The har-
monic approximation of the short-range potential, which
is obtained by expanding in these new parameters, con-
tains seven coupling constants: a first-order coupling con-
stant h(aa), six symmetric second-order coupling con-
stants, and six asymmetric coupling constants. Expres-
sions for the first-order constants and for the symmetric
second-order constants are given in Table III. These four
constants can be obtained from the condition for equilibri-

um and the elastic constants. The analogous asymmetric
constants can be obtained from the symmetric constants
by assuming that only interactions centered on the anions
give rise to NNN central force and NCF terms or by us-
ing appropriate model potentials to estimate these cou-
pling constants.
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APPENDIX A DERIVATIVES OF THE
BOND-DEFORMATION PARAMETERS

= f(av;k)(13v, l)+(av, l)(Pv;k)]a, (Ala)

( p )
BA (QyP;v)

BNk

= [(av;k)+ (Pv, k)]a,

~ ( p )
B A,(a.,P;v)

dNk. BN~

(Alc)

(av;k) =xk(a, v)/a .

»Iues of (&v, k) a«given in Table V. Also, from Eqs.
(2.19a)—(2.19d), we obtain

p )
8 p(lx~P~v)

2

Btak 8ta~

r

( p. )
~ ~p(&yPqv) Bp(CX&P&V)

Bwk

It is evident from the values in Table V that

(A3c)

TABLE V. Values of the coefficients (up, k) for NN bonds.

Three derivatives of A,(a,P;v) with respect to the strains
can be obtained from Eq. (2.18):

BA,(a,l3;v)
d Qki'



g (av, k)=1,

6

g (av, k)= —1,
&=4

6

g (av, k)'= g (av, k)'=1.

Equation (A4b) follows from xk(a, v) =—xk(a, v) s«hat
from Eq. (A2)

(av, k)= —(av, k) .

(av&, k)=(avtI, k), 1t foHows tllat tlM dcrlvatlvcs
Ilk&(a, p;v), p'k(a, p;v), and p'kI(a, p;v) are independent
of the basis index v, so that the basis designation can be
omitted from these derivatives. It follows from Eq. (A4c)
that the summation, in which a runs over NN bonds
which are perpendicular to a NN bond c, is

g (av, k)'=2[1—(ev, k) ] .

Derivatives of the bond-deformation parameters with
respect to the relative coordinates of the displaced atoms
are required to relate the BDM coupling constants to

derivatives of the interatomic potentials. It follows from
Eq. (2.3) that differentiation of A,(a,p;v) with respect to
x (e,v) is equivalent to differentiating with respect to
u;(e, v). The first and second derivatives of A(a, p;v) with
respect to components of relative displacements of NN
atoIT18 are

~ ( p )
M(a~p;v)
Bx;(e,v)

(A7a)

X~(a,p;e, g;v) =- O'A, (a,p; v)

Bx (e,v)BxJ'(g, v)

—(5~AI(+ 5,PP, )5' /a .

APPENMX 8: EMPIRICAL. COEFPICIENTS
FOR THE AI.KAI.INK-EARTH OXIDES

We present empirical coefficients for the alkaline-earth
oxldcs conlp11'tcd fl'onl cstlBlatcd harIIlolllc valllcs of the
elastic constants and from the lattice constants at 0 K.
References to experimental data are given below table.

Emplf Ical cocfflclcnts for thc alkaline-earth oxides,

Mgol CRO SfO BRO

a(0 K), nm

eII (harmonic), Gpa
@12 (ha~onlc)
e~ (harlnonic)
e(0)
e( QO)

THz

0.2099'"
315.9'

96.5
161.5

9.782
2 945P q

76.85q

0.2394'd
242.5"

62.8
82.6
11,1"
3.33P

55 57"

0.2759~'"
122'

34
39
34'
3.558P

21.7'

'Density, Ref. 41,
'Thermal expansion, Ref. 42.
'Density; elastic constants, Ref. 43.
Thermal expansion, Ref. 44.
I RttlCC palaIYletCf, RCf. 45.
Thermal cxpRnsl. on» Rcf. 46.

~Lattice parameteI', Ref. 47.
"'thermal expansion, Ref. 48.
Elastic constRnts RII temperature dcrlvatlvcs» Rcf. 49.
TcIHpcfaturc derivatives of clastic constRnts, Rcf. 50.
Elastic constants, Rcf. 51.
Elastl. c constRnts and tcHlpcfatufc dcrlvativcs, Rcf. 52.
StRtlc dielectric constant, Rcf. 53.

"Static dielectifc constant, Rcf. 54.
StRtlc dielectric constant, Rcf. 55.

PHigh-frequency dielectric constant, Rcf. 56.
qTcITlpcraturc dependence Qf high"frequency ctlelcctflc constant» Rcf. 57.
Estimated.

IAlthoUgh noncentral-force interactions are MB—that is, they
lnvolvc three of IIlore atQITls; MB lntcfactlons ITlay bc central
force if the interactions are between centers of atoms; see Sec.
III. Unless otherwise indicated, MH interactions will be in-

eluded» ho%'ever» ln thc category of noncentral-force lntclac-
tlons slncc ccntI'Rl foI'cc lntcf actions have bccn tradltlonally
lcstllctcd to palfwlsc lntclactlons,
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