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We report a detailed high-resolution, x-ray-scattering study of the commensurate-
incommensurate transition of Kr on ZYX exfoliated graphite powder. As the Kr coverage is in-
creased, the transition proceeds as follows: A sharp diffraction line from the commensurate phase
drops in intensity and is replaced by a diffuse incommensurate line. The scattering from this disor-
dered phase sharpens continuously as it moves to higher wave vector. We have followed this evolu-
tion up to 4% compression, where the line shape is adequately described by a power-law correlation
function characteristic of two-dimensional solids. In one sample, there was a significant two-phase
coexistence region which we ascribe to a distribution of critical points. We place an upper limit of
1% on the possible first-order jump. No evidence for a uniaxially compressed phase is seen. The
weakly incommensurate diffraction line is accompanied by a satellite which may arise from either a
domain-wall superlattice or a weak strain modulation of the overlayer. A detailed description of
domain lattice models is presented. The loss of long-range order at the transition is discussed in the
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light of current theories.

I. INTRODUCTION

A high-density adsorbed surface layer represents a good
example of a system with competing interactions; the
periodicity preferred by the adsorbate-adsorbate interac-
tion is typically not satisfied simultaneously with the
modulation periodicity of the substrate. When the sub-
strate periodicity is dominant, the adsorbed atoms occupy
sites commensurate with the underlying surface. On the
other hand, when the adsorbate-adsorbate interaction
dominates the modulations in the adsorbate-substrate in-
teraction, the surface layer will be incommensurate with
the underlying substrate. When these interactions are
comparable, an ordered commensurate (C) surface layer
can undergo a transition into an incommensurate (IC)
phase as a function of temperature or density. It is by
now well known that competing interactions can lead to
unusual phases of matter. Therefore, it is not surprising
that the weakly incommensurate surface layer is a phase
of considerable scientific interest. Indeed, one of the most
intriguing features of the commensurate-incommensurate
transition (C-ICT) stems from the suggestion by Frank
and van der Merwe over 30 years ago, that the weakly IC
surface layer should be composed of locally C regions
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separated by a periodic array of misfit dislocations
(discommensurations).

Perhaps the best known example of the C-ICT occurs
in the krypton monolayer adsorbed on the basal-plane sur-
face of graphite. In this particular example the Kr-carbon
interaction favors Kr adsorption sites which are centered
over carbon hexagons of the graphite (001) basal plane.
At low coverages the C-phase krypton layer solidifies into
a (V3XV'3)R 30° triangular solid. As the coverage is in-
creased, this relatively loosely packed structure gives away
to an IC triangular lattice with a lattice constant quite
close to that of bulk krypton.

Until recently, attention on this system was focused on
the related questions of whether the transition was con-
tinuous or first order, whether a description of the weakly
IC phase in terms of a lattice of dislocations was ap-
propriate, and whether the compression was uniaxial or
preserved the hexagonal symmetry of the C phase. In a
previous paper, we reported the discovery of a disordered
phase separating the C and IC phases. In this paper we
present the results of a detailed synchrotron x-ray-
scattering study of this transition and the disordered
weakly IC phase. As will become clear below, many of
our results were only obtainable using a synchrotron
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source for high x-ray intensity. In this paper we report
details of new experimental runs as well as the previous
studies.

The remainder of this paper is organized as follows. In
Sec. II we review the state of understanding of the C-ICT
of Kr on graphite prior to this work. In Sec. III we give
the details of sample preparation and characterization, x-
ray measurement technique, and line-shape analysis. In
Sec. IV we discuss the data on the C side of the transition
and in Sec. V we discuss the IC phase. In Sec. VI we
describe the region in the immediate neighborhood of the
transition. Finally, in Sec. VII we summarize our current
understanding of this problem.

II. REVIEW

The essential element of all modern theories of C-ICT
is the original Frank—van der Merwe suggestion that
adsorbate-substrate mismatch is accommodated by local-
ized discommensurations (or misfit dislocations) in the ad-
sorbate lattice.! The original calculation was a continuum
mean field or Landau model for a one-dimensional (1D)
adsorbate lattice. Within this model the discommensura-
tion density (or misfit) varies as the logarithm of the con-
trolling parameter (the difference between the substrate
and adsorbate natural lattice constants). However, the
two-dimensional (2D) nature of the present physical sys-
tem introduces new considerations. The point discom-
mensurations of the 1D model become line defects or
domain walls in two dimensions. Furthermore, these
walls can meander and/or intersect. One can then imag-
ine an IC phase compressed in only one direction
represented by a striped array of parallel domain walls, or
a uniformly compressed adsorbate corresponding to a net-
work of locally C-phase hexagons. If the average distance
| between domain walls is sufficiently large, then the
wall-wall repulsion decays exponentially with distance,
and the zero-temperature structure is controlled by only
two factors: the domain-wall energy per unit length W
and the wall-crossing energy A. Using Landau theory,
Bak et al. predicted one of two possibilities depending on
the sign of A.2 If A is negative, there should be a first-
order transition from the C phase to a hexagonal incom-
mensurate (HIC) phase. A positive should lead to parallel
domain walls in a striped incommensurate (SIC) phase.
This latter transition was found to be continuous and, as
in the Frank—van der Merwe theory, the misfit is propor-
tional to the logarithm of the driving field. At higher in-
commensurability, the SIC phase could transform to a
HIC phase through a first-order transition.

All of the models described above suffer from the same
defect: Landau theories ignore thermodynamic fluctua-
tions. Given the ground-state degeneracy of the experi-
mental system, it is not clear that these theories will be
valid even at T'=0. Furthermore, as we shall discuss
below, fluctuation effects can be so profound as to com-
pletely alter the nature of the C-ICT.

The first attempt to incorporate fluctuation effects was
a calculation by Pokrovsky and Talapov who treated the C
to SIC transition at finite temperature. They found that
domain-wall meandering leads to an effective long-range
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repulsion between nominally parallel walls;® consequently,
the density n above the commensurate density ng is pro-
portional to the square root of the excess chemical poten-
tial, i.e.,

n—ng=(u—u)? with =1 .

Recently, this prediction has been experimentally con-
firmed in a quasi-2D system undergoing a uniaxial
C-ICT, stage-4 Br-intercalated graphite.*

The validity of the Pokrovsky-Talapov theory requires
that the IC phase be stable with respect to formation of
dislocations, i.e., a solid. However, as we shall discuss
below, the experimental situation for Kr on graphite sug-
gests otherwise. Specifically, fluctuation effects are so
large as to destroy the long-range order of the weakly IC
phase well below the accepted melting temperature. This
experimental observation motivated theoretical work
along two principal directions.

Villain had previously shown that for a given excess
density, the honeycomb pattern of domain walls describ-
ing a HIC phase contains extra entropy in breathing
modes.” Because any hexagonal domain can grow at the
expense of its neighbors without changing the total wall
length, a large number of topologically equivalent config-
urations will have the same energy. For sufficiently small
positive A, this extra entropy stabilizes the HIC phase.
However, the Villain fluctuations do not destroy the 2D
power-law singularity in the structure factor, and there-
fore cannot explain the observed loss of quasi-long-range
order. Subsequently, Coppersmith et al. have pointed out
that under appropriate conditions this extra entropy
softens the weakly IC phase to the extent that it becomes
unstable to free dislocation formation, i.e., it is a fluid.®
Because the free energy of interaction between domain
walls is entropic and hence linear in temperature, they
predict that the disordered phase extends down to T =0.
Abraham et al. performed molecular-dynamics simula-
tions which show a disordered network of domain walls in
the overfilled monolayer.” Villain and Bak have found
similar behavior in an Ising model with competing interac-
tions.? Both the Villain® treatment and its refinement by
Coppersmith et al.® are mean-field models in the sense
that the average domain separation [/ is obtained by
minimizing the free energy with respect to variations of /.
Consequently, they predict that the C-ICT is first order.
Coppersmith et al. argue, however, that the first-order
jump should be quite small, and that the transition should
be essentially continuous.

Kardar and Berker have argued that the three degen-
erate sublattices present in the C phase give rise to two
types of domain walls with different energies. The system
can then be mapped onto a helical Potts model.’ They
find an order-disorder transition in the three-state Potts
universality class, and the C-ICT therefore has a
specific-heat exponent a=+. This leads to an excess den-
sity n —ng o (u—pe )*3.

Huse and Fisher have extended the helical Potts-type
models to the limit where the energy difference between
the two domain walls is large.'® In this limit the C-ICT
is an order-disorder transition in a new universality class.
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Bak has advanced a different explanation of these re-
sults; in a mean-field treatment of a model Ising system
which exhibits a C-ICT, he finds chaotic phase-space tra-
jectories between C and periodic IC phases.!! He argues
that this would produce a barrier to equilibration and
hence a diffuse line shape. Similar results have been ob-
tained by Pokrovsky for the phase-space trajectories of the
Frank—van der Merwe model in one dimension.'>? He
finds a phase of pinned solitons between the C and IC
phases. However, the applicability of these pinned
domain-wall models to the relatively high temperatures at
which the experiments have been performed remains to be
demonstrated. '

The two theoretical pictures differ principally on the is-
sue of whether the disorder is static or representative of
thermal fluctuations, a question which remains to be ad-
dressed experimentally. It should be emphasized that nei-
ther of these approaches has been developed to the extent
of predicting scattering profiles. The current state of the
theory of C-ICT’s has been reviewed by Bak, with an em-
phasis on the role of chaos.!

In contrast to the theoretical situation, the experimental
results for krypton on graphite appear to be rather more
straightforward. The existence of the C-ICT was first de-
duced from vapor-pressure isotherm measurements by
Thomy et al.'* The actual change of the Kr lattice con-
stant was first measured by Chinn and Fain using low-
energy electron diffraction (LEED) at temperature T, in
the range 52—57 K.!'* They found that the misfit € be-
tween the Kr lattice constant and its C-phase value went
to zero continuously as the vapor pressure was reduced to
a critical value. These results were interpreted in terms of
the Frank—van der Merwe 1D model of local epitaxy.
The high-pressure phase was found to be a hexagonal IC
solid.

X-ray measurements at T =80—90 K, having some-
what higher resolution than the LEED experiments, con-
firmed the LEED description as a transition from C to
HIC phases, and set a somewhat tighter upper limit of 1%
on the first-order jump in lattice constant.!® Satellite lines
were observed as the principal Kr diffraction peak moved
from its C-phase position, and these were interpreted as
evidence for hexagonal domain walls'® or a triple-g
sinusoidal strain wave in the Kr monolayer.17 In addition,
the difference € between the peak position and its C-phase
value was found to depend on the chemical potential u as

e=4 [/J‘"/J'C(T)]ﬁ’ (1)

with 8=0.33+0.03. Figure 1 shows € vs u—pu, for all of
the constant-temperature diffraction data, together with a
fit to Eq. (1). As first noted by Fain et al., A and f3 are
independent of T, a strikingly simple result.!®

There has been a certain amount of controversy sur-
rounding the question of whether the observed power-law
dependence of € on pu can be considered a critical
behavior. Schabes-Retchkiman and Venables regard the
power-law form of Eq. (1) as a coincidence relating to the
details of interatomic force law.!® They calculate the lat-
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FIG. 1. Peak shift € vs chemical potential difference at a
series of temperatures for Kr on graphite. The squares and tri-
angles are LEED data from Refs. 15 and 18, the circles are x-
ray data from Ref. 16, and the crosses are from the present
work.

details of interatomic force law.!® They calculate the lat-
tice constant for a free 2D film, to which they then apply
the Frank—van der Merwe result relating the domain-wall
density to the difference in natural lattice constants and
obtain apparent agreement with experiment. Shiba has
derived similar results,?° as well as accounting in detail for
the observed adsorbate rotation at about 2% misfit.!®
However, in light of the importance of domain-wall
meandering,’ these calculations cannot be regarded as con-
clusive. It has also been argued that Eq. (1) with B~ 5 is
an accidental crossover effect between various limiting
cases.?! Kardar and Berker’ speculate that the incoherent
structure of the domain-wall lattice yields € « (n —ng)!/?,
leading to B=+. Huse and Fisher do not address the ex-
cess density; indeed they discuss the diffraction peak shift
directly. They find B=v> =, and suggest that the experi-
mental results are dominated by crossover effects.° How-
ever, € is observed to be a function only of the chemical-
potential difference u—pu,. over a wide range in tempera-
ture (52—94 K). Crossover between zero- and finite-
temperature descriptions or between critical behavior and
saturation would be expected to depend on temperature.
Clearly, a more quantitative analysis is required. We can
only conclude that the experimentally simple variation of
€ with chemical potential has not been unambiguously ex-
plained.

In a related experiment, Nielsen et al. observed a first-
order jump of 1.8% in lattice constant when the Kr
monolayer was compressed by coadsorption of deuterium
at the relatively low temperature of 40 K.?? If this first-
order jump is characteristic of a pure Kr adsorbate, then
there must be a dramatic evolution of the phase boun-
daries, perhaps a tricritical point, in this neighborhood.
On the other hand, a difference in D, solubility between C
and IC phases of Kr could cause a first-order transition in
the mixed system.’

A qualitatively new picture emerged with the applica-
tion of synchrotron x-ray techniques having an intrinsic
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wave-vector resolution sharper than the finite size of the
sample crystallites.”> We found that the sharp C-phase
diffraction peak gave way to a broad IC-phase peak, and
that as the coverage was increased, the IC peak became
sharper as it moved to larger wave vector. Thus the weak-
ly IC phase is disordered. The width of the diffraction
peak in the weakly IC phase is on the order of its incom-
mensurability e. Despite the changes in diffraction-profile
shape, the incommensurability still follows Eq. (1).

In order to characterize this interesting system better,
we have extended our higher-resolution measurements of
the structure of Kr on graphite in the neighborhood of the
C-ICT. In addition to a full account of the previous
high-resolution experiment, this paper reports data taken
at Stanford Synchrotron Radiation Laboratory (SSRL) on
an eight-pole wiggler magnet, and with a torroidal focus-
ing mirror of improved reflectivity; these technical im-
provements led to a 240-fold increase in counting rate so
that data with much better statistics than before were ob-
tained. This in turn yielded a more accurate view of cer-
tain aspects of the transition. In all, data from three sets
of scans through the transition are reported here: the ear-
lier closed-cell-I data taken with bending-magnet radia-
tion, and a closed-cell-II and a constant-temperature scan
using the wiggler beam line. The approximate paths
through the phase diagrams are shown in Fig. 2. The
basic conclusions from the previous work remain un-
changed, although the improved statistics show that none
of the line-shape models we have considered is able to
reproduce the experimental data very near the transition.

Figure 3 shows sequences of diffraction profiles taken
in two passes through the transition: changing tempera-
ture (and therefore coverage) with a fixed amount of Kr in
the sample cell, and changing vapor pressure at constant
temperature. (Figure 2 of Ref. 23 shows the same evolu-
tion in the closed-cell-I data.) In both sets of data we see
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FIG. 2. Phase diagram of Kr on graphite. Inset shows the
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lines come primarily from the specific-heat studies of Butler
et al. (Ref. 24). The paths for the three data sets in the present
work are also shown.
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the following evolution as the system passes from C to IC
phases; The first two scans show a sharp C-phase peak at
1.700 A—! which decreases markedly in intensity upon ap-
proaching the transition. The evident asymmetry in the
peak shape is simply a geometric effect related to the gra-
phite powder distribution; it is discussed in the next sec-
tion. The third and fourth scans each show a composite
line shape in which the sharp C-phase peak trades intensi-
ty with a much more diffuse line. Finally, the last two
scans show the evolution toward increasing incommen-
surability with a satellite line apparent below the C-phase
vector. Clearly, the evolution through the C-ICT is rath-
er complex. We shall present the data in detail as well as
an analysis for each of these regions in turn in subsequent
sections of this paper.

III. EXPERIMENTAL DETAILS

The substrate was ZYX exfoliated graphite,”> manufac-
tured by intercalating highly ordered pryolitic graphite
and carefully exfoliating it. ZYX has a surface area of
1—3 m?%/g (equivalently, 1—3 m?/cm®). Detailed x-ray
analysis motivated by our original synchrotron work?%26
shows it to be comprised of crystallites with lateral extent
of at least 3000 A and thickness on the order of 1000 A.?’
The ¢ axes (perpendicular to the basal planes) are more or
less parallel, with a distribution of some 10° halfwidth at
half maximum (HWHM). The density is about one-half
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FIG. 3. Scans showing the evolution from C- to IC-phase line
shape ini the closed-cell-II and constant-temperature data sets.
In all data shown in this paper, 95% of the empty-cell back-
ground has been subtracted from the data.
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that of solid graphite. For vapor pressures of a few Torr,
we typically find an equilibration time of 5 min; evidently
the empty spaces are well connected. The samples were
cut to 1.2 1.2 0.2 cm® (c axis in the thin direction) and
baked at 800°C in a 10~>-Torr vacuum for 1 h. The sam-
ple for the original run reported in Ref. 23 was promptly
loaded into a sample cell in a dry N, glovebox; the sample
on which the more recent data were taken was wrapped in
Grafoil and sealed in a vial for the 1 yr that elapsed be-
tween experiments.

The sample holders used for both experiments were
made of Al, with cylindrical Be windows attached with
epoxy and a total volume of 4.3 cm®. They were mounted
in an Air Products Displex cryostat with a Si-diode tem-
perature sensor capable of controlling temperature to 0.05
K. The sample was dosed with a trapped, diffusion-
pumped vacuum system with a base pressure of about
10~® Torr. MKS Instruments Baratron capacitance mem-
brane manometers were used to measure the dosing pres-
sure. The closed-cell-I run was performed with the same
Kr dose as an experiment on the melting of commensurate
Kr.2 The runs on the wiggler magnet were taken im-
mediately before an experiment on the melting of Xe, us-
ing the same sample of graphite.”® In the Xe experiment
at 1.1 monolayers, we observed a continuous evolution of
the liquid correlation length up to at least 200 A. Asdis-
cussed below, rounding of the C-ICT set in at roughly the
same length scale.

The first run was carried out on a bending-magnet
beam line at SSRL, whereas the second run used wiggler
beam line VIL?® Typical storage-ring parameters were 3.0
GeV and 60 mA. In both cases, the x-ray beam was
focused by reflection at a grazing angle from a bent tor-
roidal mirror onto the sample position. Two parallel
Ge(111) or Si(111) crystals selected an incident wavelength
of about 1.70 A and the scattered radiation was analyzed
by reflection from a Ge(111) crystal. The crystals and

sample alternately deflected the beam up and parallel to
its initial direction, so that the overall configuration_ was
approximately nondispersive. In the reglon of 1.7 A1,
the longitudinal resolution is ~0.0003 A-' HWHM. For
the wiggler run, the x-ray flux on the sample was
10'2—10"3 photons/sec in a spot 2 X4 mm?. The scattered
x rays were detected by a scintillation detector. An
incident-beam monitor controlled the counting time for
each data point. Unfortunately, the beam-monitor sensi-
tivity changed several times during the experiment due to
electron-orbit shifts and thermal expansion of the mirror.
We have, therefore, normalized intensities relative to scans
of the graphite (002) diffraction peak which were mea-
sured frequently during the course of the run.

The Kr in the cell absorbed a fraction of the incident
beam. This lowers the background from its empty-cell
value (~ 100 counts/sec), which in turn can have an im-
portant effect on the weak wings of diffraction line
shapes. We estimated this absorption to be 5% from the
density of Kr in the cell, and verified that the peak of the
graphite (002) reflection decreased by roughly that
amount. Scans reported have 95% of the empty-shell
background subtracted.

The powder nature of the graphite substrate plays an

PETER W. STEPHENS et al. 29

important role in determining the line shape. First, the
2D scatterer produces Bragg rods in reciprocal space per-
pendicular to the plane of the adsorbate. In effect, the
condition for constructive interference of scattered waves
places no constraint on the component of the wave vector
perpendicular to the layer of atoms. Second, because the
graphite crystallites are rotationally disordered about their
¢ axes, the Bragg rods become cylinders. Finally, the dis-
tribution of c-axis inclinations about the perpendicular to
the scattering plane produces scattering at wave vectors
that are generally larger than the cylinder’s radius, leading
to the sawtooth line shape characteristic of 2D powders.
This line shape was analyzed by Warren for the case of
completely random c-axis orientation.® Kjems et al. used
the Warren line shape as the basis for an approximation
for partially ordered substrates such as Grafoil and ZYX
that has subsequently been widely used in analysis of neu-
tron and x-ray measurements.’! In the Appendix, we dis-
cuss the applicability of this modified Warren form and
derive the general expression for the powder-averaged line
shape that has been used in previous work by this group.

IV. COMMENSURATE PHASE

The scattering from a C-phase monolayer has been pre-
viously investigated under sufficiently high resolution
where the crystallite size dominates the peak width.2
However, this is the first study with sufficiently good
counting statistics for measuring the structure directly,
rather than merely extracting a characteristic length.

In previous work,'%?32% the C-phase peak was fit to a
Gaussian with HWHM equal to 7 /L, where L is taken as
a characteristic dimension of the scattering array,

1@ =5 exp—(| 3= Qoomm | /77 @

Y

where y=m/(LV1n2), and Q and Q.,mn are in the crys-
tallite plane. The top panel in Fig. 4 shows a least-squares
fit of a scan in the C phase to an appropriately powder-
averaged Gaussian. Clearly, the model, which has a width
fixed primarily by the fastest-rising data points, cuts off
in the wing much faster than the experimental data. In
order to account for this extra scattering, we develop a
more precise model for the finite-size cutoff of a Bragg
peak in two dimensions.

By considering a static hexagonal domain of a triangu-
lar lattice, pictured in Fig. 5(a), the structure factor is

N—1N-1 N
=14+ 3 3 {exp[iQ(jT|+kT>)]
j=1 k=0
+exp[iQ-(jTy+kT3)]

+exp[iQ-(jT3+kT)]}, ()

where T and T, are lattice vectors of length a, 120° apart,
and T3=—7;—T,. Summation of the geometric series
yields
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S(Q)={sin(NQ-T,) +sin(NQ-F,)sin(NQ-3) —sin[(N —1)Q-T,]
—sin[(N —1)Q-T,) —sin[(N — 1)Q-F3]}[sin(Q- ;) +sin(Q-Ty) +sin(Q-F3)] " . @

Equation (4) reaches its maximum value of 3N?—3N +1
(the total number of atoms) when 6 is equal to an element
of the reciprocal lattice. The function has a complicated
pattern of side lobes around each Bragg peak. In a
powder, a 2giffragtion experiment measures the circulzg
average | S(Q) | ’d¢, where ¢ is the angle between Q
and T,. T?lis integral, calculated numerically, is plotted in
Fig. 5(b). In order to parametrize this result, we show as a
dashed line the sum of a Gaussian and a Lorentzian with
equal halfwidths v,

In2 By?
L(Q=Adexp |—(Q —goV == |4 —=L—— | (5
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FIG. 4. Scans showing the destruction of long-range order of
the C phase in the closed-cell-II run. The dashed line in the
97.0-K scan is a fit to a Gaussian line shape, suitably powder-
averaged. Solid lines are fits to Gaussian plus Lorentzian with
equal halfwidths, as discussed in the text. An adjustable con-
stant background has been added to the model curve. Bottom
panel shows the complete 93.8-K scan.

'with the ratio of peak intensities B /A4 equal to 1.8. While
Eq. (5) does not follow the ripples, it is clearly a very good
approximation to the general shape of the circular aver-
age. A distribution of crystallite sizes would be expected
to smooth out the ripples but retain a width on the order
of the average crystallite size. The halfwidth ¢ is
1.7/Na =2.96/L, where L =(N —1)aV'3 is the distance
across the hypothesized hexagonal domain in the diffrac-
tion direction. We emphasize that it is the powder-
averaged line shape rather than the intrinsic profile which
has the g 2 tails;*? an intrinsic ¢ ~2 term yields a much
broader ¢ ~! wing in a powder average.

We provide a crude estimate of the dynamics of a Kr
monolayer as follows. If each atom of a harmonic solid
with phonon spectrum wy(K) is attached to a fixed sub-

(a)

| s(@|? d¢ (Arb. Units)

2m
(o]

J

Q—

FIG. 5. Top shows the hexagonal domain of C-phase solid.
Bottom shows the rotational integral of structure factor squared
for the hexagonal domain near the (10) Bragg peak. Solid line
denotes the numerical calculation. Dashed line denotes the ap-

proximation as sum of Gaussian plus Lorentzian with equal
halfwidths.
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strate by a sprmg constant &, the resulting dispersion rela-
tion is w(K)=[w§(K)+£&/m]"/%. This creates a gap of en-
ergy #(£/m)'/2=5K at zero wave vector.>* The gap dom-
inates the dynamics for wave vectors K <(&/mc?)'/?,
where ¢ is the (average) speed of sound in the freely float-
ing solid. In three-dimensional (3D) Kr, ¢=8Xx10*
cm/sec, so that the C-phase phonon spectrum should be
flat for wave vectors below ~0.05 A~ Hence, the
thermal diffuse scattermg would be a Lorentzian with
halfwidth ~0.05 A~! centered about each Bragg peak.
Note, however, that the gap is expected to decrease to zero
as the C-IC T is approached.>**

Returning to Fig. 4, we see that the finite-size—cutoff
model of Eq. (5) describes the line shape quite well suffi-
ciently far from the transition. Likewise, Fig. 6 shows
similar data for the closed-cell-I scans. The solid lines in
Figs. 4 and 6 were fltted to the experimental data over the
range 1.68—1.72 A~1. The model curves are given by Eq.
(5), corrected for a vertical mosaic of 11° HWHM, plus an
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FIG. 6. Scans in C phase of closed-cell-I run, fitted to
Gaussian-plus-Lorentzian model plus constant background.
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adjustable constant term which is discussed below. All of
the model line shapes in Figs. 4 and 6 have HWHM fixed
at 0.0016 A—! » leading to an estimate of the C-phase crys-
tallite size of 1900+500 A. This number is smaller than
the 3000-A lower limit on graphite crystallite lateral ex-
tent, perhaps due to steps or adsorbed impurities. In fact,
because a single-atomic step destroys the coherence of a
C-phase sublattice, 1900 A may be taken as the lower lim-
it of separation between single atomic steps.

We emphasize that it is the high resolution and good
statistics which enable us to see that a simple Gaussian is
not an adequate description of the commensurate line
shape. On the other hand, it should be noted that the
monochromator and analyzer which determine the spec-
trometer resolution have rocking curves with ¢ ~* and ¢ —2
tails, respectively. In general, these tails will produce g —2
wings on diffraction peaks. In the present case, these tails
will be quite weak since the resolution is sharper than the
intrinsic scattering cross section. Nevertheless, in the ab-
sence of more detailed knowledge of the spectrometer-
resolution function, it is inappropriate to attach too much
significance to the detailed shape of the wings observed in
the C phase.

The scans in Figs. 4 and 6 clearly show that the baseline
away from the peak is higher than the absorption-
corrected empty-cell background. In both runms, as the
coverage is increased (temperature reduced), this diffuse
intensity increases and the Bragg-peak intensity decreases.
Inspection of the broader scans in Figs. 3 and 4(b) shows
that as the C-phase intensity drops, a much broader peak
centered at 1.72—1.72 A= is forming in the closed-cell-IT
scans. On the other hand, it is shown in Fig. 6(b) that the
closed-cell-I C-phase peak gives way to a peak that is
centered at (1.705+0.005) A~!. This profile is somewhat
sharper than the end result of the closed-cell-II scans, and
shows no trace of a coexisting C-phase peak. As is sug-
gested in Fig. 3, the constant-temperature scans, taken
with the same sample and under the same conditions as
the closed-cell-II data, show an identical evolution. Clear-
ly, we are observing a melting transition in which the C
phase is replaced by a disordered phase.

In order to discuss this trade-off quantitatively, we plot
the intensity of the peak (~1.70 A~!) and the baseline de-
rived from the constant term in the line-shape model in
Fig. 7. Let us first consider the closed-cell-I data. At the
higher temperatures, the Bragg peak is superimposed on a
diffuse background of ~40 counts/2 min. This back-
ground could be due to thermal diffuse scattering as dis-
cussed above; however, uncertainty in the background sub-
traction prevents us from determining the shape of this
extra diffuse component. It is evident that the peak inten-
sity drops and the diffuse scattering rises precipitously
within a narrow temperature range around 97.5 K.

The closed-cell-II and constant-temperature scans show
a similar evolution in Figs. 7(b) and 7(c). However, the re-
gion of composite C and IC profiles is manifested in a
long tail of C-phase intensity down to 93.6 K. This is
highly reminiscent of the rounding behavior in x-ray-
scattering studies of the melting transition of C-phase
Kr.2%35 Because of this rounding in the closed-cell-II and
constant-temperature data sets, we can only place a rough
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upper limit on the degree of first-order character of this
C-phase melting transition. Indeed, the square of the or-
der parameter has dropped to only half of its saturated
value when the composite nature of the line shape be-
comes clear. The issue is further complicated by the pres-
ence of critical scattering. We discuss this regime of com-
posite line shape in Sec. VI; for now we simply point out
that it could arise either from coexistence in a first-order
transition or from an inhomogeneous broadening of the
critical point.3¢

We emphasize that the possible rounding of the transi-
tion observed in two of the data sets does not alter the fol-
lowing principal conclusions of this section. (1) Away
from the C-ICT, the C-phase line shape is well described
by a model of finite-size domains. (2) The first stage in
the transition to an IC phase is the loss of long-range or-
der as evidenced by the disappearance of a sharp Bragg
peak. The C phase is replaced by a liquidlike IC phase,
with a correlation length much smaller than the crystallite
size.

V. INCOMMENSURATE PHASE

We now turn to a description of the IC phase. In this
discussion, the principal issue is the evolution of the dif-

fraction line shape with changing incommensurability,
particularly the loss of long-range order and the strain
modulation caused by the competition between the gra-
phite and Kr periodicities.

Figure 8 shows two IC scans from the constant-
temperature data set. We first note that both scans have
prominent wings which are absent from the C-phase
scans. Consequently, we can immediately exclude a
Gaussian line shape, even with a width much greater than
that observed in the C phase.

To proceed further we briefly review the theoretical
understanding of the structure of 2D solids. We express
the deviation of each atom from its average lattice posi-
tion R as a function U(R). By expanding U®R)in phonon
modes, it can be readily shown that in two dimensions the
position-position correlations decay as a power law,

(UR),U(0)) <R ™™,

where 7, depends on elastic constants, temperature, and
the wave vector at which the correlations are studied.’’
This algebraic decay of correlations leads to a scattering
cross section

—

do(Q)
dQ

« [Q—7| 7,

for Q in the neighborhood of a Bragg peak 7. Of course,
in a real experiment the measured extent of correlations is
limited either by the finite size L of the sample crystallites

or by finite resolution. Nevertheless, the algebraic decay
of correlations is observable in scattering experiments, as
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FIG. 8. Two scans in the IC phase from the constant-
temperature data set. The solid line in the top panel is a fit to a
finite-size—cutoff powder-averaged power-law line shape Q"2
with 7=0.3. The bottom panel shows fit to two powder-
averaged Lorentzian line shapes centered about Q.omm+€ and
Qcomm _E/ 2.
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shown by Moncton and Pindak® in the resolution-
dominated case, and by Dutta and Sinha in the finite-
size—dominated regime,* appropriate here.

Figure 8(a) is fitted to the finite-size—cutoff model of
Dutta and Sinha, with 7 fixed at 0.3, the same value as
measured for IC-phase solid Xe several K below its melt-
ing temperature.”® In this scan the lattice constant is
4.0% smaller than the C-phase value (4.27 A), a misfit
two-thirds as great as that of the expanded Xe monolayer.
Clearly, the power-law—singularity form works very well,
thus suggesting that at this density the Kr forms a float-
ing solid. The lower panel presents a scan at smaller in-
commensurability, and the picture here is clearly quite
different. There is a conspicuous satellite line below the
C-phase position, and the peak is substantially weaker and
broader. The smooth curve is a least-squares fit to two
power-averaged Lorentzians with equal halfwidths of
0.0041 A~! centered about Q.omm+€ and Q.omm —€/2,
with €=0.0306 A~!. This model clearly does not describe
the data nearly as well as the floating-solid model for the
scan in Fig. 8(a). The satellite line has been discussed be-
fore as a consequence of strain modulation of the adsor-
bate by the substrate.!®!” We will discuss its location and
intensity later in this section.

Heiney et al. have noted that, for small exponent 7, a
Lorentzian

da((_j) « 1
@ 2y |Q-7) |
with x on the order of 1/L, also fits the power-law line
shape over a limited range of wave vectors near the Bragg
peak.28 Indeed, a Lorentzian fit to the scan in Fig. 8(a) is
virtually indistinguishable from the power-law fit shown.
However, the Lorentzian in the lower panel is some 8

times broader. A Lorentzian line shape comes from a
correlation function

(UAT),0(0)) o< r ~"2exp(—kr)

in 2D. Therefore, if the Lorentzian model is taken literal-
ly, it represents a phase with exponential decay of correla-
tions on a length scale of 250 A substantially shorter
than the maximum observed crystallite size of 1900 Ain
this system, but far larger than conventional fluids which
typically have correlation lengths on the order of a few
atoms.

Figure 9 shows a sequence of closed-cell-II scans
displaying the evolution of the IC line shape. The dashed
lines are least- squares fits to 2D Lorentzians over the
range 1.55—1.8 A-1. This sequence of scans clearly
shows that as the system approaches the C-ICT from the
IC-phase side, the main peak broadens as it moves toward
the C-phase wave vector, the peak intensity drops, and the
satellite grows. The fits are good but not exact, particu-
larly in comparison to the quality of the fits for the C-
phase scans (Figs. 4 and 6), the saturated incommensurate
scan [Fig. 8(a)], and the Xe melting results.?® Neverthe-
less, in view of the simplicity of the model, we regard the
fits as being qualitatively successful. There is clearly a
pressing need for the theoretical descriptions of this tran-
sition to be extended to the prediction of scattering pro-
files.
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It is evident that the experimental scans show consider-
able excess scattering on the high-Q side of the main peak
compared with the prediction of the Lorentzian model.
This scattering could either be intrinsic to the adsorbed
phase, or arise from small 3D clusters of Kr, condensed in
the sample due to capilliary effects. Models discussed
below, which ignore the liquidlike disorder of the system,
predict a second satellite above the main peak at
Qcomm +35€/2, with an integrated intensity comparable to
the Q.omm —€/2 peak. As pointed out by D. Fisher,* the
effect of thermal fluctuations would be to broaden this
peak relative to the main peak and the low-Q satellite.
This could account for some excess scattering above the
main peak. Alternatively, Specht et al. have studied the
excess high-Q scattering from Kr monolayers at higher
temperatures and found that it peaks at the position of the
first peak in the 3D liquid-Kr structure factor.*! This
suggests that the excess scattering above the peak arises
from bulk liquid Kr, possibly condensed in corners where
the graphite crystallites meet. In addition, the Lorentzian
model does not fall off as rapidly as the experimental data



29 HIGH-RESOLUTION X-RAY-SCATTERING STUDY OF ... Kr ON GRAPHITE

for wave vectors below the Q.omm—€/2 satellite. The
least-squares-fitted value of « is therefore a compromise
between the intensity of the low-Q wing, which tends to
favor small values of «, and the region between the peaks,
which would tend to increase « in order to raise the inten-
sity in this region toward the experimental value.
Nevertheless, the general good fit for the main part of the
peak region suggests that « is well determined.

We have also performed a limited number of fits for
two other line-shape models. The first of these is the
square of a Lorentzian,

—

do(Q) «
dQ

I oK' 2

(4| Q—7 2

For a given halfwidth, this functional form drops faster in
the wing than a Lorentzian. Not surprisingly, this model
is able to fit the 93.0- and 93.4-K scans in Fig. 9 (solid
lines) slightly better than a Lorentzian; however, it leads
to much worse fits for the sharper peaks (T'<92.0 K).
For the parameters of the fits shown, the powder-averaged
Lorentzian-squared cross section is essentially zero below
1.65 A~!. We have therefore adjusted the background in
order to enable the model to fit the far wing.

A Lorentzian-squared cross section for this system is
motivated by the following argument. An impurity on the
graphite surface can act as a local pinning site for the IC-
phase Kr density wave. Near the C-ICT, the Kr layer
can be expected to be highly susceptible to such pinning.
This situation is directly analogous to the problem of ran-
dom magnetic fields which pin the local spin direction in
a magnet. Recent work on the random-field problem has
shown that the structure factor of the quasiordered state is
a Lorentzian squared.*> Unfortunately, the data of Fig. 9
do not clearly favor either the Lorentzian or the
Lorentzian-squared cross section very near 7T,. Conse-
quently, we are unable to conclude whether substrate ran-
domness is important in determining the experimental line
shapes in the immediate neighborhood of the transition.
Further below T, the main-peak lineshape is clearly better
described by a Lorentzian than a Lorentzian-squared pro-
file.

In an alternative attempt to parametrize the shape of
the wing, we inserted a g* cutoff term in a Lorentzian.
Such a functional form is necessary to describe the trans-
verse correlations in smectic liquid crystals.*> Hence,

do(Q) _ Iy
QTG Q-7

This form does not yield a significant improvement over
the Lorentzian or Lorentzian-squared models. Indeed, for
scans with T < 92.5 K, fits to this model converge to van-
ishingly small values of C,, thus indicating the preference
of a pure Lorentzian cross section for misfits greater than
approximately 2%. In short, none of the line-shape
models that we have considered provides a completely sa-
tisfactory fit to the experimental data throughout the IC
phase, although the Lorentzian is best overall.

The peak shift €, inverse correlation length k, and in-
tegrated intensity from the series of Lorentzian fits are
plotted in Fig. 10. The integrated intensity of a Lorentzi-
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an over the full 2D reciprocal space,

© gl
2 [7 da—0

diverges. However, within one Brillouin zone, the integral
is approximately equal to

mloln(k/27) ,

where 7 is the wave vector of the first Bragg peak. Over
the range of « in Fig. 10, the logarithm changes negligibly;
we may therefore regard I, as the integrated intensity.
From Fig. 10 one observes that as the peak approaches the
C-phase position (I'—94 K), k grows smoothly, the
main-peak integrated intensity remains roughly constant,
and the satellite strengthens. The large-error bars for the
satellite intensity are systematic due to strong correlations
between fitting parameters, uncertainty of background
normalization, and the fact that the satellite is sitting on a
considerable wing from the main peak. It should be em-
phasized that the ultimate decrease in « as one approaches
T, observed in our original synchrotron measurements,”
and more recently by Specht et al., is not observable here
due to the smearing of T,.

As discussed in Sec. II, in previous work the peak shift
€ has been found to depend on the chemical-potential
difference u —p., according to the simple power-law form
of Eq. (1). According to universality, in these closed-cell
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scans, one would expect e« (T, —T)**. A simple esti-
mate shows that crossover to Fisher-renormalized ex-
ponents should be unobservable. The e-vs-T data from
the closed-cell-II scan were fit to a power-law form with 8
fixed at +, while T, and the amplitude varied. The result
is shown in Fig. 10. While the lack of credible data below
a 1.5% misfit precludes the determination of the exponent
B from these data, they are clearly consistent with earlier
results. T, from this fit is 93.85 K, which is in the middle
of the region of composite line shapes. The + power law
as a function of T was also observed in the closed-cell-I
scans.?

Figure 11 shows a similar evolution of the parameters
in the constant-temperature scan. Here again, we have
checked the power-law dependence of € on p—u,.. The
fact that the vapor pressure was measured allows us to
determine the amplitude A as well. The solid line shows a
fit to Eq. (1) with the exponent f3 fixed at +, and with the
critical pressure P, and the amplitude 4 varied. The re-
sulting parameters are P,=3.21 Torr and 4 =0.0134
108_1, consistent with the previous value. Using this value
of P,, we have also plotted the results of these scans in
Fig. 1 for direct comparison with earlier results.

We next discuss the IC-phase measurements in the
closed-cell-1 experiment. Figure 12 shows six scans with
fits to Lorentzian and Lorentzian-squared line-shape
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FIG. 12. Closed-cell-I scans in the IC phase. The dashed
lines are fits to powder-averaged Lorentzian line shapes, and the
solid lines are Lorentzian-squared. The 96.47-K scan was
counted. for 4 min/point. The 92.05-, 97.18-, and 97.24-K scans
are fitted to a single Lorentzian.

models. It is clear there is no trace of a sharp C-phase
peak coexisting with the JC-phase scans. Specifically, the
97.06-, 97.18-, and 97.24-K scans all have incommensura-
bility smaller than 0.022 A~!, the smallest value for € ob-
served in a single-phase IC-phase scan in either the
closed-cell-II or constant-temperature data. This provides
additional evidence that the composite structure observed
in the two later runs is not an intrinsic feature of the
C-ICT in this range of €. The poor statistics and uncer-
tainty of the background correction make it impossible to
state with any confidence that either model provides a
more accurate description of the profiles in Fig. 12.

The two bottom scans in Fig. 12 show only one peak, at
Qcomm +€. If a second peak at Q.,mm —€/2 is added, the
least-squares fit actually converges to a slightly negative
value for the satellite amplitude. Again this result is
dependent upon the background correction, and so we do
not attach great significance to it. As we discuss below,
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for a rigid domain-wall lattice, the amplitude of the
Qcomm —€/2 peak is expected to grow continuously with
decreasing incommensurability. This rather surprising re-
sult therefore requires further study.

In the previous communication of the closed-cell-I re-
sults,”® we showed that at small incommensurability the
ratio €/k of peak shift to peak halfwidth was on the order
of unity for small € (below ~0.02 A, Figure 13 shows
this ratio for all three runs. Unfortunately, the higher
statistics closed-cell-II and constant-temperature runs do
not reach a sufficiently small € to study this issue further.
However, they do show the same trend of €/k increasing
very quickly for €>0.02 A-'. The apparent systematic
disagreement between the data sets may well be due to the
absence of a baseline below 1.65 A~! in the closed-cell-I
scans.

One of the most interesting features of Fig. 13 is that at
the smallest values of € studied, the peak width « is on the
order of its incommensurability €. In the case of an or-
dered array of hexagonal domain walls separated by a dis-
tance of I, the main diffraction peak appears at a value of
€=4w/3l. Taking the correlation length L to be 1/k, we
see that the small € value of €/k~1 implies that L ~1/4.
Thus within a small numerical factor, the domain walls
are disordered on the length scale of their separation.

We conclude this section with an analysis of the satel-
lite peak, observable in Figs. 3, 8(b), and 9 at Q oum —€/2.
The position and intensity of this peak gives information
about the structure of the IC phase. We shall discuss it
using both domain-wall and continuous-strain-modulation
descriptions of the IC phase. At the outset, it is impor-
tant to note that these models are based on an adsorbate
with long-range order, and are therefore expected to have
only limited validity for the case of weakly IC-phase Kr.
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FIG. 13. Ratio of peak shift to peak width as a function of
peak shift for three data sets.
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We discuss the consequences of the absence of long-range
order at the end of this section.

As discussed in the Introduction, a weakly IC phase is
frequently described as a superlattice of C-phase regions,
separated by a regular network of domain walls. It is
straightforward to calculate the diffraction pattern of
such a superlattice for an assumed pattern of domain
walls.!%* Because the superlattice translation vector is
much less than that of the C-phase lattice, the density of
reciprocal-lattice points is much higher. However, only

- diffraction peaks close to the original C-phase spots have

a significant intensity. Increasing the size of the superlat-
tice reduces the mesh of the reciprocal lattice, so that the
strong diffraction peaks move closer to the C-phase posi-
tion.

Figure 14 shows three hexagonal domain arrays with
their strongest diffraction spots indicated. In all three
cases, the domain walls are oriented along the graphite
(110) directions. Because the superlattice translation
vector is not an integer multiple of the C-phase overlayer
translation, the C-phase diffraction peak is not allowed in
the IC-phase pattern.

The pattern in Fig. 14(a) is produced by moving hexag-
onal arrays of atoms closer by one graphite-substrate lat-
tice vector. The corresponding diffraction pattern consists
of three peaks of equal intensity about each C-phase loca-
tion. A powder pattern of this phase would consist of a
peak at Q.. —€ and a second peak, of twice the intensi-
ty, at Qcomm +€/2. On the other hand, if the hexagons
are moved apart as in Fig. 14(b), the powder pattern gives
peaks at Q.omm +€ and Q.omm —€/2, as observed in the
present experiments. The center of mass, however, still
does not move from the C-phase diffraction-peak position.
If a row of interstitials is added to the light wall structure
(producing a superheavy wall in the nonenclature of Kar-
dar and Berker?), the Q omm +€ peak grows stronger while
the two Qcomm —€/2 peaks weaken [Fig. 14(c)]. In addi-
tion, a peak at Q.omm + 5€/2 begins to appear.** Finally,
we note that if the atoms in a compressed IC phase relax
towards the nearest (V3 V'3)R30° site, the superheavy-
wall configuration of Fig. 14(c) is obtained.

This description of atoms pinned to adsorption sites is
not directly applicable to physiadsorbed monolayers be-
cause of the relatively weak site specificity. Accordingly,
one has to imagine a broad domain wall. For the purposes
of a specific calculation, we divide each locally C-phase
domain into hexagonal shells, and uniformly shrink the
nth shell, counting inward from the row of interstitials so
that its longitudinal motion is [1—tanh(n/A)]/2 sub-
strate sites, where A, the width of the wall, is an adjustable
parameter. The interstitial row can therefore be thought
of as a zeroth layer of atoms contracted by a —;— substrate
site. The inset of Fig. 15 shows the intensity of the three
most prominent lines as a function of A for a particular
superlattice size (superlattlce translatlon vector equal to 28
graphite sites, giving €=0.041 A,

If the parameter A is fixed, the satellite lines get weaker
when the domain walls are brought closer together and the
adsorbate approaches the limit of uniform compression.
Figure 15 compares the predicted evolution of intensity
for A=5.7 with the data from the fits of Figs. 10 and 11
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FIG. 14. Hexagonal domain structures (left) and correspond-
ing reciprocal lattices (right). Atoms on the three sublattices are
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indicates the intensity of the corresponding peak. Note that the
superheavy wall is made up of a light wall with added rows of
interstitial atoms between the C domains. The heavy- and
superheavy-wall configurations are identical to cases b and a,
respectively, in Fig.2 of Ref. 44.

to the Lorentzian model (solid symbols) and to fits to
Lorentzian-squared model (open symbols). The general
trend is correct, with systematic differences between the
different line-shape models contributing the major source
of uncertainty in this measurement. The scatter of the
data admits a variation of +1 in A. Alternative wall-
relaxation models (exponential and linear) give similar re-
sults. For wall widths A on the order of the observed
value, the inset of Fig. 15 shows that the Q.omm +5€/2
peak intensity should be comparable to that of the
Qcomm —€/2 satellite. The fact that no sharp peak is ob-
served at this wave vector is obviously a major failing of
the rigid domain-wall model.
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FIG. 15. Ratio of Q.omm —€/2 to Qcomm + € intensities vs mis-
fit e. Solid symbols are from fits to Lorentzian models, and
open symbols are Lorentzian-squared. The circles represent
data from the closed-cell-II scans, and the squares are from the
constant-temperature run. The smooth curve was calculated
from domain lattice diffraction patterns for superheavy walls
with width A=5.7 rows of Kr atoms. Inset shows the relative
intensities in a powder pattern of the three strongest reflections
for an array of superheavy walls as a function of A for incom-
mensurability é=0.041 A~!. The arrow shows the value of A
used for the solid line in the main figure.

An alternative description of the static structure of the
strain modulation in the IC phase considers the adsorbate
to be a solid with reciprocal lattice (7) whose atoms are
displaced by a weak elastic interaction with the substrate.

The atom which would be at a position R in the un-
strained adsorbate is moved to a position R+U(R). Ex-
panding U(R) in a Fourier series in substrate reciprocal-
lattice vectors {G} and retaining terms only to lowest or-
der in the displacement amplitudes gives a result for the
scattering cross section on a single infinitely large crystal-
lite,*
IS(K)|?< 3 8(K—7)
(7}
+3 3 [KUG)BK-7-GC), (6
(7} (G}
where
U(R)= > el G-T(RK)
(G}
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Clearly, the domain-wall description is equivalent to
this expansion [though not the small displacement limit in
(6)] if the coefficients {U(G)} are known for a particular
domain-wall configuration. The opposite limit, of a
sinusoidal modulation, is obtained by considering only the
longest-wavelength nonzero contributions to U(G). This
is a triple-g structure because the six equivalent graphite
{100} wave vectors contribute equally. Sinusoidal modu-
lation of an unrotated adsorbate therefore gives six modu-
lation spots around each adsorbate diffraction vector 7.
Figure 16(a) shows the geometry appropriate to a
compressed (V3 XV3)R30° monolayer. If 7 is increased
from its C-phase value Q. mm=| G | /V3 by a small
amount ¢, satellites will be seen in a powder pattern at
Qcomm —€/2, Qcomm +€ and Qcomm +5€/2. If the adsor-
bate is unrotated, the distortions will be longitudinal, i.e.,
U(G) will be parallel to G. Then the Qcomm —€/2 and
Qcomm +5€/2 satellites will have equal intensities and the
Qcomm + € satellite will have zero intensity. (In any event,
the Q.o.mm =+ € satellite is unobservable in a powder because
it is nearly degenerate with 7.)

Again, the relative intensity of main and staellite peaks
allows us to estimate the atomic displacements. From Eq.
(6) we see that in a powder pattern the ratio of peak inten-
sities

(a) ® GRAPHITE {100}
hd * KRYPTON (I0)
° J/3Ix /3
+ SATELLITES
[ ] o

(b) COMPRESSION IN (c) COMPRESSION IN
GRAPHITE [100] GRAPHITE [110]
DIRECTION DIRECTION

(») (o)
O, O,
FIG. 16. (a) Reciprocal lattice showing source of graphite

modulation satellites around Kr(10) diffraction peak for a uni-
formly compressed overlayer. (b) Motion of V3xV3 Kr peaks
for uniaxial compression in a graphite [100] direction. (c)
Motion of V3x V'3 Kr peaks for uniaxial compression in a gra-
phite [110] direction. The bottom two panels do not show
modulation satellites, only the main Kr reflections.
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—€e/2) -

I( comm _’
2 =2{K-U([100D)}?, (7

I(Qcomm +6)

where the factor of 2 arises from the degeneracy of the sa-
tellite peak. Using the intensities of the Q ,nm —€/2 and
Qcomm + € peaks and assuming that I_jl |(_fv we find that the
amplitude of each of the three triple-g displacement waves
varies from 0.25 A for the most prominent satellites to 0.1
A at the largest incommensurabilities studied.

Both the domain-wall and the sinusoidal-modulation
descriptions predict that in the weakly I/C-phase hexago-
nal phase a powder pattern should have a main diffraction
peak surrounded by two satellites of equal intensities. No
scan that we have measured has ever shown such a sharp
satellite line on the high-Q side. The fact that neither
model accounts for this absence prevents us from distin-
guishing between the domain-wall and sinusoidal-
modulation descriptions on this basis. Indeed, these ex-
periments provide no direct evidence in favor of the
domain-wall picture of the weakly IC phase.

The models discussed above have not taken disorder
into account. D. Fisher has pointed out that the
Qcomm + 5€/2 peak is generated by a higher-order Kr re-
flection than the main IC-phase peak or the Q ,mm —€/2
[see Fig. 16(a)].** Because the weakly IC phase is disor-
dered, the Kr(21) peak, occurring at a wave vector
\/71'(,0) is expected to be considerably broader and weaker
than the Kr(10) peak. Indeed, all of the scans in Fig. 9
have an excess intensity on the high-wave-vector side of
the principal peak, which might be attributed to this ef-
fect. Uncertainties in the background and graphite verti-
cal mosaic, as well as possible interference with the gra-
phite (002) peak and traces of 3D Kr, preclude a quantita-
tive analysis of the possible Q.;mm + S€/2 satellite intensi-
ty.

As discussed in the Introduction, one scenario for this
transition calls for an intervening uniaxially compressed
phase;? it is therefore of interest to determine the diffrac-
tion signal expected from such a phase. If the compres-
sion is in a graphite [100] direction (so that the domain
walls run in graphite [110] directions as in the hexagonal
case), then Fig. 16(b) shows that there will be diffraction
peaks at Q.;mm +€ and Q .omm +€/4 in the ratio of 1 to 2.
On the other hand, if the compression is in the [110]
direction, one, peak remains at the C-phase location while
another, of double intensity, shifts to higher wave vector
[Fig. 16(c)]. In either case, strain-modulation satellites
will appear, but they do not alter the fact that in a uniaxi-
ally compressed phase, there will be two adsorbate diffrac-
tion peaks with intensities in the ratio of 2 to 1. Direct
computations in the sharp domain-wall limit for the uni-
axially compressed case agree with this conclusion.’
Since this signature is not present in any of our diffraction
patterns, we conclude that there is no evidence for a uni-
axially compressed IC phase in this system.

In conclusion, we can understand the satellite peak ei-
ther as arising from a hexagonal array of superheavy
domain walls with a width of a few Kr lattice rows, or as
a consequence of a triple-g sinusoidal modulation, from
the graphite substrate. For a phase with long-range order,
an additional satellite should be present at Q omm =+ 5€/2.
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However, because the satellite is only observed in the
disordered IC phase, a high-Q satellite would be expected
to be much broader than the other peaks, rendering it
unobservable. Finally, there is no striped phase at the lim-
it of the resolution of these experiments.

VI. TRANSITION REGION

In the preceding two sections, we have discussed the
scans which are either in the C or the IC phase. Thereis a
narrow region in the more recent experiment with a com-
posite line shape having C- and IC-phase peaks. This was
observed in both the closed-cell-Il and the constant-
temperature data sets. In general, a composite line could
arise either from coexistence in a first-order phase transi-
tion between C and IC phases, or from a rounded transi-
tion. However, in order to explain the finite coexistence
range in the constant-temperature scans, pronounced
rounding is required since a sharp first-order transition in
the adsorbate would manifest itself as a discontinuous
jump from the C to IC phase as the bulk vapor pressure
was varied. Correspondingly it is clear that this rounding
phenomenon has an important effect on the line shapes
observed in the immediate neighborhood of the C-ICT.*

Figure 17 shows a series of scans at fixed temperature,
spanning this composite line-shape domain. In order to
test for possible two-phase coexistence, we have fitted
each scan as the sum of the two extremal line shapes. The
smooth curves in Fig. 17 show these best fits. These are
not specific line-shape models, but rather are point-by-
point sums of the experimental scans at 3.06 and 3.35
Torr. In the case of coexistence in a first-order transition,
the composite line shapes would be a direct sum of the
two extremal forms. The three middle scans in Fig. 17,
3.20, 3.22, and 3.25 Torr, all have significant deviations
(x2=4.7, 5.3, and 4.2; two parameters) from this simple
coexistence model. Specifically, they show an excess of
scattering between the two archetypal peak positions. It is
therefore clear that these scans show a continuously evolv-
ing IC-phase line profile plus a decreasing C-phase peak,
as the vapor pressure is increased, as one would expect for
a rounded transition. We emphasize that the poor agree-
ment with the three intermediate scans does not imply
that the rounding hypothesis is incorrect, but rather that
the 3.35-Torr scan does not show the smallest nonzero in-
commensurability in this sample. While the smeared tran-
sition precludes a direct determination of the minimum
incommensurability in this sample, the excess scattering
around 1.71 A~!in Fig. 17 clearly shows that the median
misfit € is less than the 0.022 A~! of the 3.35-Torr scan;
qualitatively, the IC-phase data are consistent with the
closed-cell-I results where the rounding was much less
severe. Specifically, from Figs. 6 and 12, it is evident that
in the earlier closed-cell-I data set there is no trace of
coexisting C and IC phases. Because the statistics of the
closed-cell-I scan are so poor, we cannot preclude a 1%
first-order jump.

We do not know, with certainty, the origin of the
rounding in the more recent experiments. The most likely
cause is simply, that the sample used for the 1981 run be-
came contaminated in the year between the time it was
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FIG. 17. Scans spanning the apparent coexistence range of
the constant-temperature data set. The smooth curves between
3.14 and 3.30 Torr, inclusive, represent sums of the 3.06- and
3.35-Torr scans, with the relative weights adjusted to give the
least-squares fit. The dashed line represents the distribution of
incommensurabilities derived from the inhomogeneous broaden-
ing model discussed in the text.

baked and used. The same substrate was used in the Xe
melting experiment of Ref. 28. This latter work had no
evidence of coexistence at 1.1 monolayers. However, the
measured liquid correlation length shows rounding
behavior above ~200 A. It is also impossible to exclude a
first-order melting transiton to a liquid with a correlation
length larger than 200 A in the Xe work. For compar-
ison, the separation of domain walls in an ordered hexago-
nal array with peak shift € is I =44 /3¢, which is equal to
190 A for the 3.35-Torr scan, the smallest incommensura-
bility observed without a coexisting C-phase line. The
fact that these two different experimental systems, the C-
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ICT of Kr and the melting of the IC-phase Xe, have com-
parable length scales for rounding suggests that the same
mechanism is responsible in both cases. As noted in the
section on line-shape analysis, impurities on the surface
enter this problem in the manner of a random field. If
such effects are important then one would expect
Lorentzian-squared profiles very near the C-ICT. In fact,
as discussed previously, the Lorentzian-squared fits are
quite good at very small incommmensurabilities. Howev-
er, a systematic study as a function of surface impurity
concentration would be necessary to establish this effect
definitively. Steps on the substrate will be less significant
as a source of rounding because of their large separation
(1900 A).

We establish upper limits on the widths of the distribu-
tion of critical points as follows. From the data of Fig.
17, the relative C-phase intensity is 0.74 at 3.14 Torr and
0.26 at 3.22 Torr. A Gaussian distribution of critical
pressures would produce a C-phase intensity proportional
to an error function. Using the values above, we find a
mean critical pressure at 3.18 Torr and a HWHM of 0.07
Torr. An equivalent analysis of the closed-cell-II data
based on the C-phase intensity from Fig. 7(b) leads to a
rounding in temperature of 0.24 K HWHM. For the
closed-cell-I data of Fig. 7(a), no coexistence was observed;
however, we may establish an upper limit of 0.20 K
HWHM. Indeed all of these numbers are upper limits be-
cause they ignore any intrinsic evolution of the line shape
as critical scattering near melting.

This distribution of critical pressures will contribute an
inhomogeneous broadening to the IC-phase line shape, be-
cause one particular vapor pressure will produce diffrac-
tion lines at different incommensurabilities.*® In order to
assess the importance of this mechanism in producing the
observed broad IC-phase lines, we argue as follows: At
some given temperature 7, suppose that the distribution
P(u,) of critical chemical potentials is Gaussian about .
with HWHM of (In2)!"?Ay,, i.e.,

P(Au'c)':A,u';lTr_l/zexp{ [(pe ":u’cO)/Ay‘c]z} .
Then the fraction of crystallites in the C phase is
%{ 1—erf[(p—pc0)/Bucl}

Inserting Eq. (1), we see that for a specified chemical po-
tential p the probability density for misfit € is given by

Ple) 3¢ p—peo—(e/4) |’
€)= ——"8¢ - |
Au 724> P Au,
+% 1—erf “;:” 8(e) . @8)

Taking the experimental value of 4=0.0134 A~' and
the estimate f Ap, =(94 K)(0.09 Torr)/(3.18 Torr)=2.6 K
discussed above for the constant-temperature data, one ob-
tains the probability density shown in Fig. 18. These are
not model line shapes; they do not contain the sample-
size-limited diffraction peak width, vertical mosaic,
strain-modulation satellites, or phonon wings. It is impor-
tant to note that because the distribution of incommen-
surabilities vanishes near €=0, the scattered intensity
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FIG. 18. Probability density of misfit € based on a Gaussian
distribution of critical points as discussed in the text. The heavy
vertical lines at €=0 represent the 8(¢) term as the peak height
of a Gaussian with HWHM of 0.0016 A~!, as appropriate for
the C-phase peak. The distribution of critical chemical poten-
tials has HWHM of 2.1 K.
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peaks at finite . The minimum observed peak shift €
under these circumstances will be on the order of A(Apu )8,
0.018 A~! in the present experiment. This is consistent
with the position of the peaks of the (3.20—3.25)-Torr
scans in Fig. 17.

We now compare the width of the inhomogeneously
broadened distribution of € with the experimental line
shapes outside of the composite domain. The dashed line
in Fig. 17 shows the distribution expected for
T1n(P/P,)=5 K, appropriate to the 3.35-Torr scan. It is
clear that the calculated distribution of € is significantly
narrower than the observed line shape. At
TIn(P/P).=15 K, shown in Fig. 18, we see that the dis-
tribution of € has HWHM 0.0016 A~', identical to the
width of the C-phase scans. This may be compared with
the 93.0-K closed-cell-II scan in Fig. 9 or the 96.47-K
closed-cell-I scan in Fig. 12, both of which exhibit peaks
which are very much broader than the C-phase Bragg pro-
files. Finally, the last panel of Fig. 18 shows that the ex-
pected distribution is nearly Gaussian, in contrast to the
broad wings experimentally observed for scans in this
range of incommensurability.

VII. FINAL OBSERVATIONS

In the preceding sections, we have shown that the C-
ICT in a Kr monolayer on graphite takes place via a
phase with a large degree of disorder. Indeed, we believe
that this is the most important feature of this transition
and that the discussion of any features such as satellite
peaks, the functional form of misfit versus driving pres-



3528

sure, or the question of whether the transition is continu-
ous, must be phrased within the context of a system which
loses its long-range order in a most dramatic fashion. As
discussed in the Introduction, several theoretical accounts
of a C-ICT based on disorder have appeared since our
original discovery of the effect.

One of the most interesting of these theoretical models
is that of Huse and Fisher, who suggest that if the asym-
metry in the domain-wall energy is large, the C-ICT
should be a melting transition in a new universality
class.! Specifically, they predict that the peak in S(q)
will move from its C-phase value in a critical way:
€/k=const=0(1). Indeed our experiments do show that
€/k—1 as the transition is approached from the IC phase.
However, the temperature dependence of € and « are dif-
ferent except perhaps in an extremely small region near
T.. Thus the validity of the Huse-Fisher model remains
to be tested experimentally.

We close this paper with an observation on the variation
of the critical pressure as a function of temperature. The
Kr/graphite C-ICT has been studied between 52 and 130
K with critical pressures varying by a factor of 5x10°.
Fain et al. have fitted critical pressure as a function of
temperature by

P.(T)=Pyexp(—q/T),

with Py=4.5%10° Torr and g=1990 K.!® However, they
are unable to account for the observed constancy of g over
a factor of 2.5 in temperature.

We suggest a different functional form for P.(T) which
makes contact with current theories. The C-ICT in a
monolayer film is driven by the chemical potential of the
reservoir of 3D gas in contact with the adsorbate. The
chemical potential of a monatomic ideal gas of N atoms
of mass m at pressure P and temperature T is given by
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FIG. 19. Comparison of the critical chemical potential u. at
the C-ICT. Solid circles show LEED results, Refs. 15 and 18;
upright and inverted triangles show vapor-pressure isotherms,
Refs. 14 and 47, respectively; open squares show x-ray diffrac-
tion, Ref. 16; solid square shows this work (94.0 K and 3.18
Torr); diamonds show heat capacity, Ref. 24. The error bars
below 100 K represent a temperature uncertainty of +1 K; on
the heat-capacity results, the error bars reflect larger tempera-
ture uncertainties due to the width of the heat-capacity peaks.

PETER W. STEPHENS et al. 29

where k and h are Boltzmann’s and Planck’s constants,
respectively. Figure 19 shows the chemical potential u, at
the critical point for the data surveyed by Fain et al., to-
gether with the present work. p. appears to be constant
below about 90 K, and decreases with further increase in
temperature. It is appropriate to measure p with respect
to the binding energy E, of an atom in the C phase. If we
take the Kr-graphite binding energy as — 1466 K (Ref. 48)
and the Kr-Kr energy as 3Vyy (4.27 A), where Viy is the
Lennard-Jones potential appropriate to Kr, the binding
energy is (—2000+10) K.#

Pokrovsky and Talapov® have given an expression for
the critical chemical potential as a function of T for a
one-dimensional C-ICT which qualitatively matches Fig.
19. We regard the value of E given above as a crude esti-
mate, and so we are willing only to say that it is very sug-
gestive that the C phase disappears when u.-E, ap-
proaches zero. On the other hand, it is interesting to note
that below 90 K, u, is approximately temperature in-
dependent. Therefore over most of the experimental
range, the data appear to be in the low-temperature limit
insofar as fluctuations are not sufficient to alter u. signifi-
cantly.

As discussed earlier in this paper, the extra entropy in
breathing modes of the HIC phase may stabilize it relative
to the SIC phase, leading to a weakly first-order C-HIC
transition. Using arguments based on the work of Vil-
lain,> Coppersmith et al.’ have shown that the C-HIC
transition takes place at a chemical potential which is
lower than that at which the C-SIC transition would have
occurred by an amount on the order of T /I, where [, is
the number of graphite lattice constants between domain
walls at the transition. From Fig. 15 we see that /, is at
least 65 for the data reported here, so that the critical
chemical potential for the C-HIC transition is expected to
be insignificantly reduced from the value calculated for a
SIC phase. Clearly, there is a need for more accurate
measurements of 1. (7T) at higher temperatures.
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APPENDIX: POWDER-AVERAGED
LINE SHAPES

Line-shape analysis is an important aspect of this and
related work. The asymmetric “sawtooth” shape is
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perhaps the most visible consequence of the distribution of
orientations of 2D scatterers, but the shape of the leading
edge is also affected. The original Warren model® and its
modifications®' contain several uncontrolled approxima-
tions, and it is not at all clear how they should be extend-
ed to other than Gaussian line-shape models. We have de-
rived a general technique for calculating powder-averaged
line shapes, which we present here in detail.

Because the adsorbate extends into only two dimen-
sions, there is no constraint on the momentum transferred
perpendicular to the layer. The scattering cross section
for any given crystallite is extended along a line perpen-
dicular to the crystallite, and therefore contributes to the
experimentally measured signal at the wave vector where
that line crosses the scattering plane.

We start by describing a given crystallite in terms of its
Eulerian angles o, X, and ¢.° X and o are polar and az-
imuthal angles defining the crystallite ¢ axis (perpendicu-
lar to the layer) relative to the average c-axis direction,
and ¢ is the rotation of the crystallite about its ¢ axis.
The transform from space axes to body axes is given in
Eq. 4-46 of Ref. 51. We choose the scattering wave vector
(—i to be along the space X direction and transform it into
body axes (£, ', and £’) as follows:

Q=0%=0Q(cosw cosd —sinw cosX sing)X’
+ Q(—cosw sing —sinw cosX cosd)y’
(A1)

We limit attention to cases for which the scattering
cross section is symmetrical about each zone center, e.g.,
Gaussian or Lorentzian lines about some given wave vec-

tor go. The scattered intensity on one crystallite then may
|

+Q(sinwsinX )2’ .

2r w/2 2r
Q)= [ "do ["ax [ dgPOOI(Q%c0s ) +q5 —20Qq0cost cosh)F(Q siny) ,

where the  effective tipping angle @ is defined by
siny=sinw sinX, and the coefficient of the 2Qg, term is
simplified to the form shown by an appropriate choice for
the range of the ¢ integral. For some simple line-shape
models, the integral over ¢ can be performed analytically;
for now, we define

L@y= [ 2+43
(Qo)= [ d$I(Q5+q5—20gocoss) .

We next consolidate the w and X integrals by placing the
definition of 9 into a Dirac 8 function and integrating.
This results in

(@)= [ dy PW)L,(Q cosp)F(Qsiny) ,
where

P'(y)=cosy [ ;/2dXP(X)(sinZX—sinzz/;)_"l/z ,

(A6)

(A7)

thereby reducing the number of integrals over crystallite
orientations from three to two. Because we are presently
concerned only with monolayer films, we drop the
F(Qsiny) term from the analysis. By taking P(X) from
(A4) for ZYX, the distribution over effective tipping angle
P'(y) was integrated numerically and found to be of the
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be written as

IQ=I([(Q; g0+ Q'] V)IF(Q",) ,

where Oy, Q) and Q, are wave-vector components on the
given crystallite, given by (A1). The F(Q,) term arises
from interplanar correlations in multilayer films.

We next consider the distribution of w, X, and ¢ which
describes the powder. In the present case, ® and ¢ will be
considered to be uniformly distributed between O and 27,
and X distril;r%ed according to a probability density P(X)
such that P(X)dX=1.

For a completely random powder (the case treated by
Warren in Ref. 30),

P(X)=sinX .

(A2)

(A3)

For ZYX graphite, manufactured by exfoliating a sample
of highly oriented pyrolitic graphite, the crystallites have
a strong preferential ordering, and P(X) is measured by
the intensity of the graphite (002) peak in a rocking curve.
Such a measurement typically gives a Gaussian profile
I(®)=Iye ~®/5” with HWHM =Vv'In2§, on the order of
9°. If this intensity is proportional to the probability that
a crystallite has X =® with the body X' in the scattering
plane, then the probability that a crystallite has X =&
with arbitrary £’ «e~®/8sin®. For £ somewhat small-
er than 7 /2, this may be normalized to give

P(X)=(2/E%)exp—(X /€)3sinX . (A4)

For Grafoil substrates a combination of (A3) and (A4) has
been used.

The powder-averaged intensity Ip(Q) is obtained by
substituting (A1) into (A2) and integrating over o, X, and
#. Hence,

(A5)

r
form

P'()=(V'7/E)exp— (¥ /€)(cosyh) /2, (A8)

with a fractional error less than 10~3. For the Warren

case of a uniform powder,
P'(Y)=(m/2)cosy) .

For the C peaks, we have used the finite-size model
described in the main text. Equation (5) for I,(Q,) was
substituted into (A7) along with (A8) for the effective
vertical mosaic distribution and the integral over i per-
formed numerically.

It is of interest to compute several other cases. For a
Gaussian peak normalized to unit integrated intensity, the
response of one crystallite is

(A9)

1Q")=(my)'exp[ (| Q"—To | /7)1, (A10)
and I, is approximately given by
1.(Q0) =7~ (mQoqo) ™' *exp{ —[(Qo—go) /¥ I’} , (A1D)

where the first term in the asymptotic expansion of a
Bessel function was wused. This is accurate for
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272Q0q0 << 1. First consider the random powder case.
Substituting (A9) and (A 11) into (A7), we obtain
2]

172
T
(A12)

o

Ip(Q)=

Q cospp—qo

w/2
x [ dilcosy) Zexp | — y

Following Warren,?” we note that because the exponential
is sharply peaked, (cosy)!”? may be approximated by
(go/Q)'%. By expanding cosy in the exponential, the in-
tensity reduces to

Ip(Q)=(7w/2Y)V?Q 3* F[(Q —q0) /Y] ,
where

F(a)= fo exp[ —(x%—a)*)dx ,

(A13)

|

Q—qo
Y

172 —(cos™
Q)= |-2| Lr [eXp (o8
Y90 §Q l, 9020 .
This is the modified Warren line shape used in Refs.
31,35, and other work.
This scattering cross section must be convoluted with a
spectrometer-resolution function to obtain the experimen-
tally measured intensity,

Ineas(Q)= [ d*Q'L(QRQ-Q") .

(Al6)

The resolution function is typically a Gaussian ellipsoid,
R(3Q)=( ~lexp[ —(8Q, /8K, )*]
—(8Q,/8K, )],

m/?8K, 8K, 8K,)

Xexp[ —(6Q, /8K, )2]exp[

where 8Q,, 8Q,, and 8Qz are components of Q Q along
Q, perpendicular to Q in the scattering plane, and perpen-
dicular to the scattering plane, respectively.”> The 8K are
controlled by the collimation of the radiation and by the
monochromator and analyzer crystals. In general, this
convolution has two effects: it broadens the line shape if
8K, is larger than the intrinsic width of the diffraction
peak, and it affects the peak intensity through the familiar
Lorentz factor. In the present case, I,( Q') depends only
on the magnitude of Q (as long as 8Q, << Q). The trans-
verse resolution integrals therefore drop out. If we let
8=8K,, the longitudinal resolution HWHM/(In2)!/?, we
can carry out this convolution analytically by noting that

1 © Q—-Q' Q'—qo
5V J_ d@rexp 8 ¥
) RN L (A17)
7/2+82 (’}/2+82)1/2

Therefore, to the level of approximation used in deriving
(A13) and (A15), the spectrometer resolution may be in-
corporated simply by replacing ¥ by (y*+8%!/2 in (A13)
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in agreement with Warren’s Eq. (36).”> We have numeri-
cally tested the approximations leading to (A13). For a
crystallite size of 2000 A, the results of (A12) and (A13)
differ by no more than 5x 10~* of the peak intensity. For
smaller crystallite sizes, the agreement is slightly worse,
1% at 120 A (appropriate to Grafoil).

For a Gaussian peak and the vertical mosaic distribu-
tion (A8) of ZYX, we obtain

]

Q)=(&y)71(Qgo) "2
(A14)

Q cosp—qo
14

/2 _ 2
Xfo dipe =¥ exp | —

We again make the approximation of expanding cosy in
the second exponential and replacing v in the first ex-
ponential by its most probable value, cos~'(go/Q). This
results in the expression

1q()/Q )2/527 do <Q

(A15)

M
and (A 15).

In the case of ZYX substrate, if the effective resolution
is on the order of 0.01 A~ 1 HWHM, as is the case for
most of the rotating-anode expenments, the error in re-
garding exp[ —(1/&)?] as a constant over the v integral is
significant. The resolution can still be integrated analyti-
cally. The result is

Q)___é- 7’ _+_82)—1/2 Qq —1/2

/2
Xfo dyexp | —

! ¥ [0—(go/cop)P
& 8+ (y/cospp)? ’

(A18)

This is the form that we have used to fit data from a
rotatmg -anode source with resolution on the order of 0.01
A~ HWHM.'6

We wish to check the limiting behavior of (A18) in two
important cases. For laboratory x-ray or neutron spec-
trometers, the longitudinal resolution 8 which is deter-
mined by slits and/or mosaic crystals, is proportional to
cos6, where 20 is the scattering angle. If y <<§, this in-
troduces an overall 1/cosf term in (A18). If £ is very
small, the peak intensity is then proportional to (sin26)~
as expected for a cylinder of scattering. For large §,
the exp[ —(¥//£)*] term becomes sensibly constant over
the range of integration, and we recover the Warren
result that the peak intensity is proportional to
(sin20)~'(sing) ~ /%

As discussed in the text, we have fitted the IC-phase
scans with several different line shapes. For a Lorentzian,

with 1(Q")=(k>+ | Q' =G| D™},

I.(Qo) =27 (K> + Q5 +43)—(20Q0g0)*1" 2. (A19)
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In order to perform fits with this form of I, we have per-
formed the integral (A7) over i numerically. If finite
spectrometer resolution must also be taken into account
|

IS(Q)=—% f_ww dQ'exp

)

271?3 J7 ag [ dyexp

As before, we make use of the fact that the exponential is
sharply peaked to replace cosy elsewhere by Q'/Q, and
find that for the ZYX substrate,

LQ)=0 [ d0'L(Q"15(0,0",

where Ip(Q,Q’) is given by Eq. (A18), with Q' substituted
for gy and y set equal to zero. A similar expression may
be derived for an isotropic powder. This is a convenient
form for numerical computation, because the parameters
entering into Ip(Q,Q’), vertical mosaic £ and spectrometer
resolution §, are generally not free parameters. Hence
Ip(Q,Q’) may be tabulated and the convolution performed
relatively rapidly. The form of (A20) is interesting in that
it leads us to regard the substrate vertical mosaic as an ele-
ment of the spectrometer-resolution function rather than
an intrinsic feature of the experimental cross section.

For fluids with very large correlation lengths, the
~2000-A mean crystallite size will cut off the long tail of
the spatial correlation function, leading to a broadening of
the scattering peak. One can model this effect by multi-
plying the assumed spatial correlation function,
r~12exp(—«kr), by a Gaussian, exp[— (/L )?]. This mul-
tiplication in real space is equivalent to a convolution in
reciprocal space. For the assumed Gaussian form of the
finite-size cutoff, this convolution can be incorporated
into the spectrometer resolution as discussed above merely
by replacing ¥ or 8 by (8>+72)!/? in Egs. (A14) or (A20),
as required.

(A20)

_ ‘Q—(Q’/cosg)
)
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for a Lorentzian line shape, the integrals over Q' and ¥
may be performed together as follows. For an arbitrary
form of I.(Q,), we may write

2
_ [Q:L] ]fo"/2d¢1c(Q'cos¢)P'(¢)

2

(cosyy)~I(Q")P'(¥) .

I

The circular integration can also be performed analyti-
cally for the Lorentzian with arbitrary C, term and for
the square of a Lorentzian. Consider the former. If the
intensity from a single crystallite is

(K24 Q' =g | 24+C4 | Q—Go | /631,

and ¢ is defined as the angle between Q' and G, then the
integral from 0 to 7/6 in ¢ is

Ic(Q)=(goQ) (1 =3C) "V J(B_)—J(B)],

where

J([3)=%(1+2/ﬁ)"’2tan_1(1+2/[3)_’/2(2—\/§)
and
(qO_Q)2 K2 1
= 1+(1—-3Cy)17?].
P="0000 Tag00C, | 7

The vertical mosaic and (if necessary) spectrometer-
resolution integrals were performed numerically as
described above.

The Lorentzian-squared line shape is a special case with

C4=%’
KIZ(K12+q2)—2=%(K2+q2+q4/4k2)—1 ,
if k=«'/V2.
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