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We present a new method for the ab initio calculation of the cohesive and structural properties of
solids. The method is based upon a linear combination. of atomiclike orbitals (LCAO). Thus it
possesses the physical appeal of traditional LCAQ approaches. The method is a "first principles"
one in the sense that no adjustable parameters enter the calculation. The required overlap integrals
are calculated directly in real space. The one-electron potentials are derived from atomic properties
and correspond to "ab initio" pseudopotentials. Another aspect of the method is that it does not in-

volve a fully-self-consistent-field solution of the Schrodinger equation. Rather, the total energy of
the system is obtained by using a noniterative approach based explicitly on the variational principle
in the density-functional formalism. The method is applied to an archtypical covalent system: the

diamond crystal. Several ground-state properties —including the cohesive energy, lattice constant,
the bulk modulus, and the derivative of the bulk modulus with pressure —are computed. The com-

puted lattice constant and bulk modulus are within 1—2% of the experimental values and the com-

puted cohesive energy is within 10% of the experimental value. Also, we present a frozen-phonon

calculation for the optical phonons at the Brillouin-zone center and obtain agreement to within 1%
of the experimental value.

I. INTRODUCTION

If one were to ask what the most significant unsolved
problem in solid-state physics is, several issues could be
raised. Presumably a list of these issues would include the
problem of determining the atomic or structural coordi-
nates for nonperiodic systems or partially periodic system.
The structure is not known or poorly known for a larger
number of such systems. Examples of these include
solid-solid interfaces, solid surfaces, extended or point de-
fects in solids, amorphous materials, etc. Without
knowledge of the structure, our understanding of these
systems is at best limited. Another related issue, perhaps
more global in nature, is the calculation of the energetics
of solid-state systems. Obviously, if one knew the energy
as a function of atomic positions for solid-state systems,
one could calculate the preferred crystal structure, the
mechanical properties, the phonon spectra, etc. Moreover,
one would like to know the total energy of the system it-
self in order to compute the cohesive energy or the heat of
formation for compound solids. This latter issue has been
raised as "the problem" of solid-state physics in the sense
that given a solution, one could predict solid-state proper-
ties of any material, real or hypothetical, from theory.

With respect to these two issues, a major effort in a
search for a solution has centered on empirical methods.
These methods include such chemical coordinates as
atomic size, orbital radii, electronegativity, etc. These
approaches have great strengths in that they can be widely
applied without the need of a large computational frame-
work. For example, often it is possible using atomic size

considerations to rule out hypothetical crystal structures
or to rationalize existing structures. Contemporary exarn-
ples of these methods include the Phillips —Van Vechten
dielectric theory of semiconductors, the Bloch-Simons or-
bital radii, the metallurgical scheme of Miedema, " etc.
While these schemes are quite valuable, often they reside
in a completely empirical framework and it is not possible
to attach a "definitive" physical interpretation of their sig-
nificance.

It is in this sense that the recent use of *'ab initio"
methods to compute the structural and cohesive properties
of elemental solids and simple compounds is so promis-
ing. ' lt is now possible to compute the following with
good accuracy (e.g., to within a few percent): the cohesive
energy, the crystal structure, the lattice parameters, the
mechanical properties, and the phonon spectrum. Howev-
er, many complex solids and most compound solids reside
outside of the "state of the art" with respect to energetics.
Moreover, the question of examining nonperiodic systems
has been only touched upon. ' In this paper we present a
method which should be applicable to some of these ques-
tions and move our capabilities for calculating energetics
beyond the current state of the art.

The chief thrust of our effort is to avoid complications
associated with the solution of the single-particle
Schrodinger*s equation rather than improve upon existing
many-body formulations for exchange-correlation effects.
In most respects for the ground-state properties, a practi-
cal method for the solution of Schrodinger's equation re-
sides at the center of difficulty. In our method we shall
follow the approach of a number of workers and use a
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Gaussian orbital description. "' Gaussian bases can
be very efficient, especially in conjunction with pseudopo-
tentials. In addition to the physical appeal of a local
b8sls, once thc potcnt181 1S cxpandcd 1Q GRUsslans Rll thc
needed matrix elements can be computed in an analytical
fashion~ %'h1ch . leads to enormoUS gaIQ 1Q coIQputatlon
speed. However, the price paid for the gain is the necessi-
ty of fitting the potential in terms of a Gaussian expan-
sion. For self-consistent methods, if an equation-of-state
curve ls to bc calculated, a fully self-consistent band st1'llc-

turc Dlust bc dctcrIIlincd at cRch volunlc po1Qt 1n qucstlon.
Not only is this procedure computationally time consum-
ing, it requires a full reexpansion of the potential in terms
of Gaussians for each volume and for each iteration
within that volume parameter. To date, the fitting of po-
tentials with Gaussians (which is a multidimensional
parameter-space nonhnear least-squares fitting problem)
remains one of the difficult features of the Gaussian basis
approach. Small fitting errors in percentage in the poten-
t181 CRQ lcRd to 1RI'gc cI'I'01s 1Q thc cohesive Rnd stI'UctUI'al

properties. In our approach we eliminate the need for the
full self-consistency iteration cycle by making use explicit-
ly of the variational principle in the density-functional for-
malism. The density-functional formalism states that
the ground-state energy E««I of the system for a given set
of nuclear potentials is a unique functional of the charge
density p(r), and E„„i[p]is a minimum for the gmund-
state charge-density function. We demonstrate that one
can obtain a highly accurate E„„iwith a reasonable p(r ),
provided that the correct functional E„„,[p] is employed.
For the case of diamond, p( r ) is taken to be the first itera-
tion output chax'ge density.

In developing our method we sought a system which
would test the approximations of our method, yet would
not bc Unnecessarily conlplex. %C have chosen the dia-
mond crystal for our prototypical system. The system is
sufficiently complex that the pseudopotential requires a
large s-p nonlocal component. Also, the wave functions
are sufficiently localized, and the charge density is so
highly directional, that a plane-wave expansion will not be
as efficient as a Gaussian expansion. Thus the localized
basis with a highly nonlocal potential will be tested in a
significant fashion. However, the system does not contain
stI'ong d-wave coIQponcnts, Rn«I wc %ill not have to bc
concerned with this additional complexity.

With respect to having an experimental and theoretical
data base for comparison purposes, the diamond crystal is
8 goo«I cilolcc. A number of ban«I structures exist Rnd 1c-
cent state-of-the-art calculations exist for the total energy
of the diamond crystal. ' ' Experimental data exist for
most ground-state and optical properties of diamond. On
the basis of this existing data, the method appears very
promising. Our calculated cohesive energy for diam. ond is
within 4% of the state-of-the-art theoretical calculations
and within about 10% of thc experimental value. Our cal-
culate«I lattlcc coQstRQt and bUlk IIlodulus Rrc %'Ithln

1—2% of both calculated and experimental values. We
have also performed the first ab initio calculation of the
optical-phonon frequency for diamond at the Brillouin-
zone center; our value is within 1% of the experimental
value. The typical deviation of 1—2% from the most re-

cent theories indicates that our method is probably just as
accurate; however, the computational effort is reduced by
at least an order of magnitude.

We will divide our discussion as follows: In Sec. II the
method of calculating the electronic charge density will be
discussed. The potential construction and the solution of
thc Schro«iingcr equation will bc outl1nc«I. IQ Scc. III thc
method of calculating the total energy of the system will
be discussed. In Sec. IV results will be presented for the
d1RIQond systcID %'ith rcspcct to thc band stluctUI'c, cqUR-
tion of state, and phonon spectra. In Sec. V we will
px'cscnt soIIlc concluding remarks.

II. ELECTRONIC-CHARGE-DENSITY
CALCULATIONS

In this section we describe our method for obtaining an
electronic charge density which is then used for calculat-
ing the total energy of the system of interest.

Traditionally one of the most difficult aspects of any
clccti'onIC sti'Uctulc dlscusslon for thc solid state was tllc
construction of an accurate one-electron potential. For-
tunately, over the last several years a number of advances
have been made. It has been shown, at least for ground-
state propert1es, that the local-dens1ty Rpprox1matIOQ 1n
the density-functional formalism is very accurate in treat-
ing exchange-correlation effects in solids. The advance of
ab initio pseudopotentials ' has greatly facilitated elec-
tronic structure calculations both in terms of accuracy and
PI CC1S1OQ.

From Rn atomic stI'UctUIc calculation, Rn 1onic pscu«IO-
potential may be determined which can be employed for
highly accurate solid-state or molecular calculations. The
essential feature of these potentials is that no parameters
are fit to bulk properties. Our work on diamond employs
an ionic pseudopotential which is based on the "Hamann-
Schliiter-Chiang" formalism. The potential has been
Used slicccssfiilly 111 tllc dcscriptlo11 of glRpllitc Rlld iiltcl'-
calated graphite.

With thc ionic pseudopotential fixed, wc form a total-
input potential VT with a local-density approximation for
exchange and correlation:

Vr(r)= V~„(r)+VH(r)+p„, [p(r)],
where V;,„is thc ionic component which in the pseudopo-
tential framework may have multiple l components, VII is
thc Hartree or clcct1OQ-clcctI'on clcct1ostat1c potcnt181
from Poisson's equation, and p„, is the effective
exchange-correlation potential, which is a function of the
charge density p(r ).

As a first step in forming the total-input potential, we
constructed 8 solid-state chaIgc density by sUpcrpos1ng
RtoImc charge dcnslt1cs. This step 1s Qcccssaly to handle
the effective exchange-correlation potential. Unlike the
Hartree or ionic potentials which can be formed by a su-
pcrposlt1on of Rtonlic potcIltlals, wc Blust flist sUpcrposc
the atomic charge densities and then form an exchange-
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correlation potential for the solid state. For diamond, we
used pseudoatomic sp wave functions for this purpose
and expanded the pseudoatomic wave functions in Gauss-
ians. As we shall demonstrate, our results are at worst
weakly dependent on the initial charge density used; ' an
atomic s p configuration would work equally well. Us-
ing four Gaussians we were able to obtain a properly nor-
malized wave function fit to within 1% of the actual wave
function. This accuracy was achieved over a range of
several angstroms near the radial distribution function
maximum. The coefficients for the wave function are
given in Table I. With these wave functions, we con-
structed a charge density in the diamond structure, calcu-
lated an exchange-correlation potential, and fit the
exchange-correlation potential with Gaussians localized
on each site. It should be noted that off-site Gaussians are
not required for an accurate description of the exchange-
correlation potential from the atomic charge-density su-

perposition.
In Fig. 1 we display a charge-density contour map from

the superposed Gaussian wave functions. This density
was constructed with a plane-wave expansion via a
Fourier transform of the Gaussian wave functions. The
plane-wave expansion does not rapidly converge owing to
the localized nature of the carbon wave functions. How-

ever, since the Fourier transform of a Gaussian is trivial,
and since many plane waves can easily be handled for
such maps, this is not a serious problem. For reasonable
convergence, we took all the reciprocal-lattice vectors
whose lengths were less than 12 (a.u. ) '. For the known
lattice constant of diamond, this corresponds to 2229
plane waves.

One obvious problem with the charge density in Fig. 1

is that it has no bond charge associated with the solid

state, i.e., no charge-density local maximum exists along
the bonding direction. If one examines the Fourier coeffi-
cients of our superposed charge density, the coefficient
corresponding to the (2'/a)(2, 2,2) component vanishes,
contrary to x-ray experimental data. This discrepancy is
well understood and arises from the absence of any bond

charge from a superposition of on-site densities. Thus this
zeroth iteration density would not be adequate for the to-
tal energy evaluation.

Given the ionic pseudopotential from the Hamann-

Schliiter-Chiang scheme, the Hartree potential from the
atomic charges, and the exchange-correlation potential
from the superposed atomic charges, we can then form the

total "crystalline" potential. Owing to the nonlocal or I-

dependent nature of the pseudopotential, we may have s,
p, d, f, etc. potentials. For carbon only s and p potentials
are required, and we may write the total crystalline poten-
tial as

VT ( r ) = Vi. ( r ) +Po [V, ( r ) —VI(r.)]Po, (2)

where Po is a projection operator for s-wave symmetry, V,
is the s component of the potential, and VL is the local po-
tential, i.e., the p or higher I component of the potential.
As the screening potential is local, we may think of Vl as
containing all the electron-electron potential terms
enumerated in Eq. (1).

In order to expedite the evaluation of various matrix
elements, it is necessary for us to expand accurately the
potential in terms of on-site Gaussians. We do this by fit-
ting VI and V, —VI separately. V, —VL can be difficult
to fit, since often its dependence with distance is almost
"exponential" in character. We do not use the usual gra-
dient methods for global minimization problems, but rath-
er a Monte Carlo simulated annealing method as outlined

by Vanderbilt and Louie. The expansion coefficients are
given in Table II for both VL and V, —VL. In Fig. 2 we

present the components of the potentials. The total poten-
tial can contain errors in fitting which in our approach are
formulated as uncertainties in the trial screening potential,

VH„,[p;„]. As will be discussed in detail in Sec. III, when

TABLE I. Atomic wave functions expanded in Gaussians for
an isolated carbon atom. The atomic configuration is for an sp'
atom. The expansion has the form

rR =r'+'g, a;exp( b;r )l. 4~ —Normaliza. tion is such that
4m. (rR)2dr = 1.

0

s state p state
I I I I

—0.632 27
—0.479 52
—0.10109

0.612 95

0.605 19
0.251 49
0.100 88
2.673 38

20.38079
0.885 44
1.847 16
0.075 78

0.374 54
1.063 46
3.444 80
0.11627

FIG. 1. Superposed charge density of atomic carbon (sp con-

figuration) in the diamond structure. The charge density is in

units of e/(a. u. ) . The contour spacing is 0.05. The bonding
directions are illustrated by the straight lines.
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correctly formulated E„„jof a system is solely a function
of the density p and the external ionic potential, V,„„i.e.,

j j j j I j j.;j j
j

! I j j I j j j j
)

j j j j I j j j j
t

j j j j I j

hV x 100

any errors in VT (either in terms of our approximations in
the construction of the screening potentials or in the fit-
ting procedures) will only result in second-order influences
4

~n ~total

B. Solution of the Schrodinger equation
with the use of local basis

Given the expansion for the total-input pseudopotential
in Table II, we can proceed to solve the Kohn-Sham equa-
tions. Our basis consists of Bloch sums of Gaussian orbi-
tals. ' The orbltals are taken to have s- and p"like sym-
metry. For materials with significant higher / com-
ponents, e.g., d character, we could take d, f, g, etc. , orbi-
tals also. Thus our wave function has the form:

Ii -„(r)= g aj „,(n, k)P j „,(k r),
l, m, jM„v

K
CO -5
CI
CLo —10
U

O
40

CL.

l

0
l I I I I j j I j j j j I j I j j I j I I j I I'j

2 3
r (a.u.)

30 j I j I j I j I j

)
j I ' I j I j I j

(
j I ' I j I j I j

[
j I ' I j I j I

(b):

(k, r)= +exp(ik R)fj (r —R—r )

R
20

Ej are cubic harmonics. The indices l, m, p, v label for
the angular-momentum character of the orbital, l, the az-
imuthal quantum number m, the site within the unit cell,
ju, and the decay constant (or Gaussian exponent) of the
local orbital, v. n is the band index; k is the nave vector.
R is a lattice vector, ~& is a basis vector, and 0 is the
crystal volume. For simplicity in our discussion, we will
use a generalized index i =(l,m, p, ,v). Also, let us consider
only one atom per unit cell and restrict the discussion to s
and p states. Then our Gaussian orbitals within a normal-
ization factor take the form

exp( —P r2), for s statesf (r)= . .
(x,y,z)exp( P; r ), for p states .—

TABLE II. Gaussian expansion for the carbon potential in
the diamond structure. The expansion is of the form
V'=g, .a;exp( b;r') with V in —units of Ry. The expansion is

for an on-site expansion of the total electronic potential within

the diamond lattice, The total potential may be derived from

VT= g- V'(r —R —7„),where R is the lattice vector and ~„R,V

is the basis vector.

10

j I

0.0

hV x 100
I j I j I i I j I j I j I j I j I

0.5 1.0
r (a.u.}

I j I j I j I j I j I j I

4.5 2.0

The Hanultonian for one atom per unit cell is of the
form

H= +VL(r)+EVjjz(r),2'

VJ.(r)= g VL(r —R),

FIG. 2. Total "atom" potentials for carbon in the diamond
structure. (a) Local potential or screened p-component of the to-
tal potential, (b) difference of the s and p components of the to-
tal potential. Also indicated are the errors in our Gaussian fits
to these components. In order to display the error curve on the
same scale, the error curve has been multiphed by 100. (Solid
curves indicate total potentials; dashed curves indicate errors in
the fit of Gaussians to the total potential. )

6.87567
—44.15766

29.193 30
—10.291 19
—1.091 53

5.844 65
2.385 96
1.66223
0.973 35
0.231 37

5.135 22
—47.91462
137.958 31

—66.255 71

8.033 19
4.336 80
3.13267
2.56421

b, V~I„(r )= g I'j [V ( r —R)—VL ( r R)]Pj . —

PI is a projection operator and the sum over the I com-
ponents of merit. As per our previous discussion, we take
the local potential as the p potential and take the 1=0
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component as the s-p correction.
From our Hamlltonian and basis, wc sct Up a matrix

equation:

HJ = g exp(i k R)[tj(R)+Uz (R)+UJ (R)],

Sij ——g exp(i k.R)s 1(R),

nor do we use an infinite basis. An unconverged cutoff
can affect the results and we have attempted to study ex-

tensively how strong a role of the "cutoff" parameters
play. With respect to the summation over lattice sites, the
number of nearest-neighbor shells included in the overlap

integrals, or the re(R) integrals, was six at a minimum for
diamond. We have run our final results with ten shells to
ensure well-converged results; for the diamond lattice, this
corresponds to 146 neighbors.

The three-center integrals, e.g.„U;J(R), involve a similar

criterion. Given an orbital at stte R& and one at srte R»
we consider all potential sites R~ which satisfy the cri-
teAon

f
Ri —Rq /

&R~,„, [Rp —Rq f
&R~,„,

where R,„ is the convergence parameter. If

and 0, is the cell volume in the solid state. In writing
this expression, we have interchanged the summation and
integration order. This is acceptable provided we are cer-
tain that sufficient sites are included in the summations
over lattice vectors. The chief advantage of the Hamil-
tonian is that the matrix elements, t;J, U;J, U;J, and s,z, are
analytical (given the expansion of the potential in Gauss-
ians); the integrands consist of Gaussians and polynomi-
als. While these matrix elements are analytic, the analytic
expressions are not trivial. In particular, the nonlocal po-
tential matrix elements involve three-center integrals with
nonlocal projection operators in the integrands. Standard
quantum-chemistry programs have been developed to
evaluate these integrals and are easily adapted for solid-

state use. Another advantage of this formalism is that the

matrix elements, tJ(R), U,z(R), Uz (R), and sj(R) are
wave-vector independent. They need only be calculated

once and stored for future use. Given a k point, the H
and S matrices can be trivially evaluated by summing over
lattice vectors with the appropriate phase factor. This is a
great savings in computational effort and makes the
method ideal for metallic systems where complex Fermi
surfaces may be easily studied in some detail.

VA'th the matrix elements evaluated, the secular equa-
tion may be solved by standard methods. The size of the
matrix involved is quite small. For example, in the case
of diamond with three decay constants for each of the s,
p„,p~, p, orbitals, the matrices in Eq. (7) are only 24X 24.
Thus essentially all the computational effort resides with
the evaluation of the matrix elements, This is in contrast
to plane-wave methods which Inay require a diagonaliza-
tion of a matrix on the order of 450&(450 to achieve com-
parable accuracy.

As with any computational method, there can be ques-
tions involving so-called "hidden" parameters. For exam-
ple, we do not sum over an infinite number of lattice sites,

we consider no potential overlaps for the two sites R&,Rz.
Wc note that R,„corresponding to ten neighboring shells
is more than sufficient. For diamond, the total energy
difference is less than 30 meV between the six- and ten-
shell results, and relative energy differences, i.e., changes
in energy with the lattice constant, are much less.

Testing the basis is a more complex issue. We attempt-
ed to use a minimal basis and still maintain a high degree
of accuracy. We tested our basis with and without d orbi-
tals and found their inclusion unnecessary for diamond.
Thus we included only s and p orbitals of the type indicat-
ed in Eq. (5). Choosing the decay constants is an impor-
tant part of the calculation. In order to control the pa-
rameter space we examined, we fixed the basis so that the
Gaussians we employed are "even tempered, " i.e., given
three decays, P„P2, and P3, we demand P2 ——(PiP3)'~ .
We then varied pi and p3 until the energy was at a
minimum. Variation in p2, once p, and p3 were fixed, did
not alter the energy in any significant fashion. Although
our basis search was not exhaustive, it was extensive and
we are confident that the basis is adequate for our pur-
poses Sj.ncc thc pscUdo" wave-functions are relatively
smooth. With the basis determined at a specific crystal
volume, we use the same set at all other volumes. For dia-
mond, the decays constants (in a.u. ) used are p, =0.25,
p2 ——0.935, p3 ——3.50. Harmon et al." have suggested that
the basis should be scaled with the volume change. Ap-
parently, this is to overcome deficiencies associated with
an inadequate basis. We find that within our basis this
problem does not arise for diamond and rescaling is not
necessary.

For the case of diamond, we use only s and p orbitals.
Determining the required matrix elements is such that
given a decay constant one may compute all $-orbital over-
laps with little savings over computing a specific I-orbital
overlap. Thus with four types of orbitals (s,p„,pz,p, ) and
three decay constants, we have a total of twelve orbitals
per atom. Our matrix size with two atoms per unit cell is
24&24. Using only two decays will yield reasonable
solid-state structural properties, but will not yield an accu-
rate total energy, e.g., the total energy is about 0.5—1.0 eV
above the three-decay results. Including d orbitals did not
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appear to enhance the basis as compared to adding more
s-p orbitals. This is not surprising, since the d orbitals are
known to play an insignificant role in the occupied states
of carbon-derived crystals.

III. TOTAL-ENERGY CALCULATIONS

Virtually all modern first-principles methods on solid-
state energetics are based upon the Hohenberg-Kohn-
Sham density-functional formalism. In this formalism
it is shown that the ground-state total energy of a many-

body system can be written in the form

Etotal I pl =Etotal [pl+ o«p —p)') . (14)

Thus all we need is to determine a scheme of exploiting
this feature and obtaining p.

A careful reformulation of the conventional expression,
Eq. (10), for the total energy is necessary for the direct use
of the variational property of E„„l. Equation (10) as
written is only strictly correct for the final self-consistent
Kohn-Sham orbital density p(r ) in a self-consistent calcu-
lation, i.e., p;„(r)=p,„,(r). The reason is that, as can be
shown easily from Eq. (11),

~total V;„r p r r+2 r r
/

r —r'/

+G [p]+E;.„;.„, (9)

g e; =T [p,„,]+ f V;,„(r)p,„,( r )d r

+ f Vs[pin]pout(r)d r

+ pxc pin pout r (15)
where p(r) is the electron density, G[p] is a universal
functional of the density, and E;,„;,„ is the electrostatic
interaction energy among the bare ions. This expression is
a minimum for the correct density function p( r ). Thus in
principle, once the charge density is specified the total en-

ergy is uniquely determined. Owing to the complexity of
solid-state systems, this is a powerful approach since one
needs to concentrate on charge-density analyses alone.

Equation (9), in practical calculations, is usually further
reduced to

t f f P(r)P(r')d3 d3
i=1

/

r —r'/

+ f p(r)(~„,[p] p„,[p])d'r—+E;.„;.„, (10)

where e„, and p„are, respectively, the exchange-
correlation energy density and potential for the elec-
trons. ' The Kohn-Sham orbital density p and eigen-
values e; are determined self-consistently by solving the
one-electron Schrodinger equation (in atomic units):

I
——,

' V'+ V;,„(r)+VH(r)+p„, [p(r)]I/, (r)=e, g, (r),

where T is the kinetic energy functional of a noninteract-
ing inhomogeneous electron gas of density p. Hence, a
straightforward use of the conventional expression, Eq.
(10), would not yield results which would be accurate to
second order in hp=p —p because Eq. (15) is not a func-
tional of a particular density. It is possible to stop after
one or two iterations by working with the correct func-
tional. Namely, we replace the first term on the right-
hand side of Eq. (10) by

N

g & —f ( VH [p.] VH [p..t]—)p..t( r )d'r

—f (ttt„,[p;„] p„,[p,„,]—)p,„,(r )d'r . (16)

The central equation in our method is

E"l= 2 ' —f VH[p. ]p(r)d'r+ —f VH[p]p(r)d'r

p„, pjnpr r+ e„pp r r

+~jon-jon (17)

with

N

p(r)= g ~g;(r) ~', (12)

where N is the number of electrons, V;,„ is the external
potential seen by the electrons due to the nuclei, and VH is
the usual Hartree screening term:

V~(r)= f d r'.(r ')
(13)

For accurate ground-state properties, E,o„l[p] must be
evaluated to a very high degree of precision.

In our approach, we eliminate the iterative self-
consistency cycle by making explicit use of the variational
principle in the density-functional formalism. Consider
an approximate charge density p which is nearly self-
consistent. Then,

For the diamond calculation p;n is taken to be the super-
posed atomic charge density and p is the output charge
calculated from a potential generated using p;„. We would
like to emphasize several crucial points here. First, as for-
mulated in Eq. (17), p;„, and hence the input Hartree and
exchange-correlation potentials discussed in the preceding
section, are explicitly removed from the total-energy ex-
pression. Thus its sole function in our approach is to pro-
vide a way of obtaining a good p and T[p]. Second, the
new E„„lexpression is now truly a functional of p and,
therefore, correct to second order in hp. Moreover, as dis-
cussed in Sec. IV, p is nearly equal to the self-consistent
charge density p even though p;„may be quite different
from p.

Although the above expressions are in real space, it is
not advantageous to evaluate the energy in real space for
crystalline solids. The central problem involves divergent
terms, e.g. , summing over an infinite number of long-
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range Coulomb interactions. (Of course, the total sum
does not diverge. ) It is convenient in this case to use the
total-energy formalism of Ihm et al. This formalism
expresses the energy in momentum space and involves the
Fourier transform of the potential and charge density.
The energy per atom is written as (for the case of elemen-
tal solid with one atom per unit cell)

&tot.i =y g &„k —&a g [I'H(G)+ p.'".(G)]p(G)
n, k Q (@0)

1
Z2

'YEwald= i
a (+o) IRI

4'
o-o 0, fGj'

n)Z= V;,„+—d r .
0 I'

IV. RESULTS POR THE DIAMOND CRYSTAL

A. valence charge dcn81ty

For the case of diamond, we have a classic covalent
bonding configuration with the concurxent bond charge.
In some sense, these systems present the greatest challenge
to local-density methods in that they have a highly nonun-
iform density. In order to compute the theoretical densi-

ty, we first solve the Schrodinger equation over a grid of
k points. We have used the special point scheme of Chadi
and Cohen for th1s purpose. In order to test our accura-
cy, we used a 10-special-point and a 60-special-point grid.

Here 0, is the atomic volume in the crystal, N is the
number of atoms in the crystal, and the sum of the first
term is over all occupied bands, n. We use atomic units

where e= 1, A'= 1, m = 1. p(G) is the Fourier transform of
p(r), etc. To perform the required Fourier transform we
use standard fast-FourMr-transform algorithms. Conver-
gence was tested via the transform grid parameters and
the total number of reciprocal-lattice vectors in the sum.
Typically, the transform involved a grid size of 32768
points in the real-space unit cell. However, we tested a
grid of 4096 points and found only a 0.5-meV energy
difference in the total energy. The number of reciprocal-
lattice vectors tested was the same as the charge density,
1.e., 2229 plane %'aves.

We remark here that it is extremely important to re-
move exactly all contributions from the input screening
potentials from the sum of the eigenvalues. Thus, the

VIV+ p'„", term used in Eq. (18) should be defined as

lIl lII f1t~0+P..—= ~t.t.~
—~I- .

In this way any numerical errors due to the fitting of the
total potential to a sum of Gaussians are removed from

E«„~ up to second order.

We did not find a significant change with the number of
special points.

If we compare our atomic charge density arising from
superposed atoms as shown in Fig. l with the calculated
density in Fig. 3, the essential differences between "atom-
ic" and "crystalline" environments become clear. The
most gross change between the atomic and crystalline
charge is that the atomic charge is diffuse with relatively
little localization of the charge along the bonding direc-
tions. Conversely, the crystalline density has a well-
defined bond charge and is highly anisotropic.

Our charge density seems to be in reasonable agreement
with other calculations. Specifically, the work of
Holzwarth et al. yields two bond-charge maxima along
the bonding direction and the size of the electron density
at the maxima is in good agreeInent with our results.
Also, our results are in accord with the work of Yin and
Cohen. They find a charge-density maximum within a
few percent of our value, although their bond charge
would appear to be slightly larger. The chief point here is
that our crystalline density is far closer to the self-
consistent density than is the superposition of the atomic
charge densities,

B. Band structure

The band structure of diamond is well understood with
respect to its valence-band structure and its lower conduc-
tion bands. We have calculated the band structure using
both an s p and an sp charge configuration to screen the
core potential. %e will concentrate only on the sp results
since the s p calculation yielded nearly identical results.
We determined the lattice constant for our band structure
by minimizing the total crystal energy. Details of the pro-
cedure will be given in the next section. No parameters
entered our calculation for the band structure except the
atomic number and the crystal structure. The lattice con-
stant determined was within 0.01 A of the experimental
value. In Fig. 4 we display our band structure along
high-symmetry lines.

For purposes of comparison, we tabulate eigenvalues at
high-symmetry k points for two other theoretical calcula-
tions in Table III. These calculations also use local orbi-
tals; however, one uses a pseudopotential similar to ours,
the other uses the full-electron potential. Interestingly,
our results reside within the values from these two calcu-
lations, and overall the agreement between the calculations
is remarkable.

The greatest discrepancy occurs for the all-electron cal-
culation of Zunger and Freeman'o at po1nt X&. Th1s value
is much larger than our value or the value obtained by
Bachelet et al.9 It might be supposed that the discrepancy
is related to the use of an all-electron potential versus a
pseudopotential; however, Bachelet et a/. have checked
their numbers by using an all-electron potential with a
linearized-augmented-plane-wave basis. They obtain near-

ly 1dentlcal results to the pseudopotential work with a
Gaussian basis.

We summarize in Table IV the known experimental
values for various high-symmetry points and compare
them with our work. We obtain rather good agreement
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TABLE III. Eigenvalues in units of CV at high-symmetry
points. Two other theoretical calculations are tabulated for
comparison purposes: an all-electron calculation and a fully
self-consistent pseudopotential calculation. The valence-band
maximum is taken as the energy zero.

Symmetry
point

I)
r25
I 15

I"2

Xl
X4
XI
X4
J2
L1
I.
L, 3

I.l

Present
work

—21.03
0.00
6.02

13.41
—12.43
—6.27

5.91
16.77

—15.29
—13.09
—2.82

9.23
9.58

All-electron
local orbital

(Ref. 10)

—20.44
0.00
6.33

14.07
—12.17
—6.09

8.96
16.69

—15.17
—12.18
—2.82
10.38
10.50

Pseudopotential
local orbital

(Ref. 9)

—21.68
0.00
5.59

13.07
—12.90
—6.43

4.65
16.87

—15.79
—13.73
—2.86

8.47
8.90

l l l l

FIG. 3, Crystalline charge density for diamond using the
wave function dctcIIIlincd from thc potential ln Table II. Thc
charge density is in united of e/(a. u. ) . The contour spacing is
0.05. The bonding directions are illustrated by the straight lines.

X1

K,

X,

with the known experimental transitions. The occupied
states are reproduced almost exactly by our calculated
value. In addition, given that local-density-functional
theory does not, in general, yield accurate values for the
virtual states, our values for the unoccupied states are
surprisingly good. We should note that data exist for
unoccupied states at even higher energies, e.g., there exist
estimates of transition energies at I up to 50 eV above the
valence-band maximum. %'e do not attempt to compare
such data with our values for two reasons. First, our basis
has been checked by achieving the lowest ground-state en-

ergy, and we have no reason to believe that it will replicate
accurately high-energy unoccupied states which play no
role in the total energy. Second, as mentioned, it is well
known that local-density calculations do not yield accu-
rate values for these states.

We have not computed a valence-band density of states
or an optical-response function in that the thrust of our
method and paper is on the ground-state properties of dia-
mond. However, given that our band structure is nearly
identical to those of previous attempts to compute these
quantities, we see no reason for our results not being
equally successful.

C. Equation of state for diamond

X U, K

Wave vector k

In this section we determine the equation of state for di-
amond at zero temperature. Using one of the simplest ap-
proaches, we can assume that the bulk modulus of d1a-
mond near equilibrium varies only linearly with pressure,

FIG. 4. Band structure for carbon in the diamond structure.
The top of the valence band is taken as the zero of energy.
Several high-symmetry directions are indicated. The band struc-
ture was determined from the potential in Table II, with the la.t-
tice constant determined by minimizing the total energy.

B(P)=Bo+BoP,
where Bo is the equilibrium bulk modulus and I' is the
pressure. Upon integration, one obtains the Murnaghan
equation of state:



TABI.E IV. Experimental critical points for diamond energy
bands, in units of eV, compared to calculated values.

Symmetry point

I
~15
I2
L2
LI 1

+mill1

Experimental'

—21+1
6.0 +0.2
15.3+0.5

—15.2+0.3
—12.8+0.3

5.5 +0.05

Theory

—21.03
6.02

13.41
—15.29
—13.09

5.05

'From F. J. Himpsel, J. F. van der Veen, and D. E. Eastman,
Phys. Rev. 8 22, 1967 (1980).

' gP
Vo Vo

V
+

V

+&(V()),

where Vo is the equilibrium volume. More sophisticated
expressions exist for the equation of state, but this one is
simple and sufficiently accurate for our purposes. If we
solve for the energy as a function of volume and fit the
Murnaghan equation of state to the calculated points, we
may extract the equilibrium volume, the lowest total ener-

gy, the bulk modulus, and the derivative of the bulk
modulus with pressure.

Let us briefly outline the steps in our method for
cvaluatlng thc cquatlon of state. As input wc RI'c glvcn RQ

atomic number and a crystal structure. From the atomic
number we calculate a transferable ion-core pseudopoten-
tial. Within the given crystal structure, we must screen
this ion core. At this stage, we guess at "reasonable" lat-
tice parameters. For example, wc might resort to
Goldsmidt radii ' for metals, or the Pauling radii" for co-
valent or ionic Inaterials in order to obtain the bond
lengths. With this hypothetical structure, we then form a
screening potential using superposed atoms. In principle
we should refit the screening potential at each lattice con-
stant and use our total-energy expression to evaluate the
energy at that volume. While this would still be an im-
provement over a self-consistent iteration which involves a
number of iterations at each point, it is unnecessary. We
find for the case at hand that once we have a potential at a
reasonable crystal structure we may transfer it to other
volumes without further alteration. Considering the vari-
ational nature of our approach, this result should not be
surprising.

With rcspcct to our calcUlatcd cqUatlon of stRtc, wc
display in Fig. 5 the calculated energy versus volume
equation of state using our sp potential in Table II. The
fit to the Murnaghan equation of state is outstanding.
Over a 400-meV range, the largest deviation for the com-
puted energies is less than l mcV. In Table V wc compile
the extracted equation-of-state parameters. IQ Table VI
we give the calculated volumes and total energies. The
cohesive energy (7.84 eV/atom) is obtained from the
difference between thc bulk crystalline total energy,—155.29 eV/atom, including a zero-point motion correc-
tion of 0.18 eV/atom (Ref. 10) and the pseudoatom

I I I I I I f I I I

[
I I I I I I I f I

I
I f I f I f I f I

t
I f I f I f I

E0
co —155.2

I
C

LLI

I I I I I I I I I I I II II i II III II Il
35 40

II II I I Iil I I I I

45

VQILINS (a.u.)

FIG. 5. Equation of state for carbon in the diamond struc-
ture. The continuous curve is the Murnaghan equation of state;
the points are the calculated energies at the indicated volume.
The zero-point motion energy is not included in this curve.

ground-state energy, —147.45 eV/atom, including the
spin polarization energy, —1.40 eV/atom. ~»

A few total-energy calculations exist for the diamond
crystal. Considering the different approaches used, the
agreement is quite good. A possible exception to this
statement is the work of Bachelet et al. They find a
cohcslvc encl gy scvcral clcctron volts too small ln compar-
ison to other theories and experiment. W'e note that the
cohesive energy is the most difficult property to compute
since it involves a difference between the total energy of
the atom and of the solid. A 1% error in either the atom-
ic energy calculation or the solid-state energy calculation
will result in as much as 30% error in the cohesive energy.
Thus the discrepancy in cohesive energies may not be too
surprising. Bachelet et al. attribute their poor value for
the cohesive energy to Rn inadequate basis.

A key issue with respect to our results is the determina-
tion of the lattice constant, or as implied above, the
transferability of our total potential. It could be argued
that the calculated equation-of-state parameters are biased
by the fact that we started with the known experimental
lattice constant. Perhaps if we had started with a lattice
constant considerably removed from the known value, we
would not converge to the expenmental value, but to some
other lattice constant. This is not the case and we have
done a number of tests to verify this fact.

We fit a series of potentials from —5% to + 5% in the
lattice constant. The total energy was independently cal-
culated at each volume point with corresponding poten-
tial. The total energies for these points coincided with the
energies for our fit from our original potential to within a
few meV. As another test, we used the potentials fit at
+5% differences to calculate the equation of state.
Again, the equilibrium lattice constant obtained was
within 0.01 A of. the experimental value. Thus we are
confident that our formalism will not suffer from a par-
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TABLE V. Ground-state properties of diamond from a fit to the Murnaghan equation of state {Ref.
40). %'e also compare our results to other contemporary self-consistent theories.

Ground state Experiment Present theory

Self-consistent field
Local Plane

orbitals waves
(Ref. 9) (Ref. 24)

Cohesive energy
(in eV)
Lattice constant
{in A)
Bulk modulus
(in Mbar)
Pressure derivative
of bulk modulus

7 37'

4,42'

7.84

3.560

3.61

3.69

8.10

'L. Brewer, Lawrence Berkeley Laboratory Report No. LB-3720 (unpublished).
bJ. Donohue, The Structure ofElements (Wiley, New York, 19741.
'H. J. McSkimin and P. Andreatch, Jr., J. Appl. Phys. 43, 985 (1972).
Estimated value from K. Gschneidner, Jr., Solid State Phys. 16, 275 (1964).

ticular initial condition. Of course, if doubt exists in the
obtained equilibrium lattice constant, the equilibrium

point could be checked by refitting the input potential at
several key volume points. The point to be made is that it
is not ntx:essary to refit the potential at each volume point
in the calculation. Moreover, we have obtained an input
potential for carbon in the graphite structure and applied
it to the diamond structure. Again, results for the
ground-state properties are virtually identical to those list-
ed in Table V.

D. Lattice vibrations in the diamond crystal

to examine, yet it will provide us with a sensitive test.
Moreover, if we can evaluate the phonon frequencies at
specific symmetry points, we can make use of new tech-
Illqllcs wlllcll llavc bccll developed fol obtallllllg thc COII1-

plete phonon spectrum.
The atomic motions for this phonon mode are particu-

larly simple. The motion corresponds to a constant
volume uniaxial distortion of the diamond crystal along
the (111) direction. To obtain the required energies, we
displace the ion cores by a small amount and fit the dis-
placement to the following form:

bE=a(bu) +b(bu)',
Given the capacity to evaluate equation-of-state param-

eters, it is clear that we should be able to probe energy
changes with atomic positions, e.g., we should be able to
examine lattice-vibrational modes. To test this aspect of
the problem, we have used the frozen-phonon approxima-
tion and attempted to calculate the optical-phonon fre-
quencies at vanishing wave vector. This is a simple mode

0.4

0.3

I )! I I I ) I I I II I I I I) I I I I

(
I I I I

C

TABLE VI. Total crystal energy for diamond as a function
of atomic volume.

Volume
{a.u. )

46.67072
45.374 39
44.102 28
42.854 19
41.629 85
40.42907
38.097 21
35.856 79
34.77030
33.705 97
32.66359
31.642 94
30.64375

Energy
{eV/atom)

—155.17426
—155.24495
—155.308 73
—155.361 64
—155.405 79
—155.437 56
—155.464 83
—155.436 53
—155.398 99
—155.342 75
—155.267 88
—155.173 64
—155.055 66

" -02 0.0

bu (a.u.)

FIG. 6. Frozen-phonon energy vs bond displacement. From
the quadratic term we calculate the phonon frequency to within
1% oI better of the experimental value.
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TABI.E VII. Frozen-phonon parameters for the optical pho-
nons in the diamond crystal lattice. Parameters a and b are as in

Eq. (21). Also given is the total energy as a function of the
bond-length displacement. The experimental phonon frequency
1S as tabulated 1Il Ref. 2

Frozen phonon energy
expansion parameters

a b

[eV/(a. u. ) ] [CV/(R. u.)1]

Optical phonon frequency
(zone center)

Theory Experiment
(THz) (THz)

—3.65 40.1 39.96

Displacement (a.u.)

0.203 37
0.145 26
0.08716

—0.08716
—0,145 26
—0.203 37

Change in energy (eV)

0.19898
0.10592
0.039 48
0.044 28
0.12824
0,26052

where a and b are expansion coefficients. hu is the dis-
placement in the bond length. From our fit, we obtain the
phonon frequency fTo.

afTo = =59.08
2w M

(22)

We have presented in this paper a method which com-
bines ab initio pseudopotentials and a Gaussian basis for

I ls 'tllc R'tollllc II1Rss of callloI1. If a ls 111 11111ts of
ev/(a. u.), b units of eV/(a. u.), M in units of gram-
atom/mole, then the frequency is in units of THz.

In Fig. 6, we present our frozen-phonon energies for
various displacements of the bond length. In Table VII
we tabulate the calculated energy, the displacements, the
fit expansion parameters (a, b), and the resulting phonon
frequency from our theory and from experiment. The er-

ror we make in our calculated frequency is on the order of
1%. While this accuracy may seem surprising, compared
with other calculations for semiconductors and our
structural parameters, it is not. Although we have not
attempted a calculation of the full-phonon spectrum, there

appear to be no inherent barriers to an accurate calcula-

tion.

evaluating the total energies of solids without resorting to
R fllll self-collslstcllt cvaluatlo11 of thc chRl'gc density. To
demonstrate the utility of the method, we have concen-
trated on the structural properties of carbon in the dia-
mond structure: an arch-typical covalent system. Wc cal-
culated an energy band spectrum, an equation of state,
and a fundamental phonon mode. Although our method
is not as complex as the current state-of-the-art methods,
we have obtained equally good results.

With respect to our energy bands, we found that either
an s p - or an sp -derived screening potential led to an ac-
curate critical point structure in the valence bands when
compared to pllotocnllssloI1 IllcaslllcIIlcilts. As typlcR1 of
local-densify results, our conduction bands were closer to
the valence bands in energy than expected from experi-
ment, i.e., the band gaps were too small.

With respect to the structural properties of diamond,
wc werc able to rcpIoducc thc experimental values for thc
cohesive energy within 10%. The lattice constant and
bulk modulus were determined to within 1% or 2%. We
exam1ned the sensit1vity of these results to the bas1s and
screening potentials and found negligible changes.

Our results for the optical-phonon mode at vanishing
wave vector were within 1% of the experimental values.
This result is consistent with the structural accuracy ob-
tained for tetrahedral semiconductors and reaffirms the
stRtc-of-tllc-Rrt Rccul Rcy fol' pllo11011 calclllatlolls.

In summary, we have developed a method for examin-

ing the spectral and total energetics of solids which is
easier to implement than methods currently available. Yet
our method is as accurate as the current state of the art.
Moreover, the method has the physical appeal of tight-
binding or chemical orbital methods and can be applied to
a wide variety of solid-state systems.
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