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Concentration-fluctuation model of a doped semiconductor in the nonmetallic regime.
II. Excitation spectrum
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%ith the use of the unrestricted Hartree-Fock scheme deve1oped by us eaI'11ef, the excItatIon spec-
tra are calculated for doped seImconductoI's In the nonmetallic regime. The excItatIon spectrum
suggests the possible self-compensation effect proposed by Bhatt and Rice. The spectral density so
derived explains the dependence of the photoconducting current on the impurity concentration.

I. INTRODUCTION

Substitutional shallow level impurities in semiconduct-
ols, such Rs phosphorous 1Q silicon, provide R convenient
spstem to investigate the interplRY between thc clcctlon
corrclat1on Rnd thc d1sordcl effects. %hen thc iIIlpuritp
concentration (X} varies in a wide range enclosing the
critical concentration for the metal-nonmetal transition

(X, ), a number of interesting phenomena show up in thc
transport, magnetic, and thermodynamic properties of
highly correlated electrons under the influence of a ran-
dom potential. Any attempt to construct a unified theory
for the entire range of impurity concentration so far has
not been successful. However, in the low-concentration
QoQIHetallic regime, 40th experimental suggcst1ons Rnd

thcoI'ctical calculations lead to thc prcsentlp accepted pic-
ture that the system consists of statistically distributed,
clusters of impurities of various sizes. A summary of the
existing results in this area has been given in a previous
paper' (referred to as I).

In I we have performed an improved unrestricted
Hartree-Fock pseudocluster calculation with a correlated
two-electron wave function for thc D state (D
represents a negatively charged isolated impurity) to inves-
tigate the microscopic structure of the impurity states. A
sample of doped semiconductor in the nonmetallic regime
is simulated with a computer such that the positions of
thc impurities IRt; i=1,2, . . . , MI are spatially random.
Clusters of impurities (defined purely as topological clus-

ters of the positions R s) of various sizes are formed and
statistically distributed throughout the entire sample.
Single-particle eigenstates were then derived numerically.
It is found that each state is localized on a finite cluster of
impurities, and we define such states as cluster states. The
distribution function of the cluster states (which may not
be the same as the distribution function of the clusters of
impurities} agrees with the'recent conclusion derived from
Rllalyzlllg a variety of cxpcrllllcll'tRI data.

It 1S %'cll known that IQ RQQ Hartrce-Pock —ape calcu-
lation the total energy of the system is not a simple sum-
mation over all the single-particle energies of occupied
states. QQC must make a correction on the double count-
IIlg of thc clcctloQ"clcctroII IIltcractlon energy~ which de-
pends crucially on the wave functions. Let the single-

bare-particle excitation energy be E=Ef Et, —where

Ef~ and E; are, respectively, the final and initial
Hartree-Pock energies. For the cluster states considered
here, the correction on the electron-electron interaction
cncrgg tuITls out to bc extrcmclg 1ITiportant Rnd so the
single-quasiparticlc (as well as multi-quasiparticle) excita-
tion spectrum E' differs substantially from the bare exci-
tation energy spectrum E. In I we found a gap separated
tllc occllplcd Rlld 'tllc empty parts of tllc bale-particle dcn"
sity of states in the nonmetallic regime. The same gap ap-
pears in the single-hare-particle excitation spectral density
p(E). Nevertheless, it is the gap of the single-quasiparticle
excitation spectral density p*(E*) that determines the
dpQM11ic properties of thc clustcI' states.

When one electron is excited from the initial single-
particle Hartree-Fock state g (r } in the Fermi sea to the
final Hartree-Fock state ff(r) outside the Fermi sea, the
difference bE =E' Ecomes fr—om the different amounts
of total electron-electron interaction energy in the final

(%f) Rild tlM initial (% ) many electron s-tates. It ls obvi-
ous that the electron-electron interaction energy is rather
sensitive to the degrees of localization of all the single-
particle Hartree-Fock states in a many-electron wave
function used in the calculation. A careful analysis in the
later sections leads to the fact that bE is negative in most
cases with very few exceptions.

We consider a simple case in which it;(r) is a very lo-
calized cluster state (for example, a state localized on a
cluster A of only one impurity) and g~(r) is a less-
localized cluster state (for example, a state localized on a
cluster 8 of six impurities). Assume that initially both
clusters A and 8 are electrically neutral with Pt(r) occu-
pied but ff(r) empty. The excitation of one electron
from Pt(r) to ff(r) makes the cluster A positively

char~ed and the cluster 8 negatively charged. Bhatt and
Rice suggested that after the relaxation of the entire
many-electron wave function %f (mostly the relaxation of
the part of wave function localized on cluster 8},it is pos-
sible to have the total energy of the system in the final
state lower than that in the initial state O';. Then the clus-
ter 8 plays the role of an acceptor, and the donor (cluster
A) loses its electron even without the intentional compen-
sation with acceptors. Bhatt and Rice caHcd this
phenomenon the self compensation, w-hich may occur only



CONCENTRATION-FLUCTUATION MODEL OF A. . . . II. . . .

at very loiv impurity concentration .In our calculation the
set of basis functions is fixed and so the orbital relaxation
is not taken into account. Consequently, wc cannot obtain
a negative E* for self-compensation. On the other hand,
if very small values of E* emerge from our calculation, it
can be interpreted as a precursor of the onset of self-
compensation.

It was also found in I that the distribution probability
of the cluster states varies with the impurity concentra-
tion. Since the excitation energy E' depends on the sizes
of the relevant cluster states, the peak position of p'(E')
shifts when the impurity concentration is altered. There-
fore, the cluster states should manifest themselves in opti-
cal measurements such as the photoconductivity.

The calculation of the excitation spectrum in doped
semiconductors is certainly a very difficult task, yet it
must be done in order to have a deeper understanding of
this complicated correlation-disorder system. This is the
purpose of the present work, in general, and, in particular,
its purpose is to investigate the possible self-compensation
phenomenon proposed by Bhatt and Rice, as well as the
concentration dependence of the photoconductivity spec-
tra observed by Taniguchi et al. and Taniguchi and Nari-
ta.

Since the present computation of the excitation spectra
is based on the self-coiisisteilt unrestricted Hartree-Fock
ground state obtained in I, we will first outline the calcu-
lation scheme briefly. With a computer we simulate a
sample of doped semiconductor containing M impurities

iil a volume Q. Tile posi'tioils of ihe iiilpurities I R;;
i = 1,2, . . . , MI are random. We further generate
M =gE more impurities located randomly in a volume of
gQ outside Q. Then the overall impurity concentration
X=~/Q is unchanged. A localized orbital {t); (r) is at-
tached to the ith impurity for i=1,2, . . . , M The e.ffect
of the M surrounding impurities (impurity ions plus the
electrons in localized orbitals) on the M impurities in Q is

approximated by an effective field. The inner M impuri-
ties embedded in this effective field will be solved numeri-

cally using an improved Hartree-Fock scheIDC with a
spin-polarized potcntlal.

A. Calculation scheme

The Hamiltonian of the M-impurity system is

I= g p; /2m + g [V""(r; ) + V'fr( r; )]

+ —,
' g V' '(r; —rj),

where V""(r) is the impurity-ion potential and V' (r) is
due to the effective field mentioned above. The Coulomb
interaction between the ith and the jth electrons is
V' '( r; —rJ ). With the unrestricted Hartree-Fock
approximation, one chooses a set of basis functions

IP; (r); o=t, t; i= 1,2—, . . . , MJ and constructs the
single-particle Hartrce-Fock states as

p; (r)= gpj (r)8 J, .
J

These Hartree-Pock states must satisfy 2~ coupled equa-
tions,

[p'/2m + V""(r)+V' (r)+ Vc„(i;r)]P;(r)

=E; g; (r) (3)

for o=t, t and i=1,2, . . . , ~. The Coulomb exchange
potential Vc„(i;r)is nonlocal and depends on the sets

' I'(t) and I"(i) of single-particle states occupied by the
up-spin and the down-spin electrons, respectively.

If we define the matrices E with the element
E;J.=E~ 5;J and 8 with the element 8 i, , then (3) can be

'tt tri q t'

8 Ho B~=E~, (4)

where

Ho;J= f p;*(r)[p /2m+V""(r)+ V' (r)]pi (r)dr+ g g [8 V(o,s;i j)8 ]ii,
s I&I (s)

with the electron-electron interaction matrix element defined as

[V(&,s;&,j)] = I I P;*(r)P,(r')V''(r' r)[P, (r')P (r—) P, (r)P (r. ')5,—]drdr'. .

With a chosen set of localized orbitals I P; ( r );
i=1,2, , MI all inatrix elements can be calculated ei-

ther analytically or numerically. Equation (4) is then

solved by iteration to reach a self-consistent solution of
the coefficients 8 i,.'s. At extremely low impurity concen-

tration, each lmpurlty CRn bc treated as lsolatcd. Thc Rs-

soclatcd locallzcd impurity oI'bltal ln a many-valley semi-
conductor is very complicated owing to the anisotropic ef-
fective mass and the central-cell correction. Even assum-

ing an isotropic effective mass and ignoring the central-
cell correction in the present calculation, the computation
of the matrix elements requires a great effort and the
self-consistent solution needs much computer time. Such

I

accurate calculation gives the correct characteristic
features, though they can be further improved quantita-
tively.

The localized impurity orbital P; (r) is then approxi-
mated by a hydrogenic ls wave function with an effective
Bohr radius ac (which can be determined from the mea-
suI'cd lonlzRtlon cncrgy when wc co1Tlparc oUr results with
experimental data). However, this set of basis functions is
inadequate to describe the structure of impurity energy

spectrum. A negatively charged isolated impurity D has
been discovered to be bound. Furthermore, the photo-
conductivity data ' strongly suggest that the stability of a
negatively charged small cluster of n impurities, D„ in-
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creases with n, provided n is small. On the other hand, a
simple wave function like P;,(r&)P;,(rz) does not give a
bound state for D . The variational wave function pro-
posed by Chandrasekhar for H

@(ri r2)=q[exp( —~Iri —R
I

—Plr2 R I)

+exp( —u
I

r2 —R., I

—& r, —R

(7)

with a=—1.07478, P=0.47758, and y=0.31214, yields a
rather accurate binding energy 0.0259 hartree for a free
H ion as compared to the measured value 0.0275 hartree.
In (7), g is the normalization constant. Consequently, we
will use the Chandrasekhar wave function (7) properly
scaled with the effective Bohr radius ao to describe the
D state.

The unrestricted Hartree-Pock scheme (4)—(6) has to be
modified in order to take into account the correct D
feature. In the calculation of the matrix elements (5) and

(6), whenever P;,(r&)P;,(r2) appears, it is replaced by the
Chandrasekhar wave function 4&;(r&, r2). For the special
case i =j=t =q, the single-particle-operator part in (5)
should also be modified to treat the two correlated elec-

trons on the ith impurity simultaneously. Since the poten-
tial is spin polarized, there is an exchange Coulomb gap in
the energy spectrum when the concentration is low. As
the concentration approaches zero, the split density of
states approaches two 6 spikes with energies correspond-
ing to the ionization energies of an isolated neutral impur-
ity D and a negatively charged isolated impurity D
respectively. Only with such modification on the
Hartree-Fock scheme the D is bound and the observed
optical excitation from the D level to the semiconductor
conduction band ' can be explained. By the same token,
the cluster states localized on a small cluster of few im-

purities should also be treated including the relaxation of
the orbitals. However, such correlated many-particle
wave functions for more than two electrons are too diffi-
cult to construct. In this paper, we do not go beyond the
two-electron Chandrasekhar wave function.

B. Total energy

Since the potential (6) is nonlocal, the self-consistent po-
tential for one many-particle state is different from that
for the other many-particle state. Let us for the moment
assume that there are K, up-spin and X, down-spin elec-
trons, and ~,+M, =M. Then, in (5) the set I (0) con-
tains M occupied single-particle Hartree-Fock states, and
for a given I'(o) one obtains, from (5), M Hartree-Fock
states for each spin. For given values of ~, and M„if at
each iteration we keep the K lowest-energy o.-spin
Hartree-Fock states occupied, then the self-consistent
solution of (4)—(6) yields the lowest-energy many-particle
state Vo(~„~,) in the form of a Slater determinant

composed of the M occupied Hartree-Fock states.
To avoid ambiguity, the self-consistent Hartree-Fock

solutions for given values of M, and M, are expressed as

g; (M„,M, ) and E; (M„M,) with E; (M„,M, ) &

EJ~(M„M,) if i &j. Then, the lowest-energy state
%c(~„M,) can be more explicitly expressed as
'0( I Q; (M„M,); i=1,2, . . . , M; o = t, L I ). The second
lowest-energy determinental many-particle state
%&(~,, ~, ) must be orthogonal to 4( [P; (M„M,);
i=1,2, . . . , M; =at, t}) and be a solution of (4)—(6)
corresponding to another self-consistent potential. If
again we denote the new set of self-consistent Hartree-
Fock solutions as g; (M„~,) and E; (M„M,) with

E;~(M„M,) &EJ (M„M,) if i &j, then %&(M„M,) can
be similarly written as

%(Ig; (M„M,); i =1,2, . . . , M; 0 = 1', l } ) .

The orthogonality condition

( '0( [ Q; (~„,M, ); i = 1,2, . . . , ~; cJ= t, l } )
~

4( I Q~(~„,~, ); i = 1,2, . . . , ~; 0 = t, g }) ) =0

must be satisfied.

All the other higher-energy many-particle states should

be derived step by step in the same way as the derivation
of %&(~„M,). The process should also be repeated for
all possible values of M, and M, Certainly, it .is an im-

possible task. The following conventional approximation
has been commonly used. After having obtained the set
of self-consistent single-particle Hartree-Pock states

Ig;~(M„M,); i=1,2, . . . , M; 0=t, g} corresponding to
the lowest-energy many-particle state %p(K„K,), the
higher-energy states are created from Vo(~„,~, ) by
electron-hole —pair excitation. In general, the approximat-
ed many-particle states can be expressed as

V([Q;~(M„M,); i =ki, k2, . . . , k~ ', 0=1,)}),
where

I g; (M„,M, ); i =k ),k2, . . . , k~,' cr = t, l }

is a set of K occupied single-particle states. The ortho-
gonality between different many-particle states is au-

tomatically satisfied.
Within this approximation the total energy correspond-

ing to each many-particle state can be readily calculated
as

&;(~„M,)= (0'; (~„M,)
~

H
~
4;(~„~,) ),

where 4;(~„~,) is the shorthand notation for the ith
many-particle state associated to given values of M, and

By comparing the lowest energies eo(~„~,) of all
possible values of M, and M„the ground-state energy is
then finally determined. We should mention that in cal-
culating e;(~„~,) the Chandrasekhar wave function
must be used whenever the D configuration appears.
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e (M/2, M/2)=(%(I p)
~

H
~

%(l" )) .

The difference of energy

5ep gE; (~/2, ~/2) ——ep(~/2, ~/2),—
l, (T'AI o

as well as

(12)

E; (M/2, ~/2) e Jk(~/—2,~. /2),

is the well-known correction on the double counting of the

C. Single-particle excitations

The self-consistent computation outlined above is very
time consuming. In this paper we only consider the case
M, =M, =~/2, and the calculation takes about 35 h
CPU (central processing unit) time with a Digital Elec-
tronic Computer DEC-20 computer. Including all possi-
ble values of M, and M, increases the computing time by
a factor of 20, and cannot be realized at the moment.
Nevertheless, in doped semiconductors the magnetic cou-
pling (exchange coupling) between electrons in different s
orbitals is extremely weak, and can be very easily offset by
the disorder effect. This is the generally accepted reason
for the absence of magnetic ordering in doped semicon-
ductors. In this respect, it is reasonable to consider only
the nonmagnetic case M, =M, since the ground state is
nonmagnetic. However, this does not mean that the excit-
ed states associated to ~,&M, are not important. We
will return to this point in Sec. IV in connection to the
specific heat.

In our calculation with M, =M, =M/2, we use a
dimensionless impurity concentration I' =32mMa p /0,
where ao is the effective Bohr radius of the impurity
atom. The energy is in atomic units with the zero refer-
ence energy set at the bottom of the conduction band.
Hence, the energy of an isolated neutral impurity D is
—0.5 effective hartree, and that of an isolated negatively
charged impurity D is —0.0275 effective hartree. For
given impurity concentration, 12 samples are investigated
and the results are configurationally averaged. For most
doped semiconductors, the critical concentration for
metal-nonmetal transition I', is around P, =0.8.

For M„=M,=M/2, we simplify the notations and de-
fine 1 p as the set of occupied single-particle Hartree-Fock
states tpj (~ 2/, ~ 2/); j,oEI pI corresponding to the
many-particle ground state %(I p). When one electron is
excited from f~ (M/2, M/2) to fk (M/2, M/2) with
j,crCI p but k, rEcI p, the new set of occupied Hartree-
Fock states is represented by I .j k and the corresponding
many-electron excited state by %(I .J k ). Then the
single-bare-particle excitation energy is

E~ Jk =Ek (~/2. ,~/2) Ej (~/2, ~/2), —
while the single-quasiparticle —excitation energy is

E~ Jk ——e .J (kM /2M. 2/) —e (pM /2, M /2) (10)
where

e .1 k(~ 2/,~ /)2=(0'(I .J k) ~H
~

+(I,Jk)), (11)

and

electron-electron interaction energy. It also contains a
correction on the self-consistent potential for the excited
states. We have found in I that due to the electron corre-
lation effect all the Hartree-Fock (cluster) states in %(I"p)
avoid one another in order to reach the lowest total ener-

gy. When one electron is excited from QJ (M/2, ~/2)
with j,o E I p to fk (~/2, ~/2) with k, cr EI p,

gk (~/2, M/2) is forced to be near to some other
Hartree-Pock (cluster) states in I p. The so induced
electron-electron interaction energy is the origin of the
Coulomb gap in the density of states (Fig. 2 of I). There-
fore, 5' is generally less than 5m~.j k, and

E~.J k
—— g — g E;~(M/2, MI2)

f, O'EI o

(5e —Jk —5.ep)

= [Ek~(~/2, ~/2) EJ (~—12,~/2)]

(13)

is generally less than E .j k.
For both spins the quasiparticle excitation energies

E*.
z ~ versus the bare excitation energies E .j k are shown

in Figs. 1(a)—1(f) with every dot representing one excita-
tion. Almost all of the 9600 values of E~ Jk for each con-.
centration are substantially less than the values of the cor-
responding E,jk. It has been shown in I that in the
nonmetallic regime the single-particle Hartree-Fock states
are cluster states. When one electron-hole pair is created
from the many-particle ground state, one electron is
transferred from a neutral cluster state localized on m im-
purities (represented by D ) to another cluster state local-
ized on n impurities (represented by D„).Therefore, the
final many-particle state contains one D~+ cluster state
and one D„cluster state. Bhatt and Rice have conjec-
tured that for very low concentration, if m=1 and n &4,
then the excitation energy E* can become negative and so
self-compensation occurs. In our calculation we do find
many extremely small excitation energies for the concen-
tration I' (0.393. As we have mentioned earlier, we can-
not obtain negative excitation energy because the orbital
relaxation has not been taken into account in our calcula-
tion. We should also point out that one condition for hav-
ing the self-compensation phenomenon is that both D
and D„should be rather isolated. This requires a sample
much larger than the one we have used in our calculation,
and perhaps too large to be handled by the commonly
available computer. From our calculation we can only
draw the conclusion that self-compensation is very likely
to occur in a large sample.

III. OPTICAL PROPERTIES
In the low-concentration regime there are two channels

contributing to the photoconductivity. By using Fig. 2 of
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FIG. 1. (a) Single-quasiparticle excitation energy vs the single-bare-particle excitation energy for impurity concentration 0.078. (b)
Same as (a) for impurity concentration 0.122. (c) Same as {a) for impurity concentration 0.2. {d) Same as (a) for impurity concentra-
tion 0.393. (e) Same as (a) for impurity concentration 0.763. (f) Same as (a) for impurity concentration 1.04.
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I as the reference, electrons may be optically excited to the
host conduction band from either the lower or the upper
split impurity subband. Recent interest is focused on the
transition from the upper split band because in this case
the photoconductive response is very sensitive to the im-
purity concentration.

To compare our calculation with the experiments, we
show the excitation spectral densities p(E) and p*(E") in
Figs. 2(a)—2(fl for the single-bare-particle and the single-
quasip article excitations, respectively [the subscript
(o-,j,k) of the energies are omitted for convenience]. The
impurity concentrations are marked at the upper right
corners. In each figure the thick-lined histogram is for
the quasiparticle excitation spectral density p'(E*) and
the thin-lined histogram is for the bare-particle excitation
spectral density p(E). Since the excitations are from the
lower to the upper split impurity subbands, at the limit of
impurity concentration approaching zero, both p(E) and
p*(E*) reduce to a 5 spike situated at the excitation ener-

gy 0.4725 (the difference between the ionization energies
ofD andD ).

As the concentration increases, we see in these figures
that the peak position of the bare-particle excitation spec-
tral density p(E) is almost stationary, while that of the
quasiparticle excitation spectral density p'(E ) is shifted
toward the lower energy by an amount =0.05. It is found
in Fig. 10 of I that the probability of having larger cluster
states increases with the impurity concentration. Conse-
quently, this shift of p*(E') is due to the increasing num-
ber of larger cluster states (D„states) the binding energies
of which are larger than that of the D state.

We recall that the bottom of the host conduction band
is situated at the excitation energy equal to 0.5. There-
fore, with increasing concentration to P=0.078, the pho-
toconductivity spectrum corresponding to the transition
from the upper split impurity band to the host conduction
band should shift to higher energies by an amount roughly
equal to 10% of the D ionization energy. Furthermore,
since there is a finite threshold in the spectral density at
very low concentrations, the corresponding photoconduc-
tivity spectrum shows a peak. We notice that the finite
threshold of p'(E') disappears when the concentration in-
creases to P=0.2. At this concentration, the correspond-
ing photoconductivity spectrum should monotonically in-
crease toward higher energies without a peak. If we keep
in mind that for both Sb-doped Ge and P-doped Si the
critical concentration is around P, =0.8, then our calcula-
tion agrees well with the measured data of Taniguchi
et al. for Ge:Sb and of Taniguchi and Narita for Si:P.
These authors have proposed the formation of D„asthe
origin of the spectral shift. It is worthwhile to point out
that with increasing concentration, the split impurity sub-
bands begin to overlap and so drives the spectral density
to become asymmetric.
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