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Computation of crystal Green's functions in the complex-energy plane
with the use of the analytical tetrahedron method
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The analytical tetrahedron method (ATM) for evaluating perfect-crystal Green's functions is re-

viewed. It is shown that the ATM allows for computing matrix elements of the resolvent operator
in the entire complex-energy plane. These elements are written as a scalar product involving

weighting functions of the complex energy, which are computed on a rriesh of k points in the Bril-
louin zone. When the usual approximations are made within each tetrahedron, namely linear inter-

polations for the dispersion relations as well as for the numerator matrix elements, the weighting
functions only depend on the perfect-crystal dispersion relations. In addition, the analytical expres-
sion obtained for a tetrahedral contribution to the weighting functions is simpler than what is usual-

ly expected. Analytical properties of our expressions are discussed and all the limiting forms are
worked out. Special attention is paid to the numerical stability of the algorithm producing the
Green s-function imaginary part on the real energy axis. Expressions which have been published

earlier are subject to computational problems, which are solved in the new formulas reported here.

I. INTRODUCTION

The Green's-function technique has proved extremely
efficient when dealing with electronic or vibrational prop-
erties of imperfect solids. ' lt is especially beneficial for
solving problems involving highly localized perturbations,
such as point defects and questions relating to surfaces
or interfaces. The Green's-function approach provides
a convenient way of handling nonperiodic infinite systems
without resorting to a cluster modeling. In this technique
the size of the problem is controlled by the degree of local-
ization of the crystal disturbance: the more localized the
perturbation, the lighter the computational effort. This
simplification requires an explicit computation of the
perfect-crystal Green's function in a basis set spanning the
impurity space. Many of the limitations of the method is-
sue from the practical difficulty of this computational
task. Today such a computation is performed in two
steps. The first step is the evaluation of the imaginary
part of the Green's function, a problem somewhat analo-
guous to a perfect-crystal density-of-states calculation.
The second step is the Hilbert transformation of this ima-

ginary part to yield the real part of the Green's function.
This, of course, requires a preliminary computation of the
imaginary part on a wide and dense energy mesh. In this
paper we indicate how it is possible to obtain a high-
accuracy complex Green's-function matrix in only one
step, and on an arbitrary (possibly quite reduced) energy
mesh. Furthermore, by contrast with the techniques used
previously, the complex Green's function (more exactly, a
matrix element of the resolvent operator) is obtained in
the form of the simple scalar product

G(z) = g g ui"„(z)F„(k), (1)
k

where z stands for any complex energy, n runs over the re-

tained set of bands, and k runs over a specific mesh that
samples the Brillouin zone; F„(k) denoting the input ma-
trix elements of the spectral projection operator. It must
be emphasized that Eq. (1) is valid in the entire complex-
energy plane. The approach described below is then
directly applicable to problems involving contour integra-
tion of the Green's function, like those required by recent
summation techniques over occupied states. ' '" Another
advantage of the above formulation [Eq. (I)] lies in the
fact that the weight factors w" (z) can be computed once

k
and for all for a given perfect crystal and need not be re-

peated for different sets of matrix elements F„(k). More-
over, repetitive calculations of the scalar product are espe-
cially well suited to be handled by a vector processor. In
this paper we shall describe basically how to obtain the
coefficients w"-(z).

k
In designing this technique we did not find it more

desirable to restrict ourselves to highly symmetric prob-
lems as in conventional approaches. For instance, the for-
mulas we derive are valid for the most general triclinic
lattice. This is especially important because the considera-
tion of low-symmetry situations is needed increasingly in
practical applications. ' ' We use a decomposition of the
Brillouin zone into a set of tetrahedra, ' ' and, contrary
to what is sometimes believed, ' ' the lack of symmetry
of these polyhedra do not induce prohibitively complicat-
ed expressions, neither for the imaginary part nor for the
real part of the scalar product coefficients, even if the k
dependence of the matrix element F„(k) is included to
linear order. In this respect, we do not mean that these
simple expressions are easily obtained. Intricate algebraic
manipulations, which are not reported here in full detail,
are needed, and many of them had to be carried out using
a syinbolic inanipulation program. ' Finally, we benefit
here from another practical advantage of the tetrahedron
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II. THE ANALYTICAL TETRAHEDRON METHOD

The computation of most spectral properties of solids
involves the evaluation of integrals such as

I(E)= f F(k) 5(E(k)—E)dIk

E( k )=E
F(k)/i V'E(k)

i
dS (2)

partitioning: The gradient of the dispersion relations are
not explicitly needed. This is particularly valuable in the
numerous cases where the analytical gradient is not easily
obtained, thus hindering the application of usual extrapo-
lation techmques. '

transformation [refer to Eq. (3)]. Fortunately, the alge-
braic expressions obtained previously for a tetrahedral
contribution to J(E) (Refs. 17 and 18) can be simplified
cons1derably. Th1s holds true even I more general s1tua-
tions; for instance, when evaluating Fourier elements of
the Green function. '

The ability of the ATM to approximate a Green's-
function matrix element by a scalar product [Eq. (1)], in-
volving well-defined weight factors, has not been em-

phasized. Also, the ATM expressions are not restricted to
the real-energy axis. Once analytical formulations have
been obtained for a complex energy z, they of course in-
clude both surface and volume integrals I(E) and J(E) for
z approaching a real value E How. ever, the interest of the
complex-energy plane cxtcnslon 1s not restricted to dcrivc
these limits.

J(E)=P f„F'"' d'k=P f'" ""'d ."E—E(k) -" E x—(3) III. GREEN'S FUNCTION

In these equations, E(k) denotes a dispersion relation in

the reciprocal space and F(k ) stands for a matrix element.
In Eq. (2), dS is an infinitesimal element of the intersec-

tion area of the surface E(k)=E with the volume 0
where integration has to be performed; the symbol P indi-
cates that the integrals in Eq. (3) have to be understood in
terms of a principal value. These integrals are intimately
connected with the imaginary part [Eq. (2)] and with the
real part [Eq. (3)] of a spectral function.

For twenty years many techniques have been devised to
deal with this particular integration problem.
Among these, the analytical tetrahedron method (ATM)
shows a number of advantages. It consists in introducing

a decomposition of the k-space volume 0 into a set of
nonoverlapping tetrahedra. ' ' ' ' I(E) and J(E) are
then obtained by accumulating tetrahedral contributions.
In this method the spirit of the so-called linear-analytical
approach is dominating: A linear interpolation of the
dispersion relation is constructed so that the constant-
energy surface is approximated by a plane within each
tetrahedron.

The analytical determination of a tetrahedral contribu-
tion to the imaginary part I(E) of the spectral function is
then rather straightforward. In the most recent works de

voted to this subject, the k dependence of the matrix ele-

ment F(k) is taken into account by a linear interpolation
similar to that used for the dispersion relation

E(k).' ' ' ' In this paper, a slightly different formula-
tion is proposed for the tetrahedral contribution to surface
integrals like I(E) [Eq. (2)], because the expressions given
elsewhere are not always stable from a numerical point of
view. This is made clear in Appendix B.

The analytical calculation of a tetrahedral contribution
to principal value integrals like J(E) [Eq. (3)] is much
more involved. It was worked out first by Gilat and
Bharatiya, '7 and, more recently, for susceptibility calcula-
tions. ' However, the analytical expressions obtained by
these authors appear so complicated that it is generally
found more convenient to compute the real part J(E)
fI'0111 tile Imaginary part I(E) by a numerical Hllbert

Application of the Green s-function technique requires
the evaluation of some matrix elements of the resolvent
operator

(z —8) '= yy ~
y„(k))(y„(k)

~
/[z —E„(k)] (4)

in a basis whose size depends on the particular defect po-
tential treated. In Eq. (4),

~
P„(k)) denotes an eigenvec-

tor of the one-electron perfect-crystal Hamiltonian 8 as-

sociated with the eigenvalue E„(k), where n runs over the
bands. The number of bands actually included depends ei-
thc1 on thc pcrtuI'bat1on potcnt1al, 1n convcnt1onal
Green's-function approaches, or on the perfect-crystal or-
bital content, in the emerging matrix formulation. ' Any
matrix element of the resolvent operator is written as a
k-space integration

R(z)=Q 'g f F„(k)/[z —E„(k)]d k,

where 0 denotes the reciprocal unit cell, or the first Bril-
louin zone (or an irreducible part of it, when an appropri-
ate symmetrization of the basis has been performed), and

F„(k) stands for a given matrix element of the spectral
projection operator

~
It„(k))(lt„(k) ~.

Using the analytical tetrahedron method, including the
k dependence for the numerator function F„(k) to a
linear order, and denoting by k;, i =1, 2, 3, oI 4 the posi-
tion of the four corners of a given tetrahedron in k space,
a tetrahedral contribution to R (z) can be written

Q 'g f IF„(k)/[z —E„(k)]]d k

= g g r;"(z)F„(k;)u/0, (6)

where u stands for the tetrahedron volume and r;"(z) is a
complex weight factor, depending on z and on the corner
energies E; of the nth band [E;=E„(k;)]through the re-
lation
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(z E—;)
r;"(z)= + ( E)+ g

k(~i)

(z E—~) ln[(z —EJ )/(z —E;)]
E.—E

k(+j)

(7)

In this equation, the indices i, j, and k run over the values
1, . . . , 4. By contrast with the expressions previously pro-
posed, ' ' the above formulation [Eq. (6)] has the advan-
tage that the corner values of the numerator matrix ele-
ments appear in a sum where they are multiplied by
weight factors that depend only on the actual value of z
and on the energy dispersion relations. In addition, the
weight factors r;"(z) [Eq. (7)] are surprisingly simple and
can be easily constructed. However, attention must be
paid to the case where two (or more} corner energies are
identical; we shall consider this problem in Appendix A.
It must be noted that there is no logarithmic singularity at
z =E; in Eq. (7) owing to the following identity:

(z EJ)—
(E„E) E; E— —

k (+j)

(z E;)— z —E
(E„E;), , E;—E—

k (&i)

which, as the reader will certainly experience, is not trivial
to prove by hand. This is an example of a relation we
have "proved" with the help of an algebraic-manipulation
program. ' When z is a large complex number, the fol-
lowing asymptotic relation may be used for the computa-
tion of the function r;"(z):

part of this expression is easily deduced from Eq. (7). By
using the above identity [Eq. (8)], we have obtained the
following result, in a form identical with that derived re-
cently by Molenaar et al. : '

(E E;)— E EJ—
d;"(E)= 1+ g — ln (E E; ~—

Ek E; — . (q,.) E; EJ—
k (~i)

(E EJ) —ln
i
E E i-

+ (E„—E ) E; E—
k (&j)

(14)

(E E) e—(E E)—
g (E„E) E, E,

k (&j)

(15)

Remember that the band label "n" enters such a relation
through the corner energies E;. When two (or more)
corner energies are identical, Eq. (14) is no longer useful.
Appendix A gives the limit values of d; (E) when equali-
ties between the corner energies happen.

As for the imaginary part of Eq. (13), we obtain from
Eq. (7) the result

(E—E;) E EJ-
(E„' E, ) .&.

, E,
k (~i)

r;"(z)=— „„+0(z ),
4 z a;" b;"/z— —

with

4
na;=

and

b;"= g 3(EJ Eg) + g (E—k EJ)—
j (Qi) k (Qj)

(9)

(10)

300 .

where B(x) is the Heaviside unit step function. From this
expression and Eq. (8), one sees that c;"(E) vanishes out-
side the interval (E;„,E,„), where E;„(E,„) is the
smallest (the largest) corner energy. c;"(E) is a positive cu-
bic function of E in each panel bounded by two successive
corner energies. When the corner energies differ from
each other, c;"(E) is a continuous function of E, as well as
its first and second derivatives, except that the second
derivative has a jump equal to

6

(Ek E, )
k (@i)

Equation (9) starts the continued-fraction expansion of
r;"(z).

The Green's function for a real argument E is common-
ly referred to as the limit

G(E)=R(E+i0) . (12)

rj". (E+i0)=dj"(E) in.cj (E), — (13)

where j denotes one corner of the tetrahedron. The real

Thus, in order to obtain the expression for the Green's
function from the resolvent operator matrix elements [Eq.
(6}],we have to take the limit of the weight factors r;"(z)
when z approaches a real energy value E in the upper-half
complex plane Imz & 0. I.et us write

at E=E;. Therefore, cP (E) is close to a cubic spline func-
tion. Nevertheless, at this stage, Eq. (15) is not written in
a form suitable for numerical computation. It is subject
to numerical instabilities that are described in Appendix
B, where stable and explicit formulas are given.

Once a tetrahedral contribution to any matrix element
of the resolvent operator has been obtained [Eq. (6)], one
accumulates all these contributions. We do not dwell too
long on the problem of a tetrahedral subdivision of the k
volume Q. It is easy to perform when integrating over
the full unit cell of the reciprocal space: The unit cell is
divided into small parallelepipeds (minizones), whose
edges are parallel and commensurable with those of the
unit cell. The vertices of the minizones define the k mesh
of points (usually a few hundred, depending on the desired
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accuracy) at which the dispersion relations E„(k) and the

matrix element F„(k) are to be computed. Subsequently,
each minizone is divided into six tetrahedra having equal
volumes, each being defined by four of the corners of the
parallelepiped. When integrating over the first Brillouin
zone, or an irreductible part of it, a tetrahedral subdivision

is particularly easy to perform when the k volume is a
prism (hexagonal system), a tetrahedron, or an aggregate
of these two kinds of polyhedra; as for the irreductible
wedge of cubic crystals, a new tetrahedral subdivision
scheme has recently been proposed.

Thus a matrix element of the resolvent operator can be
written from Eq. (6) as

where, as before, U denotes the tetrahedron volume, and

4

C„(E)=g c;"(E) . (21)

From Eq. (15), we obtain

using formulations published so far, we briefly derive
hereafter a tetrahedral contribution to the density of
states. This can be obtained by setting F„(k)=1 in the
above equations. A tetrahedral contribution to the density
of states then writes

(1/0) g I 5(E„(k)—E)d'k= g C„(E)U/f), , (20)

4

R(z) = g g g r;"(z) F„(k;)U/0,
t n i=1

(16)

4 (E E)2
C„(E)=3 g e(E E; )—

k {~i)

(22)

where the sum over t means a summation over the whole

set of tetrahedra that fill the k-space volume 0 and k;
stands for one of the corners of a tetrahedron, the volume
of which being denoted by U as before. This equation can
be rewritten in the form given by Eq. (1) where the sum

over k means a summation over the points of the k mesh
and where the weight factor w"-(z) is given by

k

w"-„(z)= g r" (z)u/0 . (17)
t~k

In this equation, we first sum over all the tetrahedra that
have the given mesh point k as one of their corners; the

symbol j(k) means that the k point at hand is the corner j
(=1, 2, 3, or 4) of the tetrahedron t. The calculation of
w"-(z) is easily implemented on the computer. The max-

k

imum number of tetrahedra which join at a given k point
is 24.

As for the Green's function for real arguinent, one has
from Eq. (1)

G(E)= g g w"„(E+i0)F„(k)
nk

C„(E) is a parabolic spline function of E that vanishes
outside the interval (E;„,E,„),owing to the identity

(23)

which can be obtained by summing over i both sides of
Eq. (8). This recovers earlier results. ' However, we do
not recommend the use of the above formula because the
expression directly derived from Eq. (15) is ill conditioned
for some constant-energy plane orientations. A cure is
provided in Appendix B.

P..-/
2 ..-"

w"-„(E+i0)= g [d"
, -„,(E) ic"-„,.(E)jU/—0, .

teak

(19)

which can be computed using the expressions we have ob-
tained for the d and c functions. w"-(z) can be computed

k

once and for all for a given perfect crystal: It depends

only on the dispersion relation E„(k). This Green's-
function summation technique has been applied for the
first time to study the vibrational effects of an impurity
embedded in a semiconductor crystal. The results will be
published elsewhere.

IV. DENSITY OF STATES

Earlier ATM works were devoted to the computation of
the density of states. For completeness, and because nu-
merical instabilities are sometimes encountered when

FIG. 1. The intersection area of the constant-energy plane
E„(k)=E with a tetrahedron is the quadrilateral ABCD when
E&&E&E3. In numerous works devoted to the analytical
tetrahedron method, this area has been considered as the differ-
ence between the triangles PDC and PAB. This gives rise to nu-
merical instabilities because P goes to infinity when E& ap-
proaches E2. In the present paper the quadrilateral ABCD is
constructed as the sum of triangles, without extrapolations out-
side the tetrahedron. This can be done in two ways, depending
on which diagonal, AC or BD, is used. Therefore, Eq. (85),
which we have derived analytically, is easily interpreted.
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APPENDIX A

When two (or more) corner energies are identical, Eq. (7) is still valid after appropriate limit calculations. In the
present appendix, all the cases of degeneracy are reviewed. Let us first assume that no more than two corner energies are
identical, let us say Ei=E (l and m =1, 2, 3, or 4). We obtain in this case

(z E;—}2 z —Em z —Ek
r;"(z)=

3 1+ 2 + ln(z E;—)
(E;—E )'(Ek —E;) « —E Ei Ek—

L

r

z —E; z —Ek (z —Ek )
3

2 + ln(z —E ) + 3 3
ln(z —Ek)

E~ Eg —E~ Ek — (Ek E; )—(Ek E~—)

(z E—)'
+ 1+

(E~ E;)—(Ek E~—)

(z EJ )— (z Ek )—
ri"(z) =r" (z) =

3
ln(z EJ )+— 3

ln(z Ek)—
(Ej Ek )(E— E~—) (Ek EJ )(Ek —E~ )—

for the two sites i different from the sites l and m; in this equation k indexes the site different from i, I, and m:

(A1)

z —Em ] z —E) z —Ek
+ ' —+ + +(E Ej )(E— Ek ) —2 E Ej —E Ek—

z —EJ

E~ —EJ

'2

z —Ek
+

Em —Ek

z —EJ z —Ek
+ ln(z —E ) . , (A2)

m j m k

where sites j and k (j&k ) are the two sites different from the sites l and m where equality occurs between the corner en-

ergies.
When more than two corner energies are identical, it is more convenient to write explicitly the related expressions, by

assuming that the corner energies for the nth band has been labeled in such a way that' ' ' Ei &Ez &E3 &E4. The
following expressions have been obtained:

(z E4 ) —z E4 6(—z E4 ) 3(E—4 E3—)(z E—4 ) +2(E—4 E3)—
r i (z) =r2 (z) =r 3(z) = ln +

(E4 —E3 ) z E3— 6(E4 E3)—
z —E3
z —E4

when E~ ——E2 ——E3 &E4',

(z E4) (z E—3)—
r4(z) =3 ln

(E4 E3)— 1

E4 —E3
3 2(z E4 ) (E4 —E3 )— —

——(z E3)—
2 (E4 E3)— (A3)

(z E3) (z —E2)—
ri(z)=rz(z)=3 4

ln
(E3 E2)—z —E

z —E3

z —E3
z —E2

n nr3(z) = r4(z) =3
4

ln
(E E)—

3 2(z —E3)—(E3 E2)—(z Ez)—
2 (E3 E2)—

2(z —E2)+(E3—E3)
(z E3)—— +

2 (E3 E2)— (A4)

when E& ——E2 (E3—E4',

n n nrz(z) =r3(z) =r4(z) = ln
(E2 E&)—z —E2

when Ei & Ez E3 E4', and——finally——

(z Ei) (z —Eq) —z Ez 3 —2(z Ei)+(E2 Ei—)—
ri(z)=3 ln —(z —E2) +

(Ez —E, )" z Ei 2—(E2 E i)—E2 —E)

z Ei 6(z E i—) +3(z Ei )—(E3 E& )+—2(Ez Ei—)—
6(E2 E i)— (A5)

r i(z) =r2(z) =r3(z) =r4(z) =—
4 z —Ei

(A6)

when E ~
——E2 —E3 —E4.

To obtain the expressions for d;"(E) [Eq. (14)], the real part of r;"(z) must be taken for a real energy E. This can be
done by setting z =E in the above equations and by using absolute value for the argument of all logarithms involved.

APPENDIX B

This appendix is devoted to an explicit formulation of the functions c; (E), first introduced in Eq. (13), and given by

Eq. (15}. It is assumed here also that the corners k; of the tetrahedron have been labeled in such a way that
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E] &E2 &E3 &E4. We know that c; (E) vanishes outside the interval (E„E4). Inside this interval, we have obtained the
expressions

E2 —E E3 —E E4 —E (E E—I )
c](E)= + + if E, &E&E, ,

E2 EI E3 EI E4 EI (E4 E] )(E3 EI )(E2 EI )

E3 E (E3 —E)(E—E2 ) (E4 E)—(E EI—) (E3 E—)(E E,—)
c](E)=- + +

2 (E3 E I
—) (E4 E2—)(E3 E2—) (E4 E I

—)(E4 E2—) (E3 E2—)(E4 E I
—)

E4 E — (E4 E)(—E EI )— (E4 E)(—E—E2) (E3 E)(E E] )
+ 2 + +

(E4 E, )— (E4 —E2)(E3 E, )— (E4 E2)—(E3 E2)— (E3 E])—(E3 E2)

(E4 E)—
c](E)= if E3 &E &E4,

(E4 EI ) (—E4 E2)(E—4 E3)—
(E E I )—

c2(E)= if EI &E &E2,
(E2 EI ) (E—3 EI )(E—4 EI )—

E3 E—(E3 E)(E—E2) (E4 —E)(E—E2) (E3 E)(E —EI)—
c2(E)=- + +

2 (E3 —E2) (E4 —E2)(E3 EI ) —(E4 E2)(E4—E, ) —(E3 EI )(E4—EI)—
E4E(E3E)(EE2)(E4E)(EE])(E4E)(EE2)

+ 2 + +
(E4 E2 ) (E3 E2 )(E3 E] ) (E4 E] )(E3 E] ) (E3 E2 )(E4 E] )

(E4 E)3
c2(E)= if E3&E&E4,

(E4 EI )(E4 E2)—(E4 —E,)—
(E EI)—

c3(E)= 2
if E, &E&E2,

(E2 —EI )(E3 EI ) (E4 —E,)—

if E2&E&E3, (Bl)

if E2 &E &E3, (B2)

E E2 —(E3 E)(E E2—) (E—4 E)(E E2—) (E—3 E)(E EI )— —
c3(E)=- + +

2 (E3 —E2 ) (E4 —E2 )(E3 E I ) (E4—E2 )(E4 E—] ) (E3—EI )(E4 E I)—
(E3 E )(E E2 ) (E4 E )(E E ] ) (E3 E )(E E] )

+ 2 + +
(E3 E] ) (E4 E2)(E3 E2) (E4 EI )(E4 E2) (E3 E2)(E4 E] )

(E4 E)3
c3(E)= if E, &E &E4,

(E4 EI )(E4 E2—)(E4 E3—)—
(E E,)—

c4(E)= if E] &E &E2,
(E2 EI )(E3 EI )(—E4 EI )— —

E E2 (E3 ——E)(E—E2) (E4 E)(E E, ) —(E4 —E)(E E2)— —
c4(E)=- + +

2 (E„E2) (E3 —E2)(E3 EI ) (E4 E, )(E3 —I) —( 3 2)( 4
— I)

if E2 &E &E3, (B3)

c4(E)=

F k dS= 6 Fg+Fg+Fc Spic+ Fg+Fg+FD Spy+ Fc+FD+Fg Sgg)g+ FD+Fg+Fg Sag, B5

which is exact when F(k) is a linear function of k. In Eq. (85), ABCD is a quadrilateral in a given plane of the three-

E EI (E4—E)(E EI ) —(E4 —E)(E E2) —(E3 —E)(E EI)— —
+ 2 + + if E, &E &E, , (B4)

(E4 EI ) (E4 E2—)(E3 E]) (E4 E2)(E3 E2) (E3 E])(E3 E2)

E—E3 E—E2 E—E) (E4 E)2
+ + if E3 &E &E4 .

E4 E3 E4 E2 E4 E I (E4 E I )(E—4 —E2 )(E4——E3 )

These equations differ from analogous results presented elsewhere' ' ' when E2 &E &E3. In that case, the intersection

area of the constant-energy plane E„(k)=E with the tetrahedron is a quadrilateral, which has been considered as the
difference between two triangles in all the papers devoted to the analytical tetrahedron method (Fig. 1). This leads to an
unfortunate instability in the numerical evaluation of such a contribution. The reason for this is that, when E] comes
close to E2, both triangles become extremely large, giving rise to a considerable loss of significant digits when substrac-
tion is performed. By contrast, the expressions we give here for E2 &E &E3 are written as a symmetric sum of positive
terms; our expression can be interpreted as the result of the following integration formula:
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dimensional k space, EA, . . . , FD denotes the value taken by the function E(k) at the corners A, . . . , D, and

SAttc, . . . , SDAz stand for the area of the four triangles that can be drawn in ABCD without introducing other corners
than those of the quadrilateral (Fig. 1). Another advantage of the above formulation resides in the fact that no problem
is encountered when two (or more) corner energies are identical, except when E& ——E2 ——E3 E——4, in which case the four c
fUQct10Qs fcdUcc to

5(E Ei—)/4,

where 5(x) is the Dirac delta function.
The sum over i of the above expression is related to the tetrahedral contribution to the density of states [Eq. (20)].

One obtains

(E E) )z
C„E =3 E) &E(Ez,

(E2 Ei )(E—3 Ei )(E—g Ei)—
(E3—E)(E—E2) (E4 E)(E—Ei )—

C„(E)=3 +
(E4 E2 )(E—3 E2 )(E3—E) ) (E4 E) )(E—4 —Ez )(E3—E t )

if E2&E&E3, (86)

(E4 E)2
C„E =3 rf E3 &E &E4 .

(E4 E) )(E4——Ep )(E4 —E3)

Equation (86) for E2 &E & E3 is written as a sum of two positive quantities and differs from an expression commonly
used for density of states calculations. ' As said above, the present formulation should be beneficial for reasons of nu-
merical stability.
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