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Starting from Bogolyubov s inequality, we derive a variational form for the Helrnholtz free ener-

gy F to study the ferroelastic phase transitions in simple ionic molecular solids. The coefficients of
the Landau expansion of F in terms of the five orientational order parameters (g;, i = 1, . . ., 5) are

calculated from a rotation-translation Hamiltonian which has been used with reasonable success to

explain the thermoelastic anomalies of the orientationally disordered phase. Detailed calculations

have been performed for CsCN to understand the first-order phase transition from the pseudocubic

(Pm3m ) to trigonal (R3m ) phase. Various aspects of this transition resulting from the interplay of
direct and lattice-mediated interactions and limitations of the currently used models to describe the

physical properties of alkali cyanides are discussed.

I. INTRODUCTION

A general characteristic of a large class of molecular
solids is that at high temperatures (T) they possess crystal
structures of cubic symmetry and with decreasing tem-
perature undergo ferroelastic phase transitions to struc-
tures with lower symmetry. The nature of these structural
phase transitions is primarily governed by the orientation-
al degrees of freedom of the molecular species and its cou-
pling to the translational degrees of freedom. At high
temperatures, thermal reorientation of molecules makes
them effectively spherical so far as the average structure is
concerned. Typical examples are alkali cyanides' and al-
kali superoxides which have either pseudocubic NaC1 or
CsC1 structures at high T and undergo ferroelastic phase
transitions to (excepting Na02) orthorhombic, tetragonal
or trigonal structures with decreasing T.

In all these systems, the molecules undergo large-
amplitude orientational motion at temperatures of in-

terest, and there is strong coupling between translational
and orientational degrees of freedom. The latter results in
an effective interorientational interaction which, in most
cases, is stronger that the direct interaction between the
molecules' Competition between (a) direct and lattice-
mediated interactions, (b) short-range repulsion and aniso-
tropic electrostatic interaction contributions to rotational-
translational coupling, and (c) intermolecular and single-
site interactions are some of the interesting features of
these systems. The main purpose of the present study is
to calculate the free energy of these systems starting from
a microscopic Hamiltonian and to make a systematic
study of the above-mentioned competing processes. In
particular, we relate the coefficients in the Landau free-
energy expansion to parameters appearing in the
rotational-translational Hamiltonian which has been
reasonably successful in understanding the anomalous
thermoelastic properties of alkali cyanides. " The reason
for choosing the cyanides instead of the superoxides is
that they have not only been thoroughly studied by vari-

ous experimental techniques ' but also in recent years
molecular-dynamics simulations" have been performed in
these systems. A comparison between simulation studies
and those using different theoretical methods can, in prin-
ciple, shed light on the adequacy of the rotation-
translation Hamiltonian and the methods used to solve
them.

Until now, there has been only one serious theoretical
attempt' to understand the structure of the ferroelastic
phase of the cyanides starting from a microscopic Hamil-
tonian. In addition to certain limitations of the theory (to
be discussed in detail in Sec. IV) this work was unable to
explain the (110) orientational ordering in NaCN and
KCN. ' In this paper we derive a variational form of the
free energy starting from Bogolyubov's inequality' which
differs considerably from that obtained in Ref. 12 and
then analyze qualitatively various terms in the free energy
that can give rise to the above-mentioned (110) ordering.
But for detailed numerical investigation, we have chosen
CsCN which shows (111)ordering instead. We hope to go
back to the question of (110) ordering in KCN and NaCN
after obtaining a better understanding of the microscopic
Hamiltonian.

The outline of this paper is as follows. In Sec. II we
derive an effective orientational Hamiltonian starting
from the translational-rotational Hamiltonian studied in
Ref. 6. In Sec. III we briefly describe the order parame-
ters g;, their symmetry, and the variational principle used
to obtain Helmholtz's free energy F. In Sec. IV the expan-
sion of I' in powers of g s is given and the coefficients are
related to second-, third- and fourth-order single-site
orientational susceptibilities. Also in this section we com-
pare our theory with that of Ref. 12. Finally in Sec. V we

apply our theory to CsCN and discuss the limitations of
the present model.

II. EFFECTIVE ORIENTATIONAL HAMILTONIAN

The Hamiltonian, describing the rotational and transla-
tional dynamics of the molecular solids, has been studied
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by many authors in the past. For the purpose of the
present paper we will use the notations of Ref. 6. The to-
tal Hamiltonian H can be written as a sum of translational
(H, ), rotational (H„), and rotational-translational (H«)
parts; these are given by

(2.1)

j, k

H„= g g (1/2I )I. (k)L (k)+ g V (n;)
A, =1k

is the Fourier transform of the indirect lattice-mediated
interaction between the molecules, j being the summation
over acoustic- and optical-phonon branches. The real-
space Fourier transform of I p(k) gives the indirect in-

teraction I~p(R; R—J) I~p(ij ) between two molecules si-

tuated at sites R; and RJ, respectively. It is well known
that the term with R; =RJ, i.e., the self-term does not van-
ish' and gives rise to a modification of the single-site po-
tential Vo(n;). We can rewrite H„' in terms of orienta-
tional variables Y (n;}—= Y (i) as

+ —,
' QQD~p(k)Y ~(k)Yp(k),

p
(2.2) Hr = P[Vo(i)+Vs(i)]+ —, g'g T p(i,j)Y (i)Yp(j),

ij ap

X y (I/'1/m )e (K
~
k,j)vp(g(K

~
k), (2.4)

P, K=+

where e&(K
~

k,j ) is the pth component of the polarization

vector associated with the mode (j,k); m„(K=+, —) are
the ionic masses. The coupling-constant matrix v& (K

~

k)
has been worked out in detail in Ref. 6.'

For studying the thermodynamics of ferroelastic phase
transitions described by the Harniltonian H, we assume
that the rotational degrees of freedom can be treated clas-

sically, i.e., we assume that L and 7' 's commute and ig-
nore rotational kinetic-energy contributions to the free en-

ergy. We then use a canonical transformation to remove
the linear coupling H,„and obtain an effective rotational
Hamiltonian H,' which is given by

H„' = g Vp(n;)

+ —,
' g g [D~p(k)+I~p(k)]Y~(k) Yp(k),

p
(2.5)

where

I~p(k) = —+ V2(~kJ) Vpj(k)/(Ac@ -„)
j

(2.6)

H,„=i g Y~(k)V~J(k)(b „+bt „). (2.3)
k,j,a

In Eq. (2.1), cojk is the frequency of bare phonons of wave

vector k and polarization index j; b - (b.-) are the corre-jk jk
sponding phonon destruction (creation) operators. In Eq.
(2.2), I is the moment of inertia of the molecular ion
(treated as a dumbbell) about each of the two principal
axes, L( k ) is the fourier transform of the angular-

momentum operator L;, Vo(n;) is the single-site potential
as a function of the orientation n; of the ith molecule,

D~p(k) is the Fourier transform of the direct intermolecu-

lar interaction, and Y~( k ) (a= 1—5) are the Fourier
transforms of Y (n;) which are properly symmetrized
linear combinations of spherical harmonics of order 2. In
contrast to Refs. 4, 6, and 7, Y 's in this paper are nor-

malized to unity. The coupling constants V~J(k) are
given by [see Eq. (2.20) of Ref. 6]

V,(k)=[(i/(2~'. -„)' ']

(2.7)

where the self-term V, (i) is given by the equation

V,(i)=++I p(k)Y (i)Yp(i)
p

(2.8)

and possesses cubic symmetry (contains only terms up to
fourth order in Kubic harmonics). The prime in Eq. (2.7)
implies that i &j and the total interaction T p(ij ) is a sum
of direct D~p(ij) and indirect I~p(ij) intermolecular in-

teractions. Note that D~p(ii }=0
The major contribution to D p(ij ) comes from

quadrupole-quadrupole (Q-Q) interaction between two
(CN) molecules. The short-range repulsion and anisotro-
pic dispersion interactions are usually small' and can be
neglected excepting for maybe NaCN. In the present pa-
per and our earlier work in these systems we have
neglected these contributions to D p(ij). Because of the

short-range nature of the Q-Q interaction D~p(k) is well

behaved as k —+0 [D p Dp(k = 0)—]—. For cubic symme-

try, D&~ ——D22 (e~ symmetry) and D33 —D44 D35 (t2g-—
symmetry). In contrast, the lattice-mediated interaction

I~p(i, j) is usually long ranged which is reflected in the

nonanalytic behavior of I p(k) as k~O (see Bergman
and Halperin' and Gehring and Marques' ). This nonan-

alytic behavior can be avoided by separating out the long-
range strain and considering phonon excitations of the
strained lattice. ' An alternate procedure was pointed out

by Elliott et al. ' who found that one could incorporate
the effects of strain-mediated interaction by analyzing the

negative eigenvalues of T p(k) matrix in the limit k~O
and considering the eigenvalue with largest magnitude. In
our present calculation we will follow this procedure al-

though the effect of choosing a given direction in k space
breaks the cubic symmetry. This point will be discussed
in detail in Secs. IV and V.

We would like to point out that I (k —&0) is always

negative, i.e., ferrodistortive, whereas D«(k~O) =D~
can be either positive or negative depending on the sym-
metry of the lattice. For example, for the NaC1 structure
D» ——D22 &0 and D33 ——D44 ——D55 &0, and for the CsC1
structure D» ——D22 & 0 and D33 —D44 —D55 Q 0 This
leads to different interplay between direct and lattice-
mediated interactions in molecular solids with these two
different structures.
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III. ORDER PARAMETERS AND VARIATIONAL
PRINCIPLE

Since we have eliminated the linear rotational-
translational coupling by a displaced oscillator transfor-
mation, ' the displaced phonons are still harmonic and the
structural phase transition is determined solely by H,' .
Once there is order in the rotational system, the lattice de-
formation in the ordered (ferrodistortive) phase will follow
the orientational order parameters and can be calculated
simply by using the equations of displaced oscillator
transformation. We therefore choose the molecular orien-
tations as order parameters. For the ferrodistortive case
we choose

(Y.(k)) =b-, ,q.=(Y.(n, )) . (3.1)

We next derive a variational form for the free energy (to
be denoted as F„)associated with the effective rotational
Hamiltonian H„' given in Eq. (2.7). We start from the
Bogolyubov's variational principle' which states that for
a given Hamiltonian H,

Fpxrrtgt kT ln Tre

&F„„=Tr(prH )+kT Tr(pTln pT ) (3.2)

pT =Imp;r (3.3)

where pT is a trial density matrix satisfying the equation
Tr pT ——1. If we choose

pz ——p,„„,=exp( PH)—/Tr exp( PH), —

then we have F„,=F„„,. For the trial density matrix we
choose the form

and obtain

Fvar= 2 g Tap( J)yiayip
I,J

—N[h yi + —,'h hpX p

1 0 1 0—
6 hahphyXapy+ 24 (hahphyh5Xapy5

—3PhahphyhsX pXy5)]+ (3.7)

where the generalized single-site susceptibilities X py5
are

X'p=P& Y Yp&o

Xap„P( Y——a Yp Yy )0,
Xapys=P ( Ya YpYy Ys)0.

(3.8a)

(3.8b)

(3.8c)

In Eq. (3.7) and in what follows we use the convention
that repeated indices imply summation, and in Eqs.
(3.8a)—(3.8c), ( )0 is the thermal average taken over the
single-site potential Vr(i) = Vo(i)+ V, (i)= Vr(—n; )
= VT(Q), i.e.,

(g&,=fe ~' g(n)dn fe ~' de. (3.9)

IV. LANDAU EXPANSION OF FREE ENERGY

In order to obtain a variational form for the free energy

F„« in terms of the five order parameters y) i, . . . , y)5, we
start from the Eq. (3.7) which gives F„„in terms of the
ordering fields hi, . . . , h5 and eliminate ha s in favor of

s using Eq. (3.6), which (dropping the i suffix for the
ferroelastic phase) can be formally inverted to give

—PH; —PH;
p;, =e '/Tre

H; = Vo(i)+ V, (i)+ g h (i) Y (i) .

(3.4) ha Na595+Pass'9595'+0'a55'5""7595'95" + ' '

Substituting this in the equation

(4.1)

The variational parameters in F„„are the ordering fields
h (i) Instea.d of h (i)'s we choose yi; 's as variational pa-
rameters where yi; 's are related to h (i)'s by

yira=T«prr Ya(&) . (3.6)

Thus yi; 's are functions of h (i)'s and we formally invert

Eq. (3.6) and express F„, in terms of g;a. Since we are
dealing with ferroelastic transitions, we choose

for all i,

0 0
7/a —Xap h p +Xapy h ph y +

we obtain

P p= —[(X') '] p,
0 0 0 0

Oa55 = 24' 4—5y45. Xi y. .

(4.2)

(4.3)

(4.4)

Since we are interested in expanding E„„only up to
fourth order in yi 's, it turns out that we do not need

Substituting for ha in F„„and eliminating gas,
etc., we obtain

(1/N )(F„„Fo)= ,
'

[Tap( k ~—0 ) + 1/—Pa]yiayip ,' (PaPpPy ) 'Xap—yyi—ay)Iiyiy

24 (PaPp y 5) [Xapys 313PaPy~agys ( /Pp)8paXappXyscr]yia'9gply Vcr'
=f2+f3+f.

where Pa =P( Ya) 0, Fo is the free energy in the disordered phase, and

'rap(k~0) =Dap(k = 0)+Iap(k +0) Q Iap(k)—. —

(4.5)

(4.6)
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The last term in Eq. (4.6) is the second self-energy contribution in molecular solids, the first one contributing to the
modification of the single-site potential VT(i). The limit k~O is necessary because of the nonanalyticity of I~p(k) in
this limit.

Since VT(i) possesses cubic symmetry, the susceptibilities P p, X~pr, P~pzs, and consequently the third and fourth or-
der terms in F„„Fo—, can be considerably simplified. The nonanalyticity of I~p(k —&0) breaks the symmetry in the
second-order term. As has been discussed earlier, we will choose the direction of k and the combination of 11 s which
give the lowest eigenvalue of I p(k ~0). Since the third- and fourth-order terms do not depend on k, we can simplify
them by using cubic symmetry. After a considerable amount of algebra we obtain the following results for f3 and f4 of
Eq. (4.5):

f3 ( s )[43,191(91 92)+~3,293 1495+~3 3[91(293 94 95)+~392(95 94)]

f4 =( 24 )[~4,1(91+92) +~ 4 2(9 3+94+9 5)+~4 3 (9394+949 5+9 593 )+~4, 19193 +~4 291(94+95)

+&4,3'92'r)3+&4, 4'92(94+95)+&4,5'Cire(94 Vs) l—~ (4.8)

where the coefficients A3; and 84; are given in Table I.
Cubic symmetry requires that the coefficients
841, . . . , B45 must satisfy certain symmetry conditions
which are discussed in Appendix A. These symmetry re-
lations provide strong checks not only the correctness of
Eq. (4.8), but also on the numerical evaluation of these
coefficients which will be presented in Sec. V. The sus-
ceptibilities that determine these Landau coefficients are
given in Appendix B.

A. Comparison with earlier theory

The only other attempt to understand the low-
temperature structure in the ferroelastic phase of alkali
cyanides starting from a microscopic Hamiltonian has
been made recently by deRaedt, Binder, and Michel
(DBM). ' The approach of the present paper differs from
that of DBM in two essential ways. The first is related to
the form of the Landau free energy used in the minimiza-
tion procedure and the second is related to the averaging
procedure used to take into consideration the long-range
nature of the indirect lattice-mediated interaction and its
shape dependence. %e will discuss these two points
separately.

+-,' g (Y.(1))c.p(Yp(1)), (4.9)

where

C p=XI p('»)
JQt

and H, is the single-site Hamiltonian Q,. VT(i) The free.

energy is calculated using the equation

(4.10)

jeff
FMF = —kT ln Tr e (4.11)

Instead of calculating (Y (i)) from the self-consistency
equation

&H.ff jeff
( Y (i) ) =Tr[e " Y (i )]/Tre (4.12)

and substituting it in Eq. (4.11) to obtain the free energy

DBM start from a Hamiltonian of the form given in
Eq. (2.5) (they assume the direct interaction to be unim-
portant) and obtain an effective mean-field Hamiltonian
H,' which is given by

H„' =H„g( Y (—i) )C p Yp(i )

TABLE I. Third- (A3;) and fourth- (A4; and 84;) order Landau coefficients in terms of generalized
free-molecule susceptibilities: g p=(ap), X p1,

—=(apy), X p1,s=(apy5), and p= 1/kT.

Coefficient

A3]
A32

A4)
A42
A43

&4,2

&4,4
&4,S

Expression

(111)/(11)
6(345)/(33)
(3/2)(331)/(11)(33)
—(1111)/(11)4+3P(11)2+ 3(111)~/(11)5
—(3333)/(33) +3P/(33) + 3(331}/(11)(33)
—6(3344)/(33)4+6P/(33)2+ 3[4(345) /(33) —(331) /(11)]/(33)4
—6(1133)/(11)2(33)2+ 6P/(11)(33) + [3/(11)2(33)2][2(111){331)/(11)+ 4(331}2/(33)]
—6(1144)/(11)2(33)2+6P/(11)(33)+ [3/11)2(33)2][(331)2/(33)—(331)(111)/(11)]
—6(2233)/(11) (33) +6P/(11)(33)—[6/(11)2(33)2](331)(111)/(11)
—6{2244)/(11) (33) +6P/(11)(33) + [3/(11)2(33)2][(111)(331)/{11)+ 3(331)2/(33)]
—12(1244)/(11) (33) + [6V 3/(11)(33)][(111)(331)/(11)+ (331) /(33)]
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in the mean-field approximation, DBM expand FMF in
powers of Ig I which are related to I(F }I and mini-
mize it with respect to Ig-I. The free energy thus ob-
tained (which we denote as FDBM) differs from that ob-
tained by minimizing I'„, discussed in Sec. III.

To see whether FDBM and E„„give the same free ener-

gy after minimization, we have considered a simple Ising
system with nearest-neighbor ferromagnetic interactions
described by the Hamiltonian H= —Jg(, &o;OJ. We

denote by fDBM and f„„as the change in free energies
(per spin) from the noninteracting value obtained by
methods similar to that used by DBM and the present pa-
per, respectively. After expanding the free energy up to
fourth power in the order parameters (cr; }=m, we obtain

fDgM/Jz= &(1—PJz)m +»(PJz) m

and

f„„lkT=—,'(1—PJz)m +—„m
where z is the number of nearest neighbors. Note that the
fourth-order term in f„„does not depend on the interac-
tion parameter J. Minimizing fosM and f„,„with respect
to m, we find that both give the same equation for the
transition temperature, i.e., 1 —P,Jz=l. However, for
T& Tc, i.e., for PJz& 1, the order parameter m and the
corresponding free energies differ. For example,

mDuM ———3(1 PJz) l(PJz—)

fDBM = —
4 kT(1 —pJz) /(pJz)

whereas

m„„=—3(1—PJz), f„,',"=—,'kT(1 PJz—)—
and clearly for PJz& 1, m„„&mDBM and f„,',"&f„',".
Thus the free energy obtained from the variational princi-
ple is lower.

An advantage of using f„„instead of fDBM to calculate
the free energy is that in the former, the interaction ma-

trix T &(k~O) appears only in the second order and
higher-order terms are determined by the single-site poten-
tial VT(n;) which has cubic symmetry. This is extremely
helpful when one is dealing with lattice-mediated interac-
tion because the nonanalyticity of I.(k~0) appears
only in the second order. Thus one can calculate and

compare the free energies for various k~0 limits with
relative ease because the higher-order terms are indepen-

dent of k and have to be calculated only once.
The second point that we wish to discuss is the way in

which the long-range nature of the lattice-mediated in-
teraction is handled in the theory. DBM make an in-
teresting suggestion to handle the long-range elastic forces
or equivalently the k —+0 limit of I p(k). They suggest
that one should choose a crystal with length L„g~,L,
such that L =L~ ~~L, . This implies that one should
consider k=(p,p, O) and take p-0 limit. In fact they
evaluate the free energy which is an average of the free en-

ergies associated with k=p(1, 1,0) and k=p(1, —1,0) direc-
tions. This averaging incorporates the fourfold rotation
symmetry of the entire crystal about the z axis. Since

these two directions give orderings appropriate for two
different domains and since no domain-wall energy is in-
cluded in the present theory, we prefer to calcuate the free
energy for a single-domain configuration, i.e., break the
degeneracy between the (1,1,0) and (1,—1,0) directions by
an appropriate choice of L,Lz,L, . We believe, however,
that the inclusion of different domains and domain-wall
energies may eventually be necessary to have a true pic-
ture of phase transition in these molecular solids. Anoth-
er point in reference to the form of free energy obtained

by DBM needs mention; for k=(k„,0,0), DBM find that
the third-order term in the Landau expansion vanishes
and the transition is be necessity continuous (unless the
fourth-order term is negative). In contrast, within our
formalism, the third-order coefficients are independent of
k and it is possible to have a first-order transition for
k=(k,0,0).

Finally we would like to make some general remarks
about the variational free energy f=f2+f3+ f~ given in
Eqs. (4.5), (4.7), and (4.8). Because of the coupling be-

tween g&, g2 and g3, g4, g, in third and fourth order, it is
possible that the system can undergo a phase transition to
a structure where the order parameter has both ez and t2&

components. This is possible if the indirect and direct in-

teractions are such that the eigenvalues of T p(k~O) as-
sociated with ez and t2~ symmetries are close to each oth-
er. Another possibility is that the lowest eigenvalue of
T p(k —+0) is itself of mixed symmetry due to large off-
diagonal terms. We believe that both the possibilities
mentioned above can in principle explain the (1 10) order-
ing found in NaCN and KCN. Which of these two is ac-
tually operative in KCN and NaCN can be seen only after
a careful numerical analysis of the free energy. But before
getting into the complications associated with mixed t2~

es ordering, we discuss the results of ferroelastic ordering
only in the t2~ manifold, as seen in CsCN.

V. FERROEI-ASTIC PHASE TRANSITION IN CsCN

CsCN exists in the usual cesium halide crystal structure
[Pm3m(0')] at room temperature and undergoes a first-
order phase transition at 193 K to a slightly distorted
cubic structure of trigonal [R3m (C3,)] symmetry in
which the (CN) ions are aligned along the threefold axes
corresponding to the (111)axes of the high-T cubic struc-
ture. In the trigonal phase the (CN) ions are still disor-
dered with respect to their head and tail and there is a
residual entropy of -R ln4 in the low Tphase. We next-
discuss the nature of phase transition in CsCN using the
theoretical methods developed in earlier sections.

A. Orientationaj ordering in the absence
of translation-rotation coupling

Because of the direct intermolecular interaction D-p(k),
the (CN) molecules can undergo an orientational order-
disorder transition. In the CsC1 structure, (CN) mole-
cules from a cubic lattice. One has D p(k=0)=5 pD~;
D33 D"=D5q &0 and D"=D——22&0. Thus a ferrorota-
tional ordering with g3 —g4 —x/5

——g and g&
——g2 ——0 is
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possible. In fact, the ground-state structure for such a
system has been studied using Luttinger-Tisza ' method
by Nagai and Nakamura who find a (111)ferrorotation-
al ordering characterized by rl&0. This contrasts with the
ground state associated with NaC1 structure which is of
antiferrorotational type. Thus the (111)ferrorotational or-
dering is consistent with a quadrupole-dominated direct
interaction. Using the free-ion quadrupole moment, we
find that D» ——D22 ——5919 K and D33 D44————D55
= —3943 K, which clearly indicates that ordering will be
in the t2s manifold. Putting rl i

——2) 2 ——0 and
F13 ——g4 ——

F15——rt and using Eqs. (4.5)—(4.8), we obtain the
following for (1/N)(F„„Fc)=—f„„:

200-

180-

160—

o~ 140—

=3 1 3 1 4fvar=T D33+ I 6~3,221 +T(~4,2+~4, 3)2)
3

(5.1)

120-

100—

1 P 1 3 1 4fvar= z C2'9 + TC32) + 4 C4g (5.2)

We then minimize f„„with respect to 21 to obtain the
transition temperature T, and the order parameter g for
T& Tc.

The transition temperature T, and the strength of the
first-order transition as measured by the discontinuity 62)
in the order parameter g at T, depend on the Landau
coefficients Cq, C3, and C4. In Figs. 1 and 2 we have

f„„give nin Eq. (5.1) can be rewritten in the usual form
as

80—

60 I I I I I

100 150 2OO 250 SOQ S5O 400
T(K)

FIG. 2. Temperature dependence of fourth-order Landau
coefficient [see Eq. (5.2)] in the presence (Vo»0) and absence
(Vo ——0) of a single-site potential. Only short-range repulsion
contribution to Vo has been considered.

280-

24Q-

200-

160-

l20-0
Co 80-

I

40

0-

-80-

100 150 200 250 300 350 400
T(K)

FIG. 1. Temperature dependence of second- and third-order
Landau coefficients [see Eq. (5.2)] in the presence (Vo&0) and
absence (Vo ——0) of a single-site potential. Only short-range
repulsion contribution to Vo has been considered.

plotted these coefficients as a function of T in the neigh-
borhood of transition. The single-site potential tends to
reduce the temperature where Cz becomes zero. However,
at these high temperatures the major effect of the single-
site potential is to shift the three coefficients by constant
amount without changing their T dependence appreciably.
The coefficient C4 is an order of magnitude larger than
C3.

After minimizing f„„numerically to take into account
the T dependence of C3 and C4, we find that for
Vo(n;) =0, T, = 335 K and 621 =0.27421O where
= —,

' v'l5/4m. When Vo(n;)&0, T, =255 and

Ag =0.271&p. The reason Ag does not change much is
due to a simultaneous increase in C3 and C4 and
52) oc C3 /C4, The experimental transition temperature
T,""'=193K. Since the present calculation is mean field
in nature, the agreement between theoretical (255 K) and
experimental (193 K) transition temperatures appear
reasonable.

The above result suggests that considering the direct
quadrupole-quadrupole interaction alone is sufficient to
explain the ferroelastic phase transition reasonably well.
The ferroelastic distortions observed in the ordered phase
(trigonal structure) can be understood in terms of a weak

coupling between the order parameters (2)32)4 g5) of t2g

symmetry and the strains of the same symmetry. Howev-

er, as discussed in the next paragraph, such a simple pic-
ture does not explain the observed anomalous thermoe-
lastic softening in the high-T pseudocubic phase as one
approaches the transition temperature from above.
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The thermoelastic softening in the orientationally disor-
dered phase of alkali cyanides have been explained reason-

ably well within the translation-rotation (TR) model by
several authors. ' ' ' In a recent paper we have investi-

gated the elastic softening in CsCN using the TR model.
In this work we found that if we assumed the quadrupole
moment of the (CN) ion to be unchanged from its free-
ion value Qn, then the rotation-translation coupling pa-
rameter of t2g symmetry (denoted as Bluff) was extremely
small due to a near cancellation between short-range
repulsion (B~) and quadrupolar (B~) contributions to B,&r

(see Refs. 6 and 7). As a result, the total intermolecular
interaction is dominated by the direct interaction D &(0),
since the indirect interaction is proportional to B,g. How-
ever, there is a basic difficulty with this choice of the
quadrupole moment. The experimentally observed ther-
moelastic anomaly cannot be explained with a small B,ff.
It was necessary in Ref. 7 to reduce the free-ion quadru-
pole moment by about 85% to fit the high-T elastic con-
stant data. This reduction in the quadrupole-moment
value leads to a large Beff and a small D~p(0). As a result
the total interaction between the (CN) ions is drastically

different from that given by D ~(k=O) alone. Conse-
quently, the orientational phase transition has to be inves-
tigated when both direct and indirect interactions are
present.

B. Orientational ordering in the presence of both direct
and lattice-mediated interactions

Following the results of thermoelastic anomaly study
we use the quadrupole moment Q=0.15Qn for the follow-
ing calculations. The self-energy corrections V, (i) and

I~p(k) discussed in Secs. II and IV have been neglect-

ed. We do not believe that this will change our essential
conclusions. Their quantitative importance will be studied
after some of the other fundamental difficulties (to be dis-
cussed at the end of this section) have been sorted out. In
Table II we give the direct D~p(0) and indirect I~~(k~O)
interaction matrices, the latter for three symmetry direc-
tions (001), (110), and (111). Certain general observations
can be made by looking at parts (a)—(d) of Table II.
Reducing Q to 0.15QO reduces the strength of the direct-
interaction matrix by 0.0225. The lattice-mediated in-
teraction breaks the cubic symmetry and we find
T»&T2z and T33&T~ T55.——Except for the (001) direc-
tion T~~(k) is rather complicated.

Diagonalizing the total interaction matrix T~p(k) for
the three symmetry directions, we find that the lowest
eigenvalue ( —2590 K) is associated with both (110) and
(001) directions. The corresponding eigenvectors have
only nonzero riq and ri5 components. This means that if
we assume the order parameter to have only nonzero g4
and ri5 components, then the third-order term in the free
energy will not contribute and one will have a second-
order transition at T*= 175 K with g4 ——g& ~ 0 for
T & T*. However, the third-order term will tend to make
g3&0, whereas the second-order term g3 will oppose this.
The final result will depend on the third-order coefficient
and the splitting between the lowest eigenvalue of T p(k)
and the eigenvalue associated with g3 ordering. For the
(001) direction, the eigenvalue associated with this order-
ing is —631 K, whereas for the (110) direction the corre-
sponding eigenvalue is —1448 although there is a small
(-2%) g~ component mixed with g3 Thus the lower free
energy is expected for the (110) direction and therefore we
minimize f„„asa function of ri3, g4,g5. Our results are
the following.

TABLE II. Direct D p(k=0) and indirect I ~(k~O) interaction matrices, the latter for three symmetry directions f. Matrix
elements were calculated by fitting the high-T thermoelastic data. Parameters used in the calculation of matrix elements are {1)
Q =0.1 5Qp Qo being the free-ion quadrupole moment; (2) C

& ~
=2.2327 X 10" dyn/cm, C44 ——1.6800 && 10" dyn/cm~, and

C&2
——1.1867)& 10" dyn/cm; and {3)B,~f ——2749 K/A and Ad~= —79 K/A . In order to take into account anharmonicity effects, we

have assumed T-dependent bare elastic constants of the form CJ{T)=CJ
—y;1 T, where y» ——0.116& 10 dyn/cm /K,

y~ ——0.106& 10 dyn/cm /K, and y» ——0.044&(10 dyn/cm /K. This assumption makes the indirect-interaction terms T dependent.
Entries in the table correspond to T=200 K.

(a) D p(000)=

133
0

0
0

0
133
0
0
0

0
0

—89
0
0

0
0
0

—89
0

0
0
0
0

—89

(c) I p(110)=

—1

0
+33

0
0

0
—13

0
0
0

+ 33
0

—1625
0
0

0
0
0

—1671
—1671

0
0
0

—1671
—1671

—4 0 0 0
0 0 0 0
0 0 0 0
0 0 0 —3345
0 0 0 0

0
0
0
0

—3345

(d) I p(111)=

—5
0

+ 83
—42
—42

0
—5
0

—72
+72

+83
0

—2030
+43
+43

—42
—72
+43

—2030
+43

—42
+72
+43
+43

—2030
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We find that rt( =g4 ——rt5) becomes nonzero at T, =175
K where the second-order Landau coefficient changes
sign. This suggests that the splitting between the lowest
eigenvalue ( —2590 K) associated with i)3

——0,
r14 ——F15——rl&0 and that with only g3 ordering, i.e., r13&0,
r14——gs ——0 is sufficiently large for the third-order term to
make the transition first order. But once q4 ——i)5&0, the

g 3 order parameter becomes nonzero because the cubic
term (q i)3) acts like a field as far as the i)3 ordering is
concerned. One can think of il3 as a passive order param-
eter. In the neighborhood of transition, il4 and
r15-(T, —T)' and F3 —(T, —Q. However, the true na-

ture of the transition in the presence of anisotropy of
second-order Landau coefficents and the third-order term
can be obtained by going beyond the simple incan-field
theory, preferably by using a renormalization-group
analysis.

From our numerical study of the free energy for CsCN
we find that the parameters of the TR Hamiltonian that
can explain the high-T thermoelastic softening lead to a
continuous phase transition from the orientationally disor-
dered pseudocubic phase to the trigonal ferroelastic phase.
This does not agree with the observed first-order transi-
tion. This suggests that the TR-model Hamiltonian that
we have used in the present study is not adequate and
needs further improvement.

Recently, Lasaar and Gordon have calculated the dif-
ferent multipole moments of the (CN) ion in different
ionic environments using a density-functional theory.
They find that the (CN) ion has a large hexadecapole
moment (HDM) and also the different multipole moments
are rather insensitive to the different environments. A
large HDM can not only contribute to the single-site cubic
potential but also to the rotation-translation coupling and
direct intermolecular interaction. We believe that a prop-
er counteraction of the effect of HDM's on both elastic
softening and ferroelastic order should remove the diffi-
culties encountered in the present study where only the ef-
fects of quadrupole moment have been considered.

ACKNOWLEDGMENTS

We thank Dr. J. M. Rowe and Professor T. A. Kaplan
and Professor G. Kemeny for helpful discussions. This
work was partially supported by National Science Foun-
dation under Grant No. DMR-81-17297.

APPENDIX A: SYMMETRY ANALYSIS

A general Landau expansion of the free energy f„„in
terms of the tensor order parameters g; is an infinite sum
of products of all invariants of the high-symmetry
phase. Thus the individual terms in the sum are polyno-
mial invariants (PI's). For the following discussion we
refer the reader to the paper by Smith et a/. In general a
PI can be reduced, i.e., it can be expressed as a polynomial
of other lower-order invariants. If it cannot be reduced
then we denote it as an irreducible PI (IPI). A set of IPI's
which has the property that any PI can be expressed in
terms of the members of this set is called an integrity
basis or an irreducible set of polynomial basis.

Smith and Rivlin have shown that for an elastic ten-

sor order parameter (a symmetric second-rank tensor g,j,
i,j =x,y, z), the elastic energy 8' can be expressed in the
form

8'= C,J kI 1I2 I„, (A 1)

W=Sp+ g S,L, + g S,,L,L, , (A2)

where SO,S;, . . . , S;J are polynomials in six functionally
independent invariants Ic1,E2, . . . , K6 chosen from the
PI basis set tIi, I2, . . . , I„I and Li, . . . , L„6 are the
remaining (n —6) elements of this set.

For our present problem the order parameters

g1, . . . , g5 are related to a symmetric second-rank tensor

g,j with the additional constraint g~ =gyy+Qzz 1. The
integrity basis for the full cubic group consists of nine
members which are

I) ——g~+gyy +g~ = 1, I2 ——g~gyy+gyygz, +
= 2 2 2

g~gyyg~~ I4 =gxy +gyz+gm ~

2 2 2 2 2 2I5 gxygxz +gyzgxy +Szxgzy ~ 6 gxygyzgzx ~

2 2 2I7 gxxgyz +gyygzx +Szzgxy
2 2 2 2 2 2IS =gxx(gzxgxy )+gyy(gyzgyx )+gzz(gzxgzy ) ~

2 2 2I9 gxwgyygxy +gyygzE'gyz +gzE'gxxgzx

Defining K;=I; for i =1, . . . , 6 and Li I7, L2 Is,—— ——
and L3 I9, we obtain——the invariant form of the free ener-

gy as

&=Sp(Ki, . . . , E6)+(SiLi +S2L2+S3L3)
3

+ g S~LLJ .

We utilize Eq. (A3) to obtain symmetry checks on the
free energy f„„that we derive from the variational princi-
ple. For example, let us consider the fourth-order contri-
bution to f,~ arising from the second order in both es or-
der parameters (il& and g2) and t2s order parameters (7)3,

g4, r15). Contributions in this order come from Sp through
the product I2I4 and from S3L3 with S3 ——const. Note
that although the product S1L1 can contribute by taking
Si Ii, for our case——Ii ——1 and therefore this does not
contribute. Thus the fourth-order e&-t2g coupling terms
can be written down in general as a &(I2I4+b)&I9 where
a and b are arbitrary temperature-dependent constants. If
we define another polynomial invariant I1o as

2 2 2 2 2 2
Ilp =gxxgyy(gxz +gyz )+gyygzz(gxy +gzx )+gzzgxx(gxy +gzy ) ~

then we see that I2I4 ——I9+I10. Therefore the free energy
a XI2Iq+b XI9 should have the form c n t(oI s+R9XIip)
where R is some temperature-dependent constant. Using

where I1,I2,. . .,I„are elements of the polynomial basis as-
sociated with a given crystal class. Since the second-rank
tensor g,j has only six independent components, there exist
polynomial relations (syzygies) among I&,I2, . . . , I„
These relations can be utilized to further restrict the form
of W. Smith has shown that W is uniquely expressible
in the form

n —6
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j2

(33)=(44)=(55)=P—(1—Ag) . (82)

n2
gxy 13~ . Ryz 94~ gsx 95 ~v2

we obtain (keeping only the cross es tie co-upling terms)

I9+~IIO =&~, I riiril+&4, zrli(n4+ris)

+&~,lr12rls+&4, ~rl2(rl~+ Ils)

+&~,5riiriz(ri~ rid)— (A

&~,z/&4, 1= 3 + I Il

(II) Third order X—apr. We have, for es,

(111)=—{122)=—,'P e (54A6+9A4 —5),
foi tpg,

(345)=P t As,

and for ett tzs, -

(331)= ,' p et(18—A 6+Ay —1),
(441)= (551)= ——,

' (331),

(442) = —(552)= — (331),
2

(83)

(85)

&4, I/&4, ,————,'+ —', 8, &, , /&, ,= —(2/I/3)(1 —R) .

Thus knowing only two coefficients, Bq I and 84 4, we can
calculate all the rest. Furthermore, the relations (A5) pro-
vide a strong check on the accuracy of Landau coeffi-
cients that we have obtained in terms of parameters of the
Hamlltoma. Il H~ I Sec. IV.

(III) Fourth order X tt—rs We .have, for es,

(1111)= (2222) =3(1122)=P e ( —,
'

)(9A s, —6Ag+ 1),
(86)

(3344)=(4455) =(5533)=P t ( —, )A6, (87)

for tztt,

(3333)=(4444) =(5555)=P t ( —„)(A4,—2A4 —8A6+1),

In 'tllc followlllg x, y, and z arc tllc Cal'tcslaI1 coni-
ponents of a unit vector n and ( )o refers to the thermal
average taken over the single-site cubic potential Vr(n)
For convenience, we use a simple notation for the suscep-
tibihtes of different orders, i.e., Xatt= (aP); Xatt&

={aPy); X ttrs (aPy5) (see——Table I). Also P=1/kT,
. e =&5/16Ir, and t=&15/4Ir; A4 ——(x +y +z")o, A6
=(x'y'z')„and A„=({x'+y'+z')')o.

(I) Second order Xap. We have—, for es,

(11)=(22) =Pe (3A4 —1),

aIld for es t2s, -

(1133)=P (et) ( —,
' )(1—Ag —18A6),

(1144)=(1155)

=p'(et)'( —,', )(13A4 —9A4, +18A6 —4),

(2233)=p (et) ( —,
'

)(3A4 —2A4s+6A6 —1),
(2244)=(2255)=p (et) ( —,

'
)(Ag —A4, —6A6),

(1244)= —(1255)

=P {et) (&3/12)(3A4, —5A4 —18A6+2) .
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