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Numerical calculations are presented for the observable external scattering cross sections of
resonant Brillouin scattering. The A4 exciton in semiconducting CdS is taken as a concrete example
with both the longitudinal-acoustic-phonon deformation potential and the transverse-acoustic-
phonon piezoelectric potential scattering considered. Use is made of the factorization approxima-
tion for the external scattering cross section, and the internal cross section is formulated in detail
quantum mechanically. Important factors contained in the scattering efficiency, exciton-polariton
dispersion curves, scattered frequency, transmissivities (both from vacuum to medium and vice ver-
sa) with various additional boundary conditions, group and energy velocities, and exciton strength
functions, are calculated separately, and are then combined to find the internal and the observable
external scattering cross sections. While the internal cross section shows a monotonic increase as a
function of incident frequency w;, with strong growth near the transverse exciton frequency wo, the
curves describing the external cross sections are found to have characteristic structures around w,
and the longitudinal exciton frequency w; which depend strongly on the choice of additional boun-
dary conditions. They are also shown to exhibit a drastic profile change when the exciton damping
constant I approaches a threshold value I',. Polariton effects are expected only for I' < T, and the
usual exciton “resonance” effects which are qualitatively different from those of the polariton are
shown.to occur for I' > T'.. The suitability of resonant Brillouin scattering for experimentally deter-
mining the proper additional boundary condition as well as values of the parameters of the exciton
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and exciton-polariton is discussed.

I. INTRODUCTION

The theory of resonant Brillouin scattering (RBS) in
semiconducting crystals mediated by exciton polaritons' ~3
was first investigated by Brenig, Zeyher, and Birman
(BZB) in 1972.* Their results indicated that RBS would
provide a powerful technique for exploring the properties
of exciton polaritons as well as for elucidating the addi-
tional boundary condition (ABC) problem of spatially
dispersive dielectric media.’

BZB’s analysis can be conveniently separated into two
parts. First, there is a purely kinematic part which relates
the Brillouin shifts to the exciton-polariton dispersion
curves as shown schematically in Fig. 1. The exciton-
polariton dispersion curves represent excitations moving
into the crystal on the right, and moving back towards the
crystal surface on the left. Thus for the usual backscatter-
ing geometry an incident polariton at w; is backscattered
with the creation (Stokes) or annihilation (anti-Stokes) of
an acoustic phonon. The straight lines joining incident
and scattered polaritons are drawn with a slope equal to
the sound velocity ¢; of the acoustic mode, which au-
tomatically satisfies the requirements of conservation of
energy and crystal momentum. For w; well below the
transverse exciton frequency wg, there are two Brillouin
components and the Brillouin shifts |w;—w;| increase
linearly with increasing w;. For w; above the longitudinal
exciton frequency w;, there are two polariton modes for
each w;, each of which can scatter to either the inner
branch (1’) or outer branch (2'), giving rise to a Brillouin
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octet in place of the original Brillouin doublet as illustrat-
ed in Fig. 2. This part of BZB’s analysis is independent of
the details of both the scattering theory and the ABC’s,
and have been universally applied in the analysis of RBS
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FIG. 1. Schematic representation of the exciton-polariton
dispersion curve and the kinematics of backward Brillouin
scattering. Dots indicate the initial polariton states. The arrows
illustrate Stokes (downward) and anti-Stokes (upward) scatter-
ings with incident frequency w;, and the inclination is the sound
velocity involved in the scattering. Note that for w; well below

- wy there are the usual two scattering channels, while additional

scattering channels appear for w; > wy.

3362 ©1984 The American Physical Society



29 RESONANT BRILLOUIN SCATTERING IN CdS. II. THEORY

10 — T T T
o 8r
1
E &L ANTI-STOKES
g
[72] —-2'
3 , 2
'—
)
I
(V2]
-2 T—1’ ]
Z 2—2
2
o 4
|
= gl STOKES
00}
-8—
-10 i 1 1 1
20540 60 80 20600 20 20640

INCIDENT FREQUENCY wj (cm-)

FIG. 2. Numerically calculated Stokes and anti-Stokes Bril-
louin shifts of the LA phonon as a function of incident laser fre-
quency w;. The label (i—j') on each curve denotes the scatter-
ing channel from mode-i initial to mode-j final polaritons. The
parameter values used are the same as those given in Fig. 4 with
I'=1.0 cm™! and ¢, 4 =4.25X 10° cm/sec.

experiments.

The second part of BZB’s analysis concerns the scatter-
ing efficiencies or cross sections, and is far more compli-
cated. The conventional method for relating observable
(external) scattering cross sections to theoretical (internal)
cross sections makes use of a factorization procedure in
which photons of frequency w; incident at the crystal sur-
face are converted to internal polaritons by a transmissivi-
ty factor T(w;), and scattered polaritons w; reaching the
boundary are again converted to external photons via
another transmissivity T'(w;). The transmission func-
tions T and T" contain all the effects of the boundary con-
ditions (for a discussion of the factorization procedure see
Ref. 8). BZB avoided the factorization procedure by con-
structing wave fields with eigenmodes which are asymp-
totically free-photon-like far in the vacuum, and asymp-
totically polaritonlike far inside the crystal. A scattering
event then scatters a quantum from one wave-field eigen-
mode to another, and observable cross sections and line
shapes follow directly from first-order perturbative
scattering theory without requiring the joining of internal
and external modes via transmission factors (see Ref. 8).

BZB computed total scattering efficiencies for LA Bril-
louin scattering using three different ABC’s. In their cal-
culations the exciton damping parameter I" was taken as
10 cm ™!, which is much too large since experimental evi-
dence indicates that I'< 1 cm~!. Several years later Yu®
pointed out that BZB’s value of I'=10 cm ™! was so large
that polariton effects would be suppressed (see Sec. IV for
further discussion of this point). Yu computed the
scattering efficiency for LA(2-2') scattering using two
ABC’s and three I' values (1, 4, and 10 cm™!), and
showed that for I'=10 cm ™! his result, obtained by a fac-
torization procedure, closely resembled BZB’s.
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-~ Since BZB’s paper, no additional calculations of Bril-
louin cross sections have appeared based on their wave-
field eigenmode method. Instead, various versions of the
factorization procedure have been employed. This is pri-
marily because BZB’s method is not straightforward to
implement, whereas the factorization procedure is ideally
suited for computer analysis. The problem of equivalence
of the two methods has never been fully resolved.’
Zeyher, Ting, and Birman have shown that the two ap-
proaches are not generally equivalent in that when spatial
dispersion effects are included, the cross section does not
factorize into the product of transmission factors and an
internal cross section.! However, the quantitative differ-
ences remain largely unevaluated.

In this paper we present a detailed derivation of the fac-
torization procedure which is explicitly organized to pro-
duce numerical predictions for comparison with our ex-
perimental data in the preceding paper (hereafter designat-
ed as I). There have been three previous attempts to cal-
culate RBS cross sections.*®° BZB (Ref. 4) and Yu® con-
sidered polaritons to be in a semi-infinite medium but
phonons to be in an infinite one, i.e., they took into ac-
count the boundary conditions only for polaritons, while
Tilley® regarded both polaritons and phonons as being in a
semi-infinite medium, although he did not calculate the
cross sections numerically. All these authors treated the
polariton scattering process classically. In this paper, we
will reformulate the RBS cross section, regarding both po-
laritons and phonons as being in a semi-infinite medium
so as to be able to incorporate their boundary conditions
into the cross section if necessary, as Tilley did. More-
over, we treat the polariton scattering completely quantum
mechanically.'®~1? In this formulation the exciton-
polariton scattering by longitudinal- or transverse-acoustic
phonons (abbreviated as LA and TA, respectively) is as-
sumed to take place via interaction of phonons with the
exciton part of the polaritons.

We start by discussing briefly in Sec. II what is occur-
ring in the RBS experiment and what we need to calcu-
late. In Sec. III we formulate the internal scattering cross
section of exciton polaritons quantum mechanically, based
on the polariton-phonon-interaction Hamiltonian derived
in Appendix A. Our approach is based on that of Bur-
stein et al.!! but differs somewhat from their approach
since we take the damping of polaritons inside the medi-
um into consideration explicitly. After making some
plausible approximations we obtain results similar to
BZB’s. In Sec. IV we present the results of numerical cal-
culations of the elements of the RBS cross section, i.e.,
exciton-polariton dispersion curves with various values of
the exciton damping constant I', transmissivities of light
both from vacuum to medium and from medium to vacu-
um with various ABC’s, polariton group and energy ve-
locities, and the exciton-strength function of polaritons.
Finally, we combine these results to obtain the internal
and external (observable) scattering cross sections. We
point out the importance of the threshold value of the ex-
citon damping constant, I', (the derivation is given in Ap-
pendix B), which is responsible for the drastic profile
change of the scattering efficiency curves as well as the
dispersion curves with increasing I'. The results are sum-
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marized and discussed in Sec. V, confirming that I, pro-
vides the appropriate criterion for the observation of po-
lariton effects in RBS experiments.

II. RBS

Inherently, RBS must be studied in the vicinity of the
resonant frequency w, of the excitons under consideration,
where damping of the polaritions is enhanced. The medi-
um then becomes effectively opaque. Therefore, the back-
ward scattering geometry is obligatory. From this point
on we will assume this geometry unless otherwise stated.
In RBS, incident polaritons inside a medium are produced
by laser light from outside, and scattered polaritons are
measured outside as photons. We must take into account,
therefore, the transmissivities of incident and scattered
photons, and the difference between the internal and
external solid angle of the scattered photons. In RBS [or
resonant Raman scattering (RRS)] these factors are very
important, since as we will show later their values vary
drastically with incident laser frequency w; near w.

We begin by analyzing the scattering geometry illustrat-
ed in Fig. 3. I7™(w,) is the (time averaged) incident pho-
ton intensity in vacuum and I;/'(w;) the incident mode-i
(i =1 or 2) polariton intensity (energy flow). Ig;(wgs) and
I§i(wg) are, respectively, the scattered mode-j (j =1 or 2)
polariton intensity and the associated photon intensity.

The internal differential scattering cross section for po-
laritons is defined as the energy removed from the in-
cident polariton mode i per unit time by events which pro-
duce scattering to polariton mode j per unit solid angle
per unit scattered frequency interval, divided by the in-
cident power flow:

P RZI;;“(cos) -
00, o I -

where R is the distance from the scattering volume to the
point of observation. The factor w;/w, accounts for the
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FIG. 3. Schematic representation of a backward RBS experi-
ment using a semi-infinite spatially dispersive medium. Wavy,
solid, and dashed lines denote photons, polaritons and acoustic
phonons, respectively. The rectangle numbered 2 represents
polariton-phonon interactions. Processes numbered 1, 2, and 3
are sequentially occurring events of the internal polariton
scattering.
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fact that each quantum #w; removed from the incident
beam generates a scattered quantum fiw,, the difference in
energy being transferred to (or removed from) the crys-
tal.!> The external differential scattering cross section per
unit solid angle and frequency is then given via the factor-
ization procedure by
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where T;=I;"/I7* and T} =I&' /I are transmissivities
from vacuum to medium for incident mode-i polaritons
with frequency w;, and from medium to vacuum for scat-
tered mode-j polaritons with frequency wg, respectively.
Note the factor

Qe
J
o

2
:nj ,

which corrects for the change in solid angle due to refrac-
tion. This factor is important in the resonance region
where the refractive index n; depends strongly on frequen-
cy. The external RBS cross section thus requires calcula-
tions of the internal cross section, the refractive indices (or
equivalently the polariton dispersion curves) and transmis-
sivities. We begin by formulating the internal RBS cross
section in the next section.

III. SCATTERING CROSS SECTION

As noted before the absorption of polaritons is greatly
enhanced in the resonance region. Therefore, in order to
calculate the scattering cross section of polaritons we must
take the absorption into consideration. This absorption of
probe particles (polaritons) causes broadening of the scat-
tered peaks (opaque broadening'*!%), even if phonon spec-
tra are 8-function-like. In this section we first formulate
the internal differential scattering cross section of polari-
tons by extending the polariton formalism, and then inves-
tigate the broadening effect.

A. Scattering Hamiltonian

As shown schematically in Fig. 3, the RBS process in-
side a medium consists of the following sequence of
events: (1) Polaritons are produced at the surface by il-
luminating it with incident laser light; they travel into the
crystal while the intensity decreases gradually. (2) Polari-
tons are scattered somewhere inside the crystal to the
backward direction by emitting or absorbing acoustic pho-
nons. (3) Polaritons come back to the surface, while the
intensity again decreases gradually. In this case polaritons
are regarded as forced harmonic oscillators with real fre-
quency and complex wave vector. We write a)I,l_{ 7 and
ws,Es,' as the frequency and wave vector of incident
mode-i and scattered mode-j polaritons, respectively;
and q are the frequency and wave vector of the scattered
phonon. The energy-conservation requirement for Bril-
louin scattering yields

ws—or=0, o=*c¢|q|, (3.1)
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where ¢, is the sound velocity. Since polaritons have com-
plex wave vectors, the momentum-conservation rule

1_(’Sj - EIi = a ) 3.2)

does not hold exactly, leading to opaque broadening.

In a spatially homogeneous infinite medium, where the
wave vectors which specify polariton states are well-
defined quantities, the polariton-phonon interaction Ham-
iltonian for the backward scattering process numbered 2
in Fig. 3 is given from Eq. (A24) of Appendix A by

HY =V12 3 To(@A;;(kp, ks )Sksj,k,,-+q
q

Xa,tsjakn% , (3.3)

where V is the sample volume, 4;; is related to the
exciton-strength function, and is given by Eq. (A23) in
Appendix A, I'y(q) is the exciton-phonon-interaction ker-
nel, , =i(c,—c_,), and aT, a, cT, and c are creation and
annihilation operators for polaritons and phonons, respec-
tively. For brevity we omit an irrelevant phase factor and
subscript z for the z component of momenta in Eq. (3.3),
which describes polariton scattering from mode i to mode
J by emitting or absorbing a phonon. The substitution of
the integral form of Kronecker’s 8 function which incorp-
orates the momentum-conservation law into Eq. (3.3)
yields

I V)
xh = 7 fo dz % To(g)d(kyi,ks; )altsj(z)
Xag (2)p,(2) , (3.4
. t T
where we put op(z)=are™, ai(z)=are~*, and

@q(z2)=@,e™®. L denotes sample thickness along the z

direction; L as well as ¥ will finally be made infinite.

Let us now assume that even in an absorptive semi-
infinite medium a slightly modified form of Eq. (3.4) is
still valid. We need a few comments to obtain it and to
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usually attributed to the damping of excitons. When the
exciton damping constant I is small, the quasiparticle en-
ergy @ ( E,w) of an exciton is represented by

3 3(K,0)=0k(K)—ioT, (3.5)
where wg( K) is the well-defined exciton energy. This rela-
tion has been microscopically justified to some extent by
Tait'® by using a Green’s-function technique. On the oth-
er hand, in Appendix A we obtain the exciton-polariton
dispersion equation, Eq. (A8), for the case with I'=0. In
order to make the theory consistent we should replace
og(k) in Eq. (A8) by @g (k). Then the dispersion equation
takes the usual form

ck? 4oy

=6+ s
0 7 wi(k)—o’—iel

(3.6)

where €, is the background dielectric constant, wy=wg(0)
is the transverse exciton frequency at k=0, and ay is the
polarizability of the exciton. This is exactly the
Hopfield-Thomas phenomenological exciton-polariton
dispersion equation.’ As noted before, polaritons in RBS
(or RRS) are regarded as forced harmonic oscillators,
which means that we must solve Eq. (3.6) for the complex
wave vector k for each given real frequency w. Therefore,
in order to use Eq. (3.4) for the RBS problem, we should
read kp;,ks; in the function 4;;(k;;, ks;) as krlwp),ksjlwg),
and replace the subscripts k;,kg of polariton creation and
annihilation operators by w;,wg, respectively. In other
words, the crucial difference of our problem from the usu-
al spatially homogeneous case is that polariton states are
specified by frequency instead of wave vector. Therefore,
for problems where perturbation theory is applicable the
assumption made above is justifiable. Keeping the discus-
sion given above in mind, we have the following scattering
Hamiltonian:

L
%ZL———V—I/ZL—I fO dzzl“o(q)Aij(kn,ij)
q

Xay, (2)py(2)ay, (2) .

justify the assumption. The attenuation of polaritons is (3.7
B. Transition probability
The rate of transitions associated with Eq. (3.7) is found from time-dependent perturbation theory (golden rule) by
o 27 .
Tijl=?w"1f32 [{f1Zb |u) |*8l0+w;—os)p, (3.8)
wf

where 71y; is the number density of mode-i polaritons, L is the sample thickness, S is the surface area illuminated by the
incident laser light, |u ) and | f) are the initial and final states of the medium associated with the polariton-phonon in-
teraction, and p, is the initial (equilibrium) phonon probability function. The substitution of the integral form of the §
function in Eq. (3.7), which expresses energy conservation into Eq. (3.8) yields

_ 27h, iS , 1 + o i
1-,-].‘:?;1—-5|Aij(k15,ksj)|2ffdzdz S35 deT S p S|4 |u)(f|BW|u), (3.9)
L g ¢ “T °7% uf
i
where we have set B( t)=aI,; j(z')l“o(q')emst%:(z’)
4 :aI’s,j(Z)Fo(q)‘pq(Z)awI,i(Z) ’ (3.102) Xe_iw”aw,‘(z') . (3.10b)
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Since initial and final states, |u ) and |f), of the medi-
um associated with the polariton-phonon interaction have
one polariton with frequencies w; and wg, respectively
(e, Xp|lu)=tor|u), #p|f)=twg|f), where Zp is
the noninteracting polariton Hamiltonian), we have the re-
lation (7 has been set equal to 1)

(f leiwst(pe—iwlt I u )=<f Iei%,,t¢e
=(f @) |u).

Therefore, B (t) can be effectively rewritten as

—i& pt I u )

B(t)=a;r,syj(z’)Fo(q’)cpq'(z’,z)awl‘i(z’) ) (3.10¢)

Equation (3.9) then takes the form

277?7 iS
7l= o |4yl k) | [ [ dzdz’ 3 3 (4'B),,,
#VL o
(3.11)
where we have used the definition
(A'BYy=== [ are=1(a'B(0)) . (3.12)
27 Y~

Now the well-known fluctuation-dissipation theorem
yields the relation!”

(4'B),= oo Im (B34, , (3.13)

where B=1/kzT and (B;A")), is the Fourier transform
of a retarded two-time Green’s function;

«B();4THy=—i0n([B®), A1),

(3.14)
«B;aM,=-— " dte—"w'«B(t);A*» :
27 Y- w
The substitution of (3.13) into (3.11) gives
_ 27771[,
Tijl ‘ﬁ2 LZ lAu(kInij)l
x [ [ dzaz' 22 o Im (B4,
(3.15)

As a first approximation we can separate the polariton
part from the two-time Green’s function:

(B34 =T @To(g) @2 i@ (2) )
X (az,s (2", (2')
] i

Xab, (g (2)) . (3.16)

Next we assume that the polariton part in Eq. (3.16) can
be decomposed into pair products and possible interfer-
ence effects can be neglected. Since the medium tempera-
ture is very low compared with the polariton energy
(thermal distribution of polaritons (n,y)=0), the
thermal average of polaritons can be taken as the ground
state with no polaritons, |gp). Then the polariton part in
(3.16) takes the form
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qu(z,»z)Ga)sj (z,2'), (3.17)

where
Goi(2',2)=(gp | @ i(2")acl, (2) | gp) (3.18)

denotes the probability amplitude that a mode-i polariton
with frequency w is found at z' when it is produced at z.
More explicitly G, ,(z’,z) can be expressed as

G, (2',z)=explikyz’' —ikj;z) (3.19)
where kj;,k;; >0, while G,,,sj(z,z’) is given by
Goy, (z,2")=expliks;z' —ikg;z) , (3.20)

where we replaced the scattered momentum by —~ksj
(ksj,ksj >0), since as seen in Fig. 3 scattered polaritons
travel in the —z direction. On the other hand, the phonon
part takes the form

(@g(z);0h(2) ) y=explig'z’ —igz)D (q',q;0) , (3.21)
where we set
D(q",q;0)=K P00 Vo (3.22)

as a retarded two-time Green’s function for phonons.
Substituting Egs. (3.16), (3.19), (3.20), and (3.21) into
(3.15), we obtain for the transition rate

2w S
—1_ 11
Tij = hZVL ! ij(kli,ksj')lz
2()T(g")D(q",q ;)
XZE Im 0 q* o\q q9,9;0 ’
1—~e (K,-j—i—q)(K,-j-f-q’)
(3.23)

where we set

Ky =ky+ks; . (3.24)

C. Scattering cross section

The amount of energy removed from incident polariton
model i per sec due to the scattering process to polariton
mode j within ranges of scattered frequency
ws ~ws+dwg and solid angle Q™ ~ Q" +- 80 is

ﬁw,pl(ms)ﬁwsfiﬂmf,] . (3.25)
We write Ij; for the mean intensity of the incident mode-i

polariton beam at the surface of the medium. The mean
intensity of the incident mode-i polariton beam is given by

(3.26)

where vg;(wy) is the energy velocity of the mode-i polari-
ton with frequency w;. The internal scattering cross sec-
tion is given by the ratio of Egs. (3.25) to (3.26):

I, =tiwvg(o)ny ,

Foit  plog)y’ 327
3 dws  vglwpiy '
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The density of states of mode-; polaritons p;(wg) takes the ~ Where ks;=Rekg;, when the exciton damping constant I'
form is sufficiently small so that polaritons can be still be con-
sidered to be well defined. Substitution of Egs. (3.23) and

12
pjlos)= |4 (ksj) , (3.28) (3.28) into (3.27) gives the expression for the internal
(2m)? |vgjlws) | scattering cross section
]
3203“ __ S (kS] )Z}Aq kInij)l PS(Q)FO(qI)D(q’:q;w)

— 2 2 Im . (3.29)

30MIws  (2mhY  vgler) |vglas) | 1——e (K} +9)(Kij+q")

The observable external scattering cross section is obtained by substituting Eq. (3.29) into (2.2),
o S o§ | 4y (kg ksy) | 2 ['5(¢9)To(g")D (g’ q;0)

= 5 Tilwp) T (
AN Bws  (2mhic)? orTj(ws)3 gilor) |vglws) | L 221—3 m (Kjj+@ Ky +g")

, (3.30)

where use was made of the relation n;(wg)=ckg;/ws. Note that ¢ in (3.30) is the vacuum light velocity, and not the po-
lariton phase velocity ¢ contrary to the erratum of Ref. 11.

The expression (3.30) is still quite general. One can even include boundary effects for phonons,’ if necessary. Howev-
er, when the surface effects for phonons are negligible (i.e., polariton attenuation is not too large and the sample thick-
ness L is comparatively large), we can take the phonon Green’s function as follows:

D(q',q;0)=8, 4D (q,»), D(g,0)=Lesei Vo , 3.31)

which is the form appropriate for an infinite medium. Let us, moreover, assume that the phonons have no attenuation
at all. This approximation is very good for acoustic phonons at low temperatures, as in our case. Then the phonon
Green’s function can be represented by

2
D(q,0)= zwq 5, ImD(g,0)= L —lg|)—=8w/cs+|q )], (3.32)
0" —, 2c¢g

q

where ¢, is the sound velocity of acoustic phonons under consideration. Substituting Egs. (3.31) and (3.32) into (3.30)
and changing the sum over g to an integral, we obtain for the expression of the external differential scattering cross sec-
tion

20 Wi | T (K;;) 2 A;ilkyi, k) 2
extu = 3S 2 Ti(wl)rl{ (wS) S] — I l R I
8005 (2m)(HcVe, veil@r) [ vgj(s) |
1410 —wg) npn(0s — ;) , (3.33)
0 —0 ws—o
{K;J—— 1 S +(K,';")2 K,l]— S 1 +(K‘_}l)2
Cs Cs

—
where n,,(w) is the Bose-Einstein distribution of phonons, These results are identical to those obtained by BZB.
K’ —ReK. =K'+ k! Equation (3.35) represents opaque broadening'*'>'* due to

ij = ReRyj =Ky +Ksj the attenuation of polaritons. However, Egs. (3.34) and

and (3.35) are correct only when other factors in Eq. (3.33) can
" w o be regarded as constant when varying wg. In general the
Kij=ImKj; =kj; +ks;j - transmissivity T;(ws) and group velocity vgjlws) are

strongly varying functions of wg. Therefore, in order to
discuss the line shape of the scattering light completely,
one must evaluate the full expression of (3.33) numerical-

Equation (3.33) shows that if the frequency dependence
of all terms except those in the last large parenthesis can
be neglected, the scattered light measured outside the

medium has a Lorentzian line shape with maxima at ly. . . . .
The external scattering cross section per unit solid angle

ws=w;tc(ky+kg;) , (3.34) is obtained by integrating the differential scattering cross
section of Eq. (3.33) over wg. If the exciton damping con-
stant T is small, then peaks due to the Lorentzian part in
(3.33) are so sharp that other factors can be regarded as
A=2c,(kyj+kg;) . (3.35)  constant. Then we find

and full width at half maximum of

ao,ext S o T (o )wg | I«O(Kirj) | 2 IAij(in’ij) ‘ 2 1+nph(w, —ag) (Stokes)
005~ 2mie? T o) vy lws) | K "pnlws —or) (anti-Stokes) .

(3.36)
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The factor (K,~}')"=(k{,~'+k§})_1 represents phenomeno-
logically an effective scattering length due to the attenua-
tion of polaritons. [The effective scattering volume is
S/(Kij).]
IV. NUMERICAL CALCULATIONS OF RBS
SCATTERING EFFICIENCY

Various quantities such as transmissivities, energy, and
group velocities, etc., contained in the RBS efficiency, Eq.
(3.36) derived in the preceding section, are expected to ex-
hibit strong frequency dependence in the resonance region.
In this section we first analyze the quantitative behavior
of the above properties separately, and finally join the
properties to obtain the internal and external scattering
cross sections. By doing so one can check which factors
are responsible for the characteristic structure of the
external scattering cross section.

A. Exciton-polariton dispersion curves

First of all we use the Hopfield-Thomas exciton-
polariton dispersion equation, (3.6), introduced in the
preceding section. The exciton frequency is

wg(k)=wo+#k?/2m* ,

where m* is an effective exciton mass. For small values
of wave vector k in the Brillouin zone, we can set

w0 (k)=03+ (Hwg/m*)k? . 4.1)
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In the dispersion equation (3.6), we neglected frequency-
dependent contributions from other excitons (the back-
ground dielectric constant €, is assumed to be a
frequency-independent constant). In other words, we as-
sume a single parabolic exciton band immersed in a back-
ground with constant €,. In CdS the frequency-dependent
contribution from the B exciton is known to be small near
wq of the 4 exciton. As discussed in the preceding section
our experimental situation in RBS (Fig. 3) imposes the
condition that frequency w is real and wave vector K is
complex (forced harmonic-oscillator picture in Ref. 16),
i.e., we must solve Eq. (3.6) for K with a given real .

Numerical solutions of the exciton-polariton dispersion
equation (3.6) with (4.1) are shown in Fig. 4 for various
values of the exciton damping parameter I'. The refrac-
tive index n; and extinction coefficient x; of mode-i polar-
itons are obtained from

ni(w)=ck{ (®)/0w, kjlo)=ck"(v)/o, (4.2)

where k' and k' are the real and imaginary parts of the
polariton wave vector. [Note that in all figures we use the
conventional unit of cm~! for numerical calculations (see
the beginning of Appendix B). Therefore, use is made of
wave numbers instead of wave vectors in all figures.] The
most striking aspect of this figure is the existence of a
threshold value of the exciton damping constant, I,
given by
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FIG. 4. Numerical solutions of the exciton-polariton dispersion equation (3.6), of the 4 exciton in CdS for various values of the ex-
citon damping constant I'. k', the real part of k, is shown on the right-hand side of the figure and k", the imaginary part of k, on
the left-hand side. wo and oy, are, respectively, the transverse and longitudinal exciton frequencies at the center of the Brillouin zone.
The numbers 1 and 2 denote specific polariton modes while small letters denote specific values of T (a, 0.0; b, 0.1; ¢, 1.0; d, 5.0; e,
10.0; f, 15.0 cm™!), e.g., 2c indicates a real or imaginary wave number of mode-2 polariton with I'=1.0 cm~!. Note the drastic
change of the curves when I' >T'. (=11.5 cm™!). The parameter values used are €, =9.3, 47ay=0.0139, 0,=20589.5 cm~!, and

m*/m,=0.89.
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I'2=44Bo} , 4.3)

where A =47a, and B =%#iw,/m*c? (Appendix B is as-
signed to the derivation). As pointed out first by Tait,® it
is characteristic of the forced harmonic-oscillator picture.
While below T, all the curves are very similar to the one
with I'=0 (the usual polariton dispersion curve), for
I'>T, the curves change drastically and the resulting
curves of the two polariton modes cross each other look-
ing similar to pure photons (mode 1) and excitons (mode
2), as if there were no interaction between them. As
shown later, due to this behavior the scattering efficiency
curves change qualitatively for I' near I',. In the case of
the A exciton in CdS, I', =11.5 cm ™! for the values of the
parameters indicated in Fig. 4.

B. Scattered frequency

Owing to inherent opaqueness of a medium near its res-
onance region we must use the backward scattering
geometry. The energy- and momentum-conservation laws,
Egs. (3.1) and (3.2), enable us to calculate the RBS fre-
quency wg as a function of incident laser frequency wy, al-
though Eq. (3.2) holds only approximately in this case.
The kinematics of backward RBS is shown in Fig. 1 by
arrows. The scattered frequency wg from mode-i initial to
mode-j final polaritons is given by

ws =0y +€cs[ki (0)+kj (wg)] 4.4

[see also Eq. (3.34)], where ¢; is the sound velocity of
acoustic phonons and € takes the value —1 for Stokes and
+ 1 for anti-Stokes scattering. One must solve Eq. (4.4)
numerically by an iterative method, since k; on the right-
hand side includes wg. Figure 2 shows one example of the
curves of wg as a function of w;. Note the striking simi-
larity of profile to the exciton-polariton dispersion curves
in Fig. 1. It is this resemblance which gives RBS experi-
ments their principle advantage for studying the proper-
ties of exciton polaritons. One can determine the parame-
ters wg, €, g, and m* very accurately and almost in-
dependently from each other by plotting the RBS frequen-
cy data and adjusting the parameters to fit the theoretical
curves to the data, since different parts of the wg curve (or
dispersion curve) are most sensitive to changes of each pa-
rameter. When m* is changed, only the curvature of the
excitonlike part of the curve will change, and the other
parts will remain essentially unchanged. As is easily seen
from Fig. 4, the wg curves are insensitive to the value of T’
when ' <T,.

C. Transmissivities

In a polarizable medium, one can in general have more
than two polariton modes for one specific frequency due
to the finite mass of excitons. Therefore, one must in-
corporate appropriate ABC’s. As mentioned earlier we re-
strict ourselves to the single-oscillator exciton-polariton
model indicated in Fig. 1, bearing in mind that we will ap-
ply our results only to the 4 exciton in CdS. In other
words, we have two independent polariton modes in the
spatially dispersive medium.
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Making reference to Fig. 3, Maxwell’s boundary condi-
tions are expressed for the normal incidence case as fol-
lows:

Ero+Ero=Eri+Er;, 4.5)

(4.6)

where E;y and Eg( are electric field amplitudes of in-
cident and reflected photons just outside the medium, and
Er, and E7, are the amplitudes of the transmitted mode
—1 and —2 polaritons just inside the medium with com-
plex refractive indices n.; and n.,, respectively
(nej=n;+ikj; j =1 or 2). Because of the additional mode
on the right-hand side of Egs. (4.5) and (4.6) one ABC is
required in order to obtain unique reflectivity and
transmissivity expressions.

A brief review of the origin of the three most frequently
discussed ABC’s will now be given. The first ABC (called
ABC1), given by Pekar,! is based on the condition that the
total excition polarization must vanish at the crystal boun-

dary

Ejoy—Ego=nc1Er1+ne2Er; ,

2
2 Py, =0atz=0,

i=1

where the z axis is perpendicular to the crystal surface,
and P, denotes the exciton polarization associated with

the ith transmitted wave. Pekar asserted that this should
be the ABC to supplement the Maxwell boundary condi-
tions after showing that the crystal boundaries turned out
to be nodal surfaces for the exciton wave function as well
as for the dipole moment associated with the exciton.

Subsequently, Birman and Sein,’® Maradudin and
Mills,?® Agarwal et al.,?! and others?>?3 independently ex-
plored the ABC problem starting from Maxwell’s equa-
tions rather than from a phenomenological approach.
These groups discovered that once a particular nonlocal
susceptibility is chosen, the resulting ABC can be deter-
mined through either an integral or differential equation
formulation of the electrodynamics of the nonlocal medi-
um with no further assumptions being necessary. For ex-
ample, when the dielectric approximation for the suscepti-
bility is chosen, the resulting (ABC3) is!*~%!

P ex;
2

2
2
i=1 (nci_ne )(ncl- _eb)

=0at z=0,

where n,, is the refractive index of the ith transmitted po-

lariton mode, €, is a background dielectric constant, and
n, is just the refractive index for the uncoupled exciton,
the explicit expression of which is given in Eq. (4.9).

A more microscopic approach for finding ABC’s was
given by Zeyher et al.?* This approach suggested that dif-
ferent ABC’s for exciton polaritons can arise from dif-
ferent assumptions about the reflection of an exciton at
the crystal surface. Ting et al.?> showed that for Wannier
excitons the following ABC results (ABC2):

2
S nePe,=0at z=0.

i=1

Although the ABC is macroscopically concerned with
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the boundary condition of the polarization due to the exci-
ton, P.,, we can always rewrite it in terms of the electric
field amplitude of polaritons. Here, following Ref. 4, we
consider the three representative ABC’s. They are con-
veniently expressed as follows:

a Er1+ayEr,=0, 4.7)

where a; (j =1,2) takes the form (for ABC1, ABC2, and
ABC3, respectively)

nczj—eb s

aj= ncj(nczj—eb) , (4.8)
(ncj_“ne)_l ’

and
172

1 wz—a)(z)+iwl"

nez—— B — (4.9)
(4] B

Next, let us define transmissivity as the ratio of the
time average of transmitted energy flow to that of in-

cident energy flow.2® Since the time average of the energy
flow is given by the real part of the time average of the
Poynting’s vector,?’ transmissivity T and reflectivity R are
defined as

ReS,
ReS;

__ ReSp

T =——
ReS;

) (4.10)

’

where S;, Sy, and Sy are the time average of the
Poynting’s vector of incident, transmitted, and reflected
energy flows, respectively. As is well known we have
S;=(c/87) | Ejo|? in vacuum. In the polarizable medium
the calculation of Poynting’s vector is not so trivial: If
the exciton effective mass is infinite (m* = ), then the
polariton energy is carried only by electromagnetic waves,
since excitons do not move.?’ If the effective mass is fin-
ite, however, the energy is carried not only by electromag-
netic waves but also by mobile excitons (polarization
waves). With the use of the generalized Poynting’s
theorem'®2® and the argument by Loudon,?’ we obtain

cn; r

ReSp=—i_ L
'™ 87 T'—2Bownk;

|Epi | %, 4.11)
for mode-i (i=1 or 2) transmitted polaritons. The
Poynting’s vector contains contributions from both elec-
tromagnetic and polarization waves. Transmissivities
from vacuum to medium for each mode and reflectivity
are obtained from Eq. (4.5)—(4.11),

2
r 2a
Ty = 2 , (4.12a)
I'—2Bonk; | ay(1+n.)—a(1+n,;)
2
T nol 21 (4.12b)
2= F—ZB(z)nsz a2(1+ncl)——al(1+ncz) ’ )
2
1—ngp)—a;(1—
_ (12( ncl) Cl]( ncz) (4.12¢)
02(1+n01)—al(1+n‘-2)

Recently, Nakayama has developed the theory of the
quantization of polariton fields for the nonabsorbing
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(I'=0) bounded semiconductor.?’ One direct consequence
of his treatment is the reciprocity relation for the
transmissivities

T (0)=Ti(w), (4.13)

which means that the energy flux ratio associated with
mode-i polaritons from crystal into vacuum is the same as
that from vacuum into crystal. From this point on we use
this relation even for the absorbing (I's£0) medium.

Figure 5 shows numerical results of transmissivities
[(4.12a), and (4.12b)] of incident light for the three ABC’s
(4.8). As expected, the curves for different ABC’s coin-
cide with each other, both well below w, and well -above
1. Prominent and qualitative features are the existence
of a peak near oy for the mode-2 transmissivity and the
peak height difference among the different ABC’s. Ac-
cording to detailed numerical analysis the height of the
peak decreases gradually when I' is increased and disap-
pears when I'~T',; instead a new peak appears near wq
and grows drastically for all ABC’s, reflecting the quick
deformation of the dispersion curves near wg when I' ~T',,
in Fig. 4. The result for ABC1 is qualitatively similar to
that obtained by Sel’kin?® In Fig. 6 we show the
transmissivity product T,(w;)T3(wg) as a function of in-
cident frequency w; for various ABC’s by incorporating
the kinematics of RBS for the LA phonon in CdS. The
shoulders on the high-frequency side of the prominent
peaks near wp are due to peaks which appear in T)(wg)
when wg ~oy.

D. Group and energy velocities

The group velocity for mode-i polaritons is defined by
vgi=(dk;{ /dw)~!. The group velocity can be calculated

TRANSMISSIVITIES T¢,T2
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FIG. 5. Numerically calculated transmissivities of mode-1
and -2 polaritons from vacuum to medium for various ABC’s as
a function of frequency. The number labeled on each curve
specifies the ABC used to calculate it (1, ABC1; 2, ABC2; 3,
ABC3). The parameter values used are the same as those in Fig.
4 with’'=1.0cm™%.
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FIG. 6. Product of transmissivities of the incident mode-2
and scattered mode-2 polaritons, T»(w;)T3 (ws), as a function of
incident laser frequency w;. RBS kinematics has been used in
the calculation of the scattered polariton frequency ws. The
number labeled on each curve has the same meaning as in Fig. 5.
The parameter values used are the same as those in Fig. 4 with
I'=1.0cm™\.
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numerically either from the dispersion curves (Fig. 4) or
by laborious evaluation of the analytic formula. The ener-
gy velocity vg, on the other hand, is defined by?’
vp=S,/W,, where S, and W, are, respectively, the time
average of the total Poynting’s vector and energy density
with contributions from both electromagnetic and polari-
zation waves.?’ They are again calculated by using the
generalized Poynting’s theorem,'®?® and the energy veloci-
ty of mode-i polaritons is given by

ZCL)K,' 2B(L)Ki
r + r

-1

2

(k2—n?) , (4.14)

UEi((())-:C n; —+

where n;=ck; /o and k;=ck;"/ow are obtained from the
dispersion curves (Fig. 4). In Fig. 7 we show numerical
results of both group and energy velocities of mode-2
(outer-branch) polaritons as a function of frequency w.
One cannot see any difference between the two for the pa-
rameter values used, although numerically there exists a
very small difference which gets larger when o ap-
proaches wg and T is increased. Detailed numerical calcu-
lations indicate that the curves are very insensitive to I’
values when I' < T',..

E. Exciton-strength function

The exciton-strength function represents the fraction of
exciton character in the polariton mode. If there is no ex-
citon damping (I'=0), one can obtain the exciton-strength
function quantum mechanically,!! as derived in Appendix
A, Eq. (A23b). Otherwise, one must resort to a
phenomenological approach. Extending the idea of Mills
and Burstein® to the spatial dispersion case, we obtain the
exciton-strength function 4;(k;) for mode-i polaritons

20k;(1+Bk?)

2k;0g(k;)
A (ki) = it I' —2Bown;k;
[ At ]

= (4.15)
r— ZBCL)niK,'
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FIG. 7. Group and energy velocities (normalized by light
velocity) of mode-2 exciton polaritons plotted on a logarithmic
scale, log(vg,/c) and log(vg,/c), as a function of frequency w.
One cannot see any visible difference between the two. Max-
imum value of the relative difference |vg,—vg,| /vg;, which
occurs at @=20584 cm~! just below wo when I'=1.0 cm~}, is
only 2.8X 1073, The parameter values used are the same as
those in Fig. 4 with ’'=1.0 cm~".
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Equation (4.15) can be derived by taking the ratio of the
mean-square exciton polarization associated with a polari-
ton of frequency w;( K) to the mean-square exciton polari-
zation associated with an exciton of frequency a)ex(ﬁ).
The numerator of this ratio can be obtained from the total
energy density of the polariton (both the mechanical and
electromagnetic contributions). The denominator is simi-
larly obtained from the mechanical (exciton) energy densi-
ty.
From Eq. (4.15) one can recover both the Mills and
Burstein result by setting B =0 and wz=w, (nonspatial
dispersion case: m*= ) and the quantum-mechanical
result by setting I'=0 (zero-absorption case). Figure 8
shows the variation of the exciton-strength function for
both polariton modes as a function of frequency (note the
ordinate scale). It has no “resonance” effect at all and the
numerical variation is very small even in the resonance re-
gion. Detailed numerical analysis indicates that the
exciton-strength function is very insensitive to I'" values
when I' < T,.

F. Internal scattering cross section

We have now finished preparing the numerical calcula-
tions required for the internal scattering cross section,
which is just the observable external scattering cross sec-
tion (3.36) without the transmissivity and solid angle
correction factors;

(kg; )| Tolq) | 2| Ay(kp,ks;) |2

vgi(op) |vgjlws) | Kif

o S

QM g4

X[1+nph(a)1—cos)] ’ 4.16)
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FIG. 8. Exciton-strength functions of both mode-1 and -2 po-
laritons as a function of frequency. The number labeled on each
curve specifies the polariton mode. Note the ordinate scale.
The parameter values used are the same as those in Fig. 4 with
I'=1.0cm™".

where K;i=kj+ks;. This cross section, which is
equivalent to that discussed by Burstein et al.,!! does not
include the ABC. We want to compare the internal
scattering cross section with the external one and point
out how important the transmissivity and solid angle
correction factors are to the complete scattering cross sec-
tion. This fact demonstrates the great advantage of RBS
in determining the proper ABC experimentally.

For a medium with hexagonal symmetry (e.g., wurtzite
CdS with Cg, symmetry), only the LA phonon will be al-
lowed in Brillouin backscattering via the deformation-
potential interaction. In this case, the exciton-phonon-
interaction kernel for the deformation-potential interac-
tion is given by

— ——————
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FIG. 9. Curve a, variation of the RBS internal; curve b,
external without solid angle correction factor; and curve c, ob-
servable external scattering cross sections for the LA Stokes (2-
2') scattering plotted on a logarithmic scale as a function of in-
cident laser frequency w;. ABCI is assumed for curves b and c.
The parameter values are the same as those in Fig. 4 with
I'=1.0cm'and T=4.2 K.
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TABLE I. Values used in the expressions for the deformation
potential and piezoelectric interactions.

Sound velocities®
csia=4.25X10° cm/sec
csta=1.76 X 10° cm /sec

Crystal density®
p=4.84 g/cm’

Piezoelectric constant®

e;s=—0.21 C/m?
Deformation potentials®
D,=4.5 eV
Dy=-29¢V
A-exciton Bohr radius?
ap=28 A
Effective hole mass®
mjf =0.7Tm,
Effective electron mass®
mF=0.2m,
Background dielectric constant®

€p =9.3

2D. Gerlich, J. Phys. Chem. Solids 28, 2575 (1967).

®A. R. Huston, J. Appl. Phys. 32, 2287 (1961).

°D. W. Langer, R. N. Euwena, K. Era, and T. Koda, Phys. Rev.
B 2, 4005 (1970).

47, J. Hopfield and D. G. Thomas, Phys. Rev. 122, 35 (1961).
¢G. Winterling and E. S. Koteles, in Lattice Dynamics, edited by
M. Balkanski (Flammarion, Paris, 1978), p. 170.

fD. G. Thomas and J. J. Hopfield, Phys. Rev. 116, 573 (1959).

5% (q)=(#/2pcs a)/*V'q (D°+DH) , 4.17)

where p is the crystal density, ¢;;o is the longitudinal
sound velocity and D¢ (D*) is the deformation potential
for the electron (hole).

However, in piezoelectric crystals such as CdS, TA pho-
nons can also participate in backward scattering via the
piezoelectric exciton-phonon interaction.’! This interac-
tion is similar to the Frohlich interaction between excitons
and LO phonons. The exciton-phonon-interaction kernel
in Eq. (4.16) for TA scattering is given by
2 o 172

* *
2meap 32 Me —Mp
2pcsTA

I‘ﬁe(q)= €1s (4.18)

€p *

*
m, +m;,

Here ap is the exciton Bohr radius, e;s is the relevant
piezoelectric tensor component, €, is the background
dielectric constant, c,ra is the TA sound velocity, and m}
(my) is the effective electron (hole) mass. Appropriate
CdS values for these two exciton-phonon interactions are
listed in Table I.

Figure 9 shows the internal scattering cross section
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FIG. 10. Variation of the RBS external scattering cross sec-
tion for the LA Stokes (2—2') scattering channel for various
ABC’s on a logarithmic scale as a function of incident laser fre-
quency ;. The number labeled on each curve denotes the
specific ABC (see Fig. 5). The parameter values used are the
same as those in Fig. 4 with [=1.0cm~'and T =4.2 K.
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FIG. 11. Variation of the RBS external scattering cross sec-
tion for the Stokes (2—2') scattering channel for various I'
values on a logarithmic scale as a function of incident laser fre-
quency w;. The letters labeled on each curve denote specific
values of T (a, 0.1; b, 0.2; ¢, 0.5; d, 1.0; ¢, 2.0; f, 5.0; g, 10
cm~!). ABC1 is used. The parameter values used are the same
as those in Fig. 4 with T'=4.2 K.
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(curve a), the external cross section without the solid angle
correction factor n; 2(wg) (curve b), and the observable
external cross section (curve c), for LA Stokes (2—2')
scattering. For curves b and ¢, ABC1 was used. The
internal cross section has a rather simple monotonic in-
crease with incident frequency wy, although the rate of in-
crease becomes large near wy. This rapid increase comes
from the factors T'o(q), (k§,)? and the energy and group
velocities in Eq. (4.16), as seen in Figs. 4 and 7. Compar-
ing Fig. 9 with Fig. 6 one can conclude that the prominent
structure in the observable external scattering cross section
(curve ¢) comes mainly from the transmissivity factor in
Eq. (3.36). The solid angle correction factor is also very
important, since as seen from the figure, the relative peak
heights and overall profile are altered crucially by it. As
expected from the outer branch (mode 2) of the dispersion
curves in Fig. 4 this factor suppresses the scattering effi-
ciency curves more strongly at higher incident frequency
as seen from curve b to curve c. Detailed numerical
analysis indicates that the medium temperature T has lit-
tle effect on the overall cross-section curve profile from 0
to 4.2 K. Curve c¢ (external scattering cross section) for
other ABC’s will be shown in the next section.

G. External scattering cross section

Finally, we show numerical calculation results of the
observable external scattering cross section do{ '/0Q5".
From Egs. (3.36) and (4.16) it is expressed as

3ot Tiw)T;(ws) doy"

005 o0

(4.19)
niws)

for mode-i to -j polariton scattering. Since we have al-
ready calculated all the factors on the right-hand side of

T T

: —
asc2 4 b

13.0

12.0

(arb. units )

L1
20540 60 80

Wr (cm-1)
FIG. 12. Same as Fig. 11 except that ABC2 is used.
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FIG. 13. Same as Fig. 11 except that ABC3 is used.

Eq. (4.19), we have only to join the results obtained in the
previous sections to obtain the external scattering cross
section. Owing to the transmissivity factors in (4.19) one
now has effects of the choice of ABC’s, as we have seen in
Fig. 9. (In Figs. 9—16 the ordinate scale is arbitrary, but
all these figures have identical scales.)

In Fig. 10 (see, also, I, Figs. 8 and 9 for LA and TA
scattering, respectively, with I'=0.5 cm™!) the variation
of the external scattering cross section for LA Stokes (2-
2') scattering is shown as a function of incident laser fre-
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FIG. 14. Variation of the RBS external scattering cross sec-
tion for the four Stokes scattering channels on a logarithmic
scale as a function of incident laser frequency ;. Dotted,
dashed-dotted, dashed, and solid lines denote 1—1', 1—2’,
2—1', and 2—2' scattering channels, respectively. Only ABC1
is used. The parameter values used are the same as those in Fig.
4withT=1.0cm~!and T=4.2 K.
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FIG. 15. Same as Fig. 14 except that ABC2 is used.

quency oy, computed for the three ABC’s but with fixed
exciton damping constant (I'=1.0 cm™!). One clearly
sees qualitative differences among the curves for different
ABC’s. A peak near o on the curves for ABC1 and
ABC3 comes from the peak appearing on the transmis-
sivity curves in Fig. 5. The peak on the curve for ABC3
is more prominent than that for ABC1, because the peak
on the transmissivity curve for ABC3 is relatively more
prominent. Note that while a sharp drop appears once
near o, for ABC1 and near o, for ABC2, it appears twice
near g and op for ABC3. Well below w all three curves
coincide, as expected. Thus, the sharp increase below wq
comes mainly from the resonance effect of the internal
scattering cross section, while the characteristic structures
near wy and wj, are due to the transmissivity factor (or
ABC), and the drop above @, or wy is partly due to the
transmissivity factor and partly due to the solid angle
correction factor n3 *(wg).

The next three figures, Figs. 11—13, show the variation
of the external scattering cross section with various values
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FIG. 16. Same as Fig. 14 except that ABC3 is used.
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of the exciton damping constant ' for LA Stokes (2-2')
scattering for three ABC’s, respectively. Note that the
threshold value T, is 11.5 cm~!. While well below T,
(i.e., I'<0.5T,;) the curves are rather insensitive to the
change of I values for all three ABC’s, a sudden qualita-
tive change of profile occurs for T near T',. This is entire-
ly due to the qualitative change of the dispersion curves
near I, in Fig. 4, which also causes significant change of
the transmissivity curves: The sharp peak at w, on the
curves with I'=10.0 cm™' (~T,) for each ABC, comes
from the same origin as the peak appearing on the
transmissivity curve; it appears when w;=w, Another
sharp peak just above wg appears when wg =wy. We want
to point out here that although our method is quite dif-
ferent from BZB’s, our scattering cross-section curves
with I'=10 cm~! for all three ABC’s are qualitatively
very similar to those obtained by BZB for which they used
the same value for T" but slightly different values for the
other polariton parameters in agreement with Yu’s result.®

Finally, we show three figures, 14—16, of the external
scattering cross section for all possible scattering channels
(1—-1', 1-2', 2—1’, and 2—2', as shown in Fig. 1) of
LA Stokes scattering for the three ABC’s, respectively,
but with fixed T" (equal to 1.0 cm™!) value. The most
characteristic feature in these figures is that the efficiency
of the channel 11’ is the biggest of all for ABC2 and
ABC3 mainly due to the smallness of the group and ener-
gy velocities near w;. Qualitative profile variation of the
efficiency curves for three scattering channels 1—1’,
1—2', and 2—1’, when changing the ABC is rather small
compared with that for 2—2'.

V. SUMMARY AND DISCUSSION

We have calculated numerically the observable external
scattering cross section for RBS, taking the 4 exciton in
semiconducting CdS as a concrete example with both LA
deformation potential and TA piezoelectric coupling. We
used a factorization approximation and formulated the
internal scattering cross section quantum mechanically, in
contrast to BZB’s semiclassical unified method.* We cal-
culated numerically each factor contained in the cross-
section formula: exciton-polariton dispersion curves, scat-
tered frequency, transmissivities, group and energy veloci-
ties, and exciton-strength function, separately. We then
joined them to calculate the internal scattering cross sec-
tion and finally the observable external cross section. Al-
though a completely unified treatment would be superior
in that the factorization approximation could be avoided,
our treatment has enabled us to elucidate which factors
are crucially important and which ones are not in deter-
mining the external scattering cross section.

We pointed out the existence of the solid angle correc-
tion factor nj‘z(a)s) in the external scattering cross sec-
tion, Eq. (2.2), and showed in Fig. 9 its importance in
evaluating the cross section. A quantum-mechanical for-
mulation of the internal scattering cross section was per-
formed by Ovander'®© and Burstein and co-workers'!!?
but they did not discuss the external cross section, which
is actually observed experimentally. As seen in Fig. 9 the
solid angle correction factor strongly suppresses the reso-

nance effect of the scattering cross section for the 2—2’
scattering channel when w;>w, and changes the curve
profile. The transmissivity from vacuum to medium was
also calculated to show how it varies with the choice of
ABC’s (Fig. 5), and influences qualitatively the profile of
the scattering cross-section curves (Fig. 9). Again we
want to emphasize the necessity of calculating the external
scattering cross section instead of the internal one for
comparison with experimental data. The most prominent
feature of the transmissivity curves is the qualitative
difference of the profile of curves with different ABC’s.
According to detailed numerical analysis, values of the re-
flectivity are sensitive to the exciton damping constant T,
but the curve profile is rather insensitive to the choice of
ABC’s. Therefore, if we have little information on the
value of T, it is very difficult to determine the proper
ABC and I" simultaneously from reflectivity data.

Although we cannot derive a compact analytic formula
for the group velocity compared with that for the energy
velocity, Eq. (4.14), our numerical calculations of the two
velocities for mode-2 polaritons (Fig. 7) indicated that
there is very little difference between them for I'<T,.
They are easily shown to have correct limiting behavior
both well below wg and well above w;. We also observed a
very small variation of the exciton-strength function with
frequency in Fig. 8. In contrast to the perturbation ap-
proach’? it does not contribute to the resonance effect of
the scattering efficiency at all. Instead, the group and en-
ergy velocities are attributed to the resonance effect.

Our results for the external RBS cross section shown in
Figs. 10—16 yield a large amount of interesting informa-
tion. First we want to point out the qualitative variation
of the curve profile with the choice of various ABC’s,
which leads to the great advantage of using RBS experi-
ments for experimentally determining the proper ABC.
Another advantage is that one can determine almost all
parameters of excitons and polaritons with good accuracy,
as described in Sec. IVB. Figure 10 shows the correct
limiting behavior well below ®, where every ABC must
give the same value of the scattering cross section. The
next three figures, 11—13, exhibit an abrupt change in the
scattering cross-section curve profile for each ABC when
the exciton damping constant I" approaches the threshold
value I',. This fact was first pointed out by Yu,® who cal-
culated the scattering efficiency for ABC1 and ABC3, for
a few I values, and found too small a value for I';. We
also note that the resonance behavior below wg for ' < T,
is quite different from that for I' >T'.. As noted before,
the anomalous behavior near I' ~T", comes from the dras-
tic change of the polariton dispersion curves near I', and
their crossing for I' >T',, which also causes the abrupt
change of the transmissivity curve profile. Physically the
existence of I', tells us that excitons and photons behave
as if there were no interaction between them when I' > T,.
Therefore, as Yu noted, a sharp peak at w, for ' > I", in-
dicates the manifestation of the usual exciton resonance
effect without the polariton effect, and the second sharp
peak just above w, comes from the resonance of the scat-
tered wave. Strictly speaking, therefore, we observe the
polariton scattering effect, not the resonance effect, for
I' <T';, while only for I' >T', can the exciton resonance
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effect of light scattering be observed. In the case of the 4
exciton in CdS one has I',=11.5 cm™! from (4.3) and
much experimental evidence suggests I" <1 cm™!. There-
fore, one can expect polariton effects for RBS experiments
in this case. For Cu,0, however, a few experimental re-
sults suggest ' ~20 cm™!, while [, ~1 cm~!. In this
case one cannot have any polariton effects except for some
small bending behavior for the scattered frequency shifts.
Interestingly, curves with I'=10 cm~! in Figs. 10—12
have strong resemblance for all three ABC’s to those ob-
tained by BZB,* who took the same I" value but slightly
different values for other parameters, although their
theoretical construction is quite different from ours. This
implies a close connection between the two theories
despite the apparent difference.

The last three figures, 14—16, indicate that the most ap-
propriate scattering channel to investigate in order to
choose the proper ABC for RBS experiments is 2—2’,
since profile variation of the other three channels 1—1',
1—2', and 2—1' are rather insensitive to the change of
ABC’s. The scattering cross section for the 1—1’ scatter-
ing channel has a maximum near oy for all ABC’s due to
the fact that the group and energy velocities become very
small near o, for mode-1 polaritons.

It should be noted that a problem exists even when cal-
culating the transmissivity from a nonspatially dispersive
absorbing medium (I's£0) to vacuum. The incident and
reflected electromagnetic waves in the medium can inter-
fere constructively due to the absorption which results in
an additional term in the transmissivity expression’?

4% /n
(n+124i

where R is the reflectivity from medium to vacuum which
is given by

T=1-R+ (5.1)

_ =172+«
(n+1724K> "’

n and « are the real and imaginary parts of the refractive
index in the medium. A consequence of Eq. (5.1) is that
T +R is greater than 1 for an absorbing medium. It
should be noted, however, that the Poynting flux across
the absorbing medium-vacuum boundary is continuous.

For spatially dispersive media, the same problem arises
when one calculates the transmissivity. Detailed numeri-
cal analysis with ABC1 and ABC2 give as the sum of the
two transmissivities, from vacuum to medium plus the re-
flectivity, the result

(5.2)

Ti(0)+T1(w)+R(w)=1.0

for all frequencies when I'=0. But when T is increased,
ABCI1 gives a sum greater than 1.0, ABC2 gives first a
sum less than 1.0 around the frequency range of wy—wy,
and finally both yield a sum much greater than 1.0 near
wo when I' >T',. ABC3 does not yield the correct sum of
1.0 between wy and o; even when I'=0, since it does not
satisfy the energy-conservation requirement at the sur-
face.® The same strange behavior is found near w, for
I'>T, as with ABCl and ABC2. Actually, numerical
calculations of the transmissivity of mode-2 polaritons ex-
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hibit a sharp peak near w, for I" > T, the height of which
increases unphysically beyond 1.0. This shortcoming may
also-be included implicitly in the BZB treatment, since, as
described above, our results of the RBS efficiency for
I'~T, are very similar to theirs. The breakdown of the
group velocity concept around the frequency range of
wo—oy when I'> T, also limits the validity of our treat-
ment. Therefore, we believe that our approach is valid
when I' < T, except for the range of wp—w;, when I' >T,..

As is easily seen from the discussion in Sec. IV C it is
straightforward to incorporate other ABC’s (Ref. 34) into
the scattering cross-section calculations. A slightly com-
plicated but still straightforward extention of our theory is
to incorporate the dead-layer effect into the calculation.®
The calculation of the scattering cross section for
magneto-RBS is also very interesting to compare with the
experimental data to check the consistency of theory,
especially, the choice of the proper ABC.

The last observation is the variation of the spectrum
profile of the scattered wave, i.e., the profile variation of
the differential scattering cross section Eq. (3.33), with the
incident laser frequency w; as a parameter. Since factors
such as the transmissivity as well as the well-known
Lorentzian part contained in the cross section formula de-
pend strongly on the scattered frequency, one may expect
to have non-Lorentzian spectrum profiles. Even within
the Lorentzian line profile approximation, the linewidth
of the scattered wave given by Eq. (3.35) is strongly
dependent on the incident laser frequency w; and is a
maximum when w;~wy for 2—2’ scattering as is easily
seen from the imaginary part of the dispersion curves in
Fig. 4. This implies two important points: First, experi-
mental peak areas, instead of the heights, of RBS scat-
tered light spectra must be measured to compare the data
with the theoretical scattering cross section (3.36).
Second, to calculate a realistic RBS spectrum profile we
should do the convolution calculation of the differential
scattering cross section with the instrumental resolution
function, since otherwise the peak height may decrease
when increasing incident frequency w; to @y due to the
small linewidths well below wy. By comparing the convo-
luted spectra with observed ones, one can determine the
exciton damping constant I'.
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APPENDIX A: POLARITON-PHONON-INTERACTION
HAMILTONIAN

Based on the idea of exciton-polaritons by Hopfield?
and the exciton-phonon-interaction Hamiltonian, we will
derive in this appendix the polariton-phonon-interaction
Hamiltonian. It is one of the most basic ingredients in
our discussion of RBS (or RRS). Let us assume that the
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excitons under consideration have very weak interactions
with phonons, impurities, etc. In other words, we assume
that the exciton-phonon interaction can be treated pertur-
bation theoretically. However, excitons couple bilinearly
with photons via their polarization, bringing about com-
posite particles called exciton polaritons.

First, we will derive the noninteracting polariton Ham-
iltonian from the exciton-photon coupled Hamiltonian;>!6

H=Ho+ER » (A1)
HKo=HR+HE ,» (A2)
Hr=3tekata+1), (A3a)
v
Hp= 3 HgK)bLbK+1), (A3b)
¥
/2 - 1122
4ragws [coE(k) ] ¥
FHr= |# N
ER % [ € 467( yk k
TS fyt (A%)
eb Ek T(» ? ’
po=a-+ta’ ., yo=itb.—b" ) (AS5)

where a%,a_, and b%,b? are creation and annihilation

K
operators of photons and excitons, respectively,
exciton frequency

T=c/()'?, wE(E) is the
[@o=wg(k =0)], ay the exciton polarizability, and €, the
background dielectric constant. Since the interaction be-
tween photons and excitons, # gy, is bilinear, one can di-
agonalize 7 by a canonical transformation to obtain the
noninteracting exciton-polariton Hamiltonian. In the fol-
lowing we put %=1 for convenience. Let us define a
linear combination

_ t T
a?—wa?-f—xbi.—{-ya_l_(.%»zb_? (A6)

If a4 is to be a normal-mode annihilation operator for 5,
it must satisfy the following equation:

[aT(», %]:wa? , (A7)
where o is the normal-mode eigenfrequency. Substituting
(A6) and (A1) into (A7) and using the boson commutation
relations for @ and b, we obtain four homogeneous equa-
tions for w, x, y, and z and derive the following secular
equation:

¢k +2D —w —iC —2D —iC
—iC O —© —iC 0
2D —iC —(¢k +2D +w) —iC =0,
—iC 0 iC - —(wg+o)

where we set
Cs[41ragw(2)a)5(£)/4eb6k]“2 , D=rmagwd/e,ck .

The secular equation is straightforwardly solved to give
the following simple result:

3377
ck dragmi/e
| =1 e (A8)
o &)E(k)—

This is exactly the exciton-polariton dispersion equation,
(3.6), with T"=0.

The dispersion equation, (A8), has two independent
solutlons (or two normal modes or branches), (k) and
w,(k), for a given wave vector k. Therefore, there are
two independent polariton annihilation operators, arz and

arz, which satisfy the usual boson commutation relatlons

[ap,ae, ]=[a~.,a~,j]=0,

[a_.,,aq ]=6;6-- (A9)

Kk’

Now the noninteracting exciton-polariton Hamiltonian
takes a simple form,

Wp-—zzla),(k)a_.a? +7). (A10)
T i=
The transformation matrix (Cy;) is defined by
e az
o b
o;“ —c|.1 (A11)
—k1 -k
o X2 b! ¥

Relations among C;;’s are derived from, e.g.,

aT - =(a — )T y C31(E)=C‘1‘3("’E) ’

—k1 —k1
Cy(K)=Cly(—K), Cy(K)=Ch(—K),
Cu(K)=Chy(—K),
Ca(K)=Ch(—K), CuB)=Cl(—1),
Cu(K)=Ch(—K) .

Elements of the inverse transformation (C~ 1),,, defined
by

Cu(K)=C%(—K),

ag &gy

s ae,

ro|=c | (A12)
a_% X1

t t
b__. a_+,

are expressed with C;; by taking commutators such
as [a_.,aT_. ] and substltutmg (A11) on the one hand, and

(A12) on the other hand, with the help of the commuta-
tion relations both for a and b, and for a; and a,;

1 Ch —Ci —C4
Ch, C3» -Cj —Ch
—Cl; —C3; Ch  Ch
—Cls —C3 Ch Ci

Ccl= (A13)
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In order to obtain concrete expressions for the different
components of the C;;’s, additional relations are needed to
supplement the secular equations derived from (A7). Let
us pay attention to the fact that polariton energy density
can be expressed in terms of the C;;’s

The average polariton energy is written as a sum of the
averaged electromagnetic and mechanical (exciton) ener-
gies;'%?" W,=Wpgp + W,.,. This expression is easily
shown to take the form

4
— €0F 47ra0wo

(1E|*),

= 2
8wy —w?) €0%

(A14)

in terms of (|E |?) [or, if necessary, in terms of
(| Pex | ) via the relation Pex—aocoo/(coE—-wz)E] The
electric and polarization fields are expressed in terms of
annihilation and creation operators of photons and polari-
zation wave quanta (i.e., excitons) as follows? (%=1):

E(r)= z 2”5"] 2@(E,x><am_af_m)e”<’-?,
(A15a)
172
ENEED) “’ZE;’" AEK M +bT e ET
- (A15b)

The average values of the absolute square of the fields
with wave vector k are (for unit volume V),

2
3 ck o ckw, a)%
Cy= 1——2 —_— 4 — 2 3 _——
OF Wg Of 0)) g
7Ta0a)2 172
0 2 (2] )
Cp=—i 3 14— / — ——
1207 (074 0] OF
a)z—Ek
C23_ 21 »
0)2+Ek
Of — W)
u=—"— 0
Op+;

Precisely speaking there still remains a small ambiguity
about the sign (+) in deriving (A_?O). We have used
the convention that in the limit of K—0 and ay—0 (no
interactions between photons and excitons) one has

a%-(»l—-b?, e ~—b (excitons); an =ar,

t T (photons) In (A20) we cited only the C,;’s
whlch are associated with the mode-2 polaritons. Other
C;j’s can be obtained from (A20) by replacing o, by o;
with w3=—w;, w4=—w,, and multiplying by i (ima-
ginary unit number) for i =1,3 and by —1 for i =4.

As yet we have completely neglected interactions be-
tween excitons and other excitations such as phonons,
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(|Ex "= (A16a)

4
wEk(|a_,-—a =12,
€

(|P_ 1P =0pa |bp+b_¢ ). (A16b)

The substitution of Eq. (A12) and (A16a) into (A14) yields
with the use of (A13)

_ kot w? g 4rragwd
Wt?z 2 2 1——-‘2— 2
5 (0f—ao) OF €,0%

X | Cit+Cis| np+3) (A17)

where n_>,=(aT_._a_>,) (i=1,2) and w; is the mode-i
ki ki ki

exciton-polariton frequency.
On the other hand, the energy density of the exciton po-
lariton is also expressed from (A10) as (i=V =1)

W~»-— > w(n—»—%— ).
i=12

(A18)

Equating (A 18) with (A17) and taking mode-2 polaritons
as an example, we have the relation

—1
w% 4'n'a0co8

0%

2 2
a)z((OE ’—0)2)2
kot

|Cy+Cos | 2= 2
€pWE

(A19)

This is the required additional relation for C,; (j =1—4).
Equation (A19) and the four homogeneous equations for
C,; derived from (A7) can be solved straightforwardly to
give

dragw?

172
I

€bw%

(A20)

since in polar crystals the exciton-photon interaction is the
strongest. In order to discuss light scattering in polar
crystals, however, one must derive a polariton-phonon-
interaction Hamiltonian. The polariton-phonon interac-
tion is known to arise mainly from the exciton-phonon in-
teraction

Hp =iV 3, T
%

(A21)

¥
Lo \(Ccs—C
q k( q "‘q)’

where I'o(q) denotes the exciton-phonon-interaction ker-
nel and Cq is the phonon annihilation operator.
Transforming the exciton operators to polariton operators

via Eq. (A12), we have the polariton-phonon-interaction
Hamiltonian
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X pr, =iy—172 2 Fo(a)z(g? _’)4j(g? )21a S 'a?,l(c_'_c—a) )
T]»’ T(’ bl +q
where we have used the notations op,= T_ 1 and ap,=a_ o Let us pay attention to mode-i to -j polariton scattering
by phonons. Then there are two terms for experimentally accessible interactions: a} 4./°F, x(c_. cJr _.) and
@ v g aT_ 7 J(c_> —c! _,) The polariton-phonon-interaction Hamiltonian associated with hght scattering by one pho-
non can then be written for the mode-i to -j scattering as
Y ==Y =12 3 DDA (K K+l . an (c—c ), (A22)

< k+49q,j
q,k

where superscripts i and j of the imaginary number unit i
denote the polariton mode (1 or 2) and

0p(Kog(K+7)
oi(Ko;(K+9)

A K+)=247(K) |1+

xXA}HK+9) , (A23a)

—

dragwior(k)
[03(K)—a2(K)]?

y e
A(F)= 47ra0cu2m5(k)ajf(k)/
[wE(K)—oi(k)]?

(A23b)

The quantity 4;(k) is the exciton-strength function dis-
cussed in Sec. IVE. The result (A22) is equivalent to that
derived by Burstein et al.!' For convenience we rewrite it
as follows:

Hh =YV 3 D@k, K")
X,X,9
X 4 3%%,%7,%5
(A24)
where we set
(pa.zi(c_,—c =) (A25)

APPENDIX B: THRESHOLD VALUE OF THE EXCITON
DAMPING CONSTANT I,

First, we rewrite the exciton-polariton dispersion equa-
tion (3.6) in a more convenient form by replacing @, w,
and ' by 27c@, 2me@,, and 2meT, respectively, and k by
2mk. Then, by removing the bars, one obtains

LS (B1)
K e —220
w? P BK*TAQ?

where A =4wa,, B =2rmfw,/m*c, and AQ?

=a)(2)—a)2~ia)F. Now w, wg, k, and T" are in units of
wave numbers (cm™!). Note that w, in the definition of B
in the text is in units of sec ™!

As stressed earlier our experimental situation (RBS ex-
periment) imposes the condition of real w, and complex k
(forced harmonic-oscillator model). Then Eq. (B1) is re-

q —q

l
garded as a simple biquadratic equation for k and the two

solutions k| and k, for a given w are given formally by
Ci=€,Bu*—AQ?, Cy=€,0> A’ +Awio?,
C;=C}+4BC,, C,=(Cy)'?, Cs=C,—C,,
Cs=C,+Cy, k;=(Cs/2B)V? | k,=(C¢/2B)'/?. (B2)

Since the complex square root is involved in the solutions
(B2), we first use the argument convention (—#, +) on
the complex plane.

Next let us persue the movement of C3 on the complex
plane as a function of @ with various I" values. C; is
written explicitly as
Ci(w)={(1—€,B)0*—[2(1—€, B —24B)wi+I'*]w?

+ 08} +2i0T[(1—€,B)o*—»d] . (B3)

ReC5(w) has extrema at @ =0 and w,, where w, is given
by

2(1—€,B —24B)w3+T?
2(1—€,B)?

2

0= ~wb . (B4)

In other words, the tangent line at the points C;(0) and
C3(w,) is parallel to the ImC; axis. w, is extremely close
to wy, since €,B << 1, AB << 1, and T" << w (for the 4 exci-
ton in CdS, €,~9.3, B~5.6X107%, 4 ~1.4X10"2%, ' ~1

ecm ™!, and wy~20590 cm™!). At w, we have
(1—€, B —24B)w+T?J?
ReCs(0=0,)=w0j— 2 b 3 ] (B5)
4(1—¢,B)
On the other hand, ImC; =0 at w =&,, where
Bo=wo/(1—€,B)*~w, . (B6)

Again, @ is very close to w,. Therefore, the curve of
C;(w) on the complex plane passes over the ReC; axis at
®=00g~0,; ~©g, Where the tangent line is almost parallel
with the ImCj axis. The value of ReC; is given by

(44Bw3—T)wd

RCC3(CO=50)= l—ebB (B7)
Therefore, when T equals T',, which is defined as
T, =(44Bw})!”? (B8)

the C; curve crosses the origin, in which case @, is exactly
equal tow,. ForT'<T, (I'>T,), ReC3(w=ay) >0 (<0).
In other words, when I' > T, the C; curve moves around
the origin. Figure 17 shows schematically the results dis-
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FIG. 17. Schematic representation of the movement (illus-
trated by arrows) of C; on the complex plane when varying both
o (from 0 to « ), and I". C; starts from the point 4. ForT' < T,
the C; curves pass over the positive part of ReC; axis. Howev-
er, for T'>T, they cross the negative part of ReC; (move
around the origin).

cussed above.

Next, let us investigate the movement of C,=(C;)'/?
on the complex plane in order to study the effect of ', on
the dispersion curves. We study two ranges of T'.

(@) T'<T,: Starting from point 4, C,(w) moves con-
tinuously when varying o from O to infinity, as shown in
Fig. 18.

() T'>T,: Owing to the argument convention defined
before, when C;(w) crosses the negative part of ReC; axis,
C, exhibits an unphysical discontinuity from the point B
to B’ at w =@, ( =~wy) in the figure. To avoid this discon-
tinuity we must choose another argument convention
(0,27r) for this case (or use the Reimann surface). We
then obtain a continuous movement for the C, curve
starting from the point 4’ (instead of 4) when varying o
from O to infinity. This is shown in Fig. 18 by the joint
curve consisting of dashed and solid lines.

Thus one must choose the proper argument convention
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FIG. 18. Schematic representation of the movement of
C,=(C3)"? on the complex plane when varying both » (from 0
to o) and . For I' <T,, C, starts from point 4 and moves
continuously under the original argument convention. However,
for ' > T, it exhibits an unphysical discontinuity from B to B’'.
In the latter case a new argument convention must be used to
obtain a continuous C4(w) movement such as the one shown by
the joint curve with dashed and solid lines. Now C, starts from
the point 4'.

according to the I value in order to avoid the unphysical
discontinuity in the dispersion curves. Detailed numerical
analysis shows that the imaginary part of both Cs and Cg
is always positive. In other words, after obtaining a con-
tinuous C, one can obtain dispersion curves without
changing the agrument convention. The dispersion curves
thus obtained are shown in Fig. 4 in the text.

The physical consequence of the argument change for
C, is very interesting. When I' <I', we have the usual
polariton dispersion curves. For example, the mode-2 (or
outer, or lower branch) curve exhibits a photonlike
behavior for w < wg, then changes quickly and continuous-
ly to show an excitonlike behavior for @ >, When
I'> T, however, the photonlike curve for w <@, also ex-
hibits a photonlike behavior for w > w;y after crossing the
excitonlike branch curve between @y and w;. In other
words, when ' >T,, excitons and photons behave as if
there were no interaction between them.
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