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This paper gives two new theorems about the band deformation potential Dzﬂ(f,n) which
expresses the shift of electron energies under external strains, €, /38 qp, and the electron-phonon

deformation potential Df,}’h(i’,n) which gives the matrix element for an electron to scatter from
state (k,n) to a nearby state (K+ Q, n) by absorption of an acoustic phonon of branch j and ampli-
tude W(Qj), namely (K+Q, n | # opn | Kyn ) =iug(Qj)QpDEE"(K,n). First, it is shown for a rigid
ion model that Df{ﬁh( E,n) equals Df;p( ﬁ,n)-{—mv—l:nav—k»n o where V’x?n is the electron group velocity.

Second, it is shown that the Fermi surface average of D,’;,}’h(f,n) equals the Fermi surface average
of myp Ve o From the second theorem, it is deduced that the first theorem is probably generally

valid in a metal [i.e., not restricted to a rigid-ion model) provided the band deformation potential
Dﬁg(f,n) is defined relative to an energy which moves with the Fermi energy under strains. The
first theorem contradicts the common belief that the two deformation potentials are always the
same, but preserves the usual form of the deformation-potential theorem at band edges where U

vanishes.

I. INTRODUCTION

Bardeen and Shockley! introduced the useful notion,
known as the “deformation-potential theorem,” that the
electron—acoustic-phonon matrix element is directly relat-
ed to the shift in energy of the relevant electron energy
level with an externally imposed strain of the same sym-
metry as the acoustic phonon. This paper derives a
rigorous form of that theorem valid for any Bloch state
(k,n) and any acoustic phonon ((_i, j) or strain tensor com-
ponent S,g. The theorem is not quite as simple in general
as the original Bardeen-Shockley idea, but is still very
simple, and reduces to the Bardeen-Shockley version at
semiconductor band edges. The original theorem of Ref.
1 was only stated for the case of a nondegenerate band ex-
tremum at k=0, and the proof was only for longitudinal
phonons.

It is hard to locate a proof of the deformation-potential
theorem in the literature. The proof of Ref. 1 is repeated
in Shockley’s book.2 Herring and Vogt® assert that for
nonpiezoelectric crystals the theorem should be valid for
‘longitudinal and transverse phonons, but offer no proof,
and use the theorem for many-valley semiconductors with
band edges away from k=0. Blount* states without any
proof that a Hartree-Fock analysis verifies the Bardeen-
Shockley theorem for general (K,n) and branch j. Hunter
and Nabarro® and Ziman® show that in a metal, screening
will cause a significant alteration of the deformation-
potential theorem. Whitfield’ gives a full justification of
the theorem using the method of ‘“orthogonalized de-
formed Bloch waves,” but Sham and Ziman® claim that
this proof is not completely right; they argue that, away
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from band extrema, correction terms occur.

Our conclusions agree with Ref. 8 about the existence
of correction terms away from band extrema. We find a
simple explicit form for the correction which differs from
the one stated (without proof) in Ref. 8. We find no fault
with Refs. 1—3, which are explicitly confined to the
neighborhood of band extrema, but disagree with Refs. 4
and 7. Our work provides an alternate and more complete
method for metals than the one given in Refs. 5 and 6.

There seems to be no reliable general proof of the
deformation-potential theorem. The only attempt known
to us is that of Whitfield.” One reason for the neglect of
this subject is because the theorem can be made to seem
trivially obvious. Assume there is a homogeneous strain
S,y in a crystal. The strain will cause a shift 8V (r) in the
effective one-electron potential, and to first order in strain
we should be able to write this as #' =8V(T)
=8V#"(T)S,,. This strain will cause an electron energy
€p, to shift by an amount

86?n=(k,n | " | k,n)=D,,(k,n)S,, ,

(1.1)
Dy (k,n)=(k,n |8V*™(T) | Kk,n) ,

where D(K,n) is the deformation potential for the state

(K,n). Next consider a long-wavelength acoustic wave in
a solid, with space and time-dependent displacements
. - iQ'?’——a)Qt . .
given by de . This wave causes a strain
Suv(f’)ziu#Qve" Q"™ which varies slowly in space. One
expects that the electrons should feel a perturbation
Koo pn=08VH"(T)S,(T), where SV*'(T) is the same as
when the strain was homogeneous. The electron-phonon
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matrix element is

(K+Q,n | H o | kn) =D (K, n)iu,Q,) . (1.2)

This simple argument suggests that the same deformation
potential should occur in the electron-phonon problem as
in the static-strain problem, D} :ph =D,

Unfortunately nature is not thls s1mple, and the argu-
ment above fails, except in the special case of states near a
band edge. (In Sec. II it is shown that a corresponding ar-
gument for optic phonons is successful.) One major diffi-
culty is that there is no unique definition of the band de-
formation potential for the case of uniform strain. There
are two ambiguities. One is that the reciprocal-space unit
cell changes its dimensions under the influence of strain.

—

The lattice vectors l_i,- and reciprocal lattice vectors G
change to

-

ﬁl—)R; z(l+§)§x )

G—>G'=(1+8)"'G~(1-8)G

(1.3a)
(1.3b)

The band deformation potential used in this paper will be
defined as

- e(E’,n;S )—E(E, ;0)
Dlg(K,n)= lim ab .
S,5—0 Sap

_ del(L—S)k,n;S)
- dSaB S= ’

(1.4)

=}

that is, the wave vector is taken to scale with the strain,
rather than remain fixed. This has the virtue that a zone-
boundary energy before the strain is being compared with
a zone-boundary energy after the strain. However, alter-
nate definitions have been used often without explicit
mention (see Ref. 8). The qualitative notions of Eq. (1.1)
do not scale the wave vector as in Eq. (1.4).

The second more serious ambiguity in both Egs. (1.1)
and (1.4) is the questlon of the zero relative to which ener-

gy i measured.” It is hard to identify the vacuum zero of

energy in an infinite crystal. If the muffin-tin zero is
used, this zero changes when the crystal is strained. Thus,
the definitions (1.1) or (1.4) are reference dependent.
Differences of deformation potentials D?%2)—D?(1) are
well defined, and experimentally measurable, but absolute
values D?(1) are not measurable, and so far not even de-
fined. We shall largely avoid this difficulty by a trick to
be described below. By contrast to D%, the electron-
phonon deformation potential D" defined in Eq. (1.2)
has no ambiguity.

We now state our principle results. In Sec. II the
deformation-potential theorem is examined in a rigid-ion
model, and the result

D" (K,n -—Da,g(k n)+muy v Tnp (1.5)

is proved, where VT{n is the group velocity of the electron

state (k,n). “At this stage the reference zero of energy for
D?® has not been clearly specified. The constant back-
ground potential which remains behind when atoms are
slightly moved has been taken to be zero. In Sec. III, a
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sum rule is proved,

) [————af D Em=3 [— s
= Je— % d€—
k,n kn k,n kn

mv - —
knavknB ’

(1.6)

where f is the Fermi-Dirac occupation function

Ble> —u) . .
(¢ ¥* " 4+1)"!. This sum rule is a consequence of

translational invariance, specifically, the requirement that
when the nuclei of a crystal are translated rigidly in space,
the electrons follow adiabatically giving zero net electrical
current. Finally, by comparing Egs. (1.5) and (1.6) we are
able to identify what the physical zero of energy was in
Eq. (1.5). First note that (1.5) and (1.6) require that

af
de

3 Dig(k,n)|— =0. (1.7)

=
k,n

Xn

From this it follows that the reference zero implicit in D
as used in (1.5) is the Fermi energy (or some energy that
moves with the Fermi energy under strains). This can be
seen by observing that the total number of electrons is not
changed by the strain

=34 e _u. ay

Kn e dSap

,n
To be completely unambiguous, we now rewrite the defini-
tion (1.4) of D?:

(E )= d[l1—§)k,n;S) wS)] . (L9
dSaB 5=0
The set of equations (1.2), (1.5), (1.6), and (1.9) together
provide a new rigorous basis for the deformation-potential
theory. In a separate paper'® we intend to show how these
equations are necessary to give a simple unified version of
Pippard’s theory'! of ultrasonic attenuation in metals.

II. THE RIGID-ION DEFORMATION-POTENTIAL
THEOREM

Let us assume that the crystal potential ¥ (T) felt by an
electron is given by a sum of atomlike potentials V,,

V(©)= 3 Vo(F—Ry) , 2.1)
i,a

where ﬁia=l_i,~+1-,, locates the ath atom at location 7,
relative to the origin R; of the ith unit cell. We further
assume that (2.1) remains valid, with ¥, unchanged, while
the atoms undergo small displacements u;, from their
equilibrium positions ﬁia. Within this model we can com-
pute both energy shifts caused by strains (Sec. IIA) and
electron-phonon matrix elements (Sec. IIB). Then by ex-
plicit comparison a deformation-potential theorem (1.5) is
constructed. It should be noted that this rigid-ion model
is certainly not exact. However, to first order in the dis-
placements U;, it seems often to be an excellent approxi-
mation. Nevertheless, the reader is cautioned that
theorem (1.5) has not been proved exactly, but only within
the rigid-ion model.
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A. Static energy shift

The energy eigenvalues € of perfect and strained

crystals are given by

det{[(K+G)? —e, 18( (G1,G)+V(G;—G,)} =0, (2.2)

det{[(K'+G{)?—€, 18(G1,G3)+ V(G —G))}=0
(2.3)

The plane-wave representation is used only for conveni-
ence. It is not assumed that there is a weak pseudopoten-
tial or that Eqgs. (2.2) and (2.3) are necessarily viable for an
actual calculation. Primes are used to denote quantities in
the strained crystal and are given as in Eq. (1.3a) for lat-
tice vectors l_i,- and Eq. (1.3b) for reciprocal lattice vectors

(_?;,-. The unit-cell volume is

R RyXR;=0, >0, =(1+1trS)Q, . (2.4)

The potential (2.1) of the unstrained crystal has a Fourier
transform given by

L=

V(6= [dre=i® TSV, (F-7,) 2.5)
QC a

=S V,(Gle e, (2.6)
a

To work out the corresponding quantity for the strained
crystal, we need an explicit formula for the location of the
atoms:

Riy—RL=(1+8R,+5, .7
=R +(14+85)7, 485, . (2.8)
Here 8, is the “internal shift” of atom coordinates within

a cell which in general must accompany a strain, except in
Bravais lattices or simple crystal structures such as rock
salt where there are no optic modes at 6 0 which
transform in the same way as S under point group opera-
tions. The internal shift 5, has the same order of magni-
tude as S7, and can be regarded as a Q 0 optic-mode
displacement which mixes with the external strain. The
Fourier transform for the strained crystal which corre-
sponds to Eq. (2.5) is

- —

V(G =(1—1r8) 3 V,[(1—8)Gle " ¢ Tt | 29)
V(G = V(G)—tr(S)V(G)

3 GFT¥,(Gle e

i3G5,V (G 0T, (2.10)

where Eq. (2.10) is the linearized version of (2.9).
Now we can compute the energy shift 66?;1 to lowest

order in strain by starting with the eigenvector | K,n) to
(2.2) and treating (2.3) in first-order perturbation theory.

Note that 8¢ is defined as €., —e-. , i.e,, it is the shift
kn k'n kn
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of the state labeled by quantum numbers k, taking into

account that under strain, K shifts to E'=(l——§)l_{. The
formula is

Bei’n: E (1_(:}1 'al)AH(al,§2)<a’2] E,n) N (211)
G,3G,
AH(G,,Gy)=[(K'+G)*—(K+G)*15(G,Gy)
+[V'(G—=G3)—V(G;—G,)] . (2.12)

The kinetic energy term of (2.12) can be written as

—2k+ G)-S+( kK+G). Taking Eq. (2.10) into account,
the answer (2.11) can be written in operator form as

Se =(K,n [(H1+F,+6,+3,) | K,n),  (2.13)

H\=—BSB/m, (2.142)

Hr=—tr(S)V(T), (2.14b)

Hy=—F SEET,B)e' S TR (2.140)
6 i,a

#=-i3 3G, V&6 S TR 14q)
<G

The quantities 1=#*=2m have been restored in Eq.
(2.14a). In order to extract the deformation potential
from these equations, it is necessary to find explicitly the
internal strain coordinates 8 which accompany the ap-
plied external strain. Procedures for doing this are in the
books by Born and Huang,'? Venkataraman et al.,'> and
by Lax.' It suffices to know that for each crystal there is
a unique linear relation, which we can write symbolically
as

Saa=L%s,Spy - (2.15)

The final formula for the band deformation potential D?,
defined in Eq. (1.4), follows from Egs. (2.13)—(2.15):

Db=<E,n |(Bl+62+‘ﬁ3+‘64)'§,n) N (2.16)
(D1)ap=—Papp/m (2.17a)
(D3)ap=—V (1845 » (2.17b)
A = —iG«T—K )
(D3 )aB: - 2 z GaV(;,gVa(G)e e ’ (2170)
—G’ i,a
R 2179

=—-—lz EG L ﬁV (G)e

In a piezoelectric crystal the G=0 term of (2.17d) will not
cancel in the sum over a, because the internal shifts gen-
erate a macroscopic E field. In this case the deformation
potential cannot be strictly defined, and the deformation-
potential theorem does not exist. Thus, we restrict atten-
tion to cases like metals or homopolar semiconductors
where atoms are neutral and V,(G =0) is a constant, or
else to nonpiezoelectrics where 5:, =0 by symmetry.

Jones and March!® give an expression for D® which
reduces in the rigid-ion model to a form equivalent to Egs.
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(2.16) and (2.17), except that (2.17d) is missing because
they have only one atom per cell. The relation between
our work and theirs is explored in the Appendix.

B. Electron-phonon matrix element

When a phonon of mode ((_j, j) is present in the crystal,
the atoms have displacements given by

Q) +8, Q)3 ¢ , (2.18)

where U is the “acoustic” component and 5:, the “optic”
component. These can be defined by requiring that the
optic component have no center-of-mass displacement:

3 M,5,(Q,/)=0 (2.19)

__[u

The macroscopic strain S is the gradient of the local dis-
placement U, namely,

ei6~?2

(K+Q,n | o pn(Q,)) | Kyn )= — i<E+6,n

G
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S [U(Q,/)+8,(QN1-(Q+BC)V,(Q+GCe

J—
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Sap(X)=iQpu,(Q,j)e' T F (2.20)

In the Q—0 limit, & vanishes for optic modes and 5:,
vanishes for acoustic branches. However, for acoustic
branches with small but finite 6, S:, is proportional to S
and is given by the static formula (2.15), with nonadiabat-
ic corrections being negligibly small (and higher order in
Q).

The perturbation felt by an electron at T because of the
phonon ((3, j) is fixed by the rigid-ion model (2.1) to be

Hepp(Q)= 2 [ ValF—Rig — Ui (Q,))
—V,(F—R,)] . 2.21)

We wish to find the matrix element [Eq (1.2)] of this per-
turbation between the electron state | k,n ) and the nearby

~state (K+Q,n |:

— — - - > = iG(T-— )

f,n) .

(2.22)

In the limit 6—» 0, the result for an acoustic branch J vanishes linearly with 6 To prove this, note that since 5:, is
linear in S,g=iQgu,, the only part of (2.22) which is zeroth order in Q is

-7,

3 360GV’ oK)=

—l<k n

_ﬁ(a9j)'(E1n I ertot(?) I E,n) .

This vanishes because V, V., is (i /h)[p ﬁf] which has vanishing diagonal matrix elements. This is just an awkward way
of stating the familiar truth that a Q 0 acoustic phonon is a rigid translation of the lattice, which cannot perturb the

electrons.

Our task is to examine the parts of (2.22) which are linear in Q. There are four, which we label M; through M,:

(K+Q,n | H, 1l Q,)) | K,n) =M, + M, + M5+ M, , (2.23)
My =—iT(Q,)8{((K+Qm | T} S S GV, (G’ TR | K n) (2.24a)
G ia
M2=—iﬁ'(6,j)-6<f,n TR %Y, (2.24b)
M= —iw@,))(Kn |3 SOV V&)’ ¢ TR k,n>, (2.240)
gy
M4_—i<i€,n 3 S 5,(0,/)- GV, e T Ru E,n), (2.24d)
S

where in (2.24a), 8{ - - - } means the term first order in Q
in the Taylor expansion of { ---}. We can immediately
see a correspondence between M,,M;,M, and the corre-
sponding parts 7%°,,5%"3,5% 4 of Egs. (2.13) and (2.14). This
correspondence can be written

M;+M; +M4=Saﬂ< E,n | (D\z +ﬁ3 +ﬁ4)aﬁf E,n) ,
(2.25)

where S,z is iqua(Q,j) following (2.20) and D; is de-
fined in Eq. (2.17). It remains to find whether M, corre-
sponds to SaB(E,n |(D, )agp | K,n). The impossibility of
such a correspondence can be seen immediately by consid-
ering the weak pseudopotential limit of Egs. (2. I7a) and
(2.24a), i.e.,, the case when the wave functlon |k n)
IS_’ apprgxxmatg}y a plane wave | k+G ). Then
(k,n |(D1)gp| k,n) is approximately —(K+G,) (k
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+G )p/m_while M, is approximately zero because (k
+Q,n Ie’Q T s the same plane wave as (K,n |, ie., the
correction linear in Q is small.

The expression (2.24a) for M can be written as
— Q) (8¢, | V(D) [ Kon)

r

M= (2.26)

rs¢?n>—=~e-i3'?| K+Q,n)—|K,n) . (2.27)

Using kP perturbation theory, the formula for lSt/:E.n)
to first order in 6 is

18z,)= 3 | K,n'Y(K,n' | B | K,n)

n' (s£n)

'(ﬁa/m)(efn—-e—> )L (2.28)

kn

-

Using (2.28) in (2.26), and using the fact that V V(T is
equal to (i /#)[B, #°], M, can be written as

M= —iQgu,(Q,j)

X 3 (K,n Ipﬂﬁ,n’)(ﬁ,nﬂpﬂﬁ,n)/m.
n' (n)

(2.29)

If we now add and subtract the n’=n term in the sum
over intermediate states in (2.29), and use the complete-
ness relation, the result is

M1=Saﬁ((f€,n |(DA1)a,3| E,n)+mv¥mv?nﬁ) .

The correction term in (2.30) involves the group velocity

vmg:(ﬁ,n | (pa/m)| K,n ) and has just the right form

to cancel the first term 131 of M, in the nearly-free-
electron limit, as is required by the argument given above.

Combining (2.25) and (2.30), we now have a complete
expression for the electron-phonon matrix element. This
matrix element is written in terms of an electron-phonon
deformation potential Daé’ in Eq. (1.2). Comparing with
Eq. (2.16) for the band-structure deformation potential,
we find the fundamental form of the deformation-
potential theorem:

(2.30)

De Pk, n)=DbK,n)+mvV. V.

XKn Kn

(1.5

This is the main result of this section.

This result violates the conventional view that the two
deformation potentials are the same. However, the con-
ventional view was already rejected in the authoritative re-
view by Sham and Ziman.® They quoted a result some-
what different from (1.5'). The origin of this difference is
hard to trace because they give no hint of how it was de-
rived. A “proof” of the Sham-Ziman formula is given by
Jones and March.!> However, there seems to be an error
in this proof, as is explained in the Appendix. As Sham
and Ziman have pointed out, a common use of the
“deformation-potential theorem” has been at band extre-
ma in semiconductors. At these points, V, vanishes, and
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the conventional formula is correct. However, on the Fer-
mi surface of a metal, the correction term mV-V is often
very large, and the conventional formula is totally invalid.

C. Optic phonons

The algebra in parts A and B of this section permits a
treatment of optic phonons by the simple expedient of
abandoning relation (2.15), allowing the internal shifts 6,
to remain finite as Q— 0, and requiring the strain S to
vanish. This greatly simplifies the expressions for both
energy shifts and electron-phonon matrix elements. Equa-
tion (2.13) can be written as

8€_> =28 (k n), (2.31)

]—5 (—> ——1<E,n 2 EaVa l (T—Ry,) E,n>
G i

=(K,n |V Vig(r) | K,n) . (2.32)

For the > case of an optic phonon of branch j, frequency wj,

at Q 0, the displacement U, in Eq. (2.18) is just 8 ()
where

84())=#/2M,No;)'/%* (2.33)
and €j is a normalized eigenvector, obeying
>, €7-€5=8,y. Equation (2.23) can be written as

(K,n | H o) | K0 ) =(#/2M,Nw;) /224D, (K,n) .

(2.34)

The same “optic deformation potentials” ]_ja( K,n) appear
in (2.31) for the energy shift and (2.34) for the electron-
phonon matrix element. Thus, all optic-phonon matrix
elements can be constructed from calculations of electron
energy shifts caused by sublattice displacements. The
naive reasoning of Sec. I is correct for optic phonons; ex-
tra complexity occurs only for the acoustic case.

III. TRANSLATIONAL-INVARIANCE SUM RULE

In this section a proof is given of Eq. (1.6) for the
electron-phonon deformation potential. After establishing

- the theorem, it is used in conjunction with Eq. (1.5’) to

clarify the zero of energy relative to which D? is defined.
The basic idea is that in the presence of an acoustic wave,
the electron-phonon interaction establishes an electronic
current, which cancels the current of the moving ions, ex-
cept for corrections which vanish at least as fast as Q
when Q goes to zero. In other words, if all positive ions
are moved slowly and uniformly, no dc electric current re-
sults. The potential felt by the electrons is given by (2.18)
and (2.21), except that we want to recognize explicitly the
(slow) time dependence of the ionic motion



3346

Koo Q)= — 3 VV,(r —Rip) [W(Q, 1)+ 8,(Q,))]

et @ K=o 3.1)

The ions and the tightly bound core electrons have a net
charge Ze, which gives a macroscopic electrical current

—

Jion(T,t)=nev(7,1) , (3.2)

where n =Z /), is the number of valence electrons per
atomic volume, and the ion velocity V is

V(T 1) = —iwi(Q,j)e! T o0 | (3.3)

In the small-Q limit, there is an exactly compensating
electronic current:

Ja=—(e/NQ,) S Vf(K,n),

»n

(3.4)

~

where f(k,n) is the equilibrium Fermi-Dirac function.
We now make a microscopic investigation of the sources
of this electronic current.

There is a surprisingly simple prescription for calculat-
ing the intraband part of the current. Provided that o is
small, the electronic relaxation time 7 is always short
enough that wr<<1. A more stringent requirement is
that the lattice wave should have a wavelength 27/Q
much longer than the electron mean free path [, or
Q! << 2w, or wt(vp/vs) << 2, where v and v; are the Fer-
mi and sound velocities. We shall assume that Q and @
are small enough that this is satisfied. Then the electrons
reach a local equilibrium in which they move with the
ions at the velocity V of the ions. In the stationary frame
this corresponds to a shifted Fermi-Dirac distribution
F(K—m¥ /#,n). This result does not seem very obvious
to us for Bloch electrons, but it is a basic element of
Pippard’s theory, manifestly true for free electrons, and
has been given a rigorous basis for Bloch electrons by Hol-
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X.n
=—em % ffv(rz), (3.5)
€
n - - af 1
— | =3V Vo |- — (3.6a)
m off T("n kn kn ae_]_(,n Q
% =
k
=_Z SEE:—E" %2(,)_”), (3.6b)
k,n

where (3.6b) follows from (3.6a) after integrating by parts.
This fails by a factor (1—m /m) to agree with (3.4) and
cancel the ion current (3.2). The difference is made up by
an interband current Te, as demonstrated by Holstein.'®
Holstein’s proof will now be summarized, because we will
later recalculate the intraband current Tfra copying
Holstein’s method.

To find Tfe,, we calculate the current j eT:’n(é’ Jj) induced
by interband transitions in the state | K,n) by the phonon

perturbation 5, ,, [Eq. (3.1)], and sum over occupied
states:

£ (K, n)el @ T—ot (3.7)

21

The state |k,n) acquires a small admixture |8¢?n> of
states |E+(_j,n’) in other bands n's4n because of the
phonon perturbation. When the velocity of the new state
| ﬁ n)+| Szp_. ) is calculated, the cross terms contribute
a current due to the interband matrix elements of the velo-
city operator V(Q)=( f)’e”’Q T 4e~"CTF)/2m. The in-
terband contribution is polarized in the direction of the
ion motion, and gives a macroscopic contribution when

stein.!® The displaced equilibrium distribution carries a  summed as in (3.7) over occupied states. From time-
net current dependent perturbation theory we get
1
Qe = (K,n |9@Q) | K+Qn WK +Qn’ | #,5n(Qui) | K1)
T e 33, (Qi)= 2 €> —€ + i
n' (#n) Xn X+Q,n
(K,n | Hogn(Q,) [ K=Qn' N (K=Q,n’ [ F(Q) | K;n)
+ 2 | eth] l Q ﬁg | Q [ ) (3.8)
" (#n) 6?'1—6?_6’",—
This term when summed in (3.7) will be almost canceled by the current induced in the state | — K,n):
2 lre e s Son FQUEFQAIEHQR | Fep @) Kon)
e —kn n' (sn) e?n_ T(’+6,n’-
(K,n |, n(Q,)) | K—Qun" Y (K—Q,n' | V(Q) | K,n)
_ 2 I e-ph ‘ Q | | . (3.9)
n’ (#n) ei’n_ ___Q’,,,'+ﬁw

In writing (3.9) we have simply reversed the sign of K in (3.8) and then used the time-reversal symmetry ¢ Ta =y

*
b_¢ X-Q,n ¢i’+6n" —Xn % C¥_Co 6k+Q
term of (3.8) generates the first term of

.,
kn’

, and {(—K,n || —K,n)=—(K,n |V|K,n). The second
3.9) and vice versa. Except for the fact that the sign of o is reversed, (3.9)
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would completely cancel (3.8). We next add (3.8) and (3.9):

TS Q=317 %,@QN+7 74, Q)] (3.10
—_ 0 ((Kyn |, (@) | Kyn Y (Kon' | F(0) | Ko )
Q n' (#n)
—(K,n [ V(0) | K, YK, | Hon(Quf) | Kon )} Nepe —ep )P (3.11)

In (3.11), the wave vector (_j of the phonon has been set to zero everywhere except in the outside factor w =v,Q, because

we are interested only in the result which is lowest order in (3 In this limit the internal strain 5;, in (3.1) vanishes, and
the electron-phonon perturbation is just a rigid shift of the whole lattice:

K pn(0,))=—T(0,/)-VV(r), (3.12)

where V' (r) is the crystal potential of Eq. (2.1). Because VVis (i /R)[B, ), the matrix elements of #°, .,( 0,) become

(kon | o n(0,)) | Kyn ) =(—i /B)(K,n’ | B(D,) | Kom Mep —€x ). (3.13)

Also note that the operator V(0) is just p/m. Therefore, we can rewrite (3.11) as

Fer (»_ € m =
S E=—— 11— [meﬁ }m] virt), (3.14)
m 12 s (K,n |BlK,n"){K,n'|BlK,n) (3.152)
eff |Tn m e (n) €z, —€¢,)
626-»
- ai{;k’i % ’ (3.15b)

where V(T,t) is given in Eq. (3.3). The identification of (3.15b) with (3.15a) is the well-known “effective-mass
theorem.”'” When summed over occupied states as in (3.7), the resulting interband current is, using (3.6b),

Jo=—em|— V(Tt) . (3.16)

This is exactly sufficient to make up the missing part of 7. in Eq. (3.5) and yield zero net current:

Tfion+—j)ra+jfer=6 . (3.17)

This also provides confirming evidence that Eq. (3.5) for the intraband current is correct.
We now derive our sum rule by making a direct perturbative calculation of the 1ntraband current J ra induced by the
phonon perturbation (3.1) and comparing it with (3.5). We begin by denoting as j Q, Jj) the missing n'=n term from

(3.8), and similarly for T ™ T{n((—j’ j) from (3.9). Next these two terms are averaged to glve J k,,(Q, j) as in Eq. (3.10):

ju (@0 £ (K,n |9Q) | K+Q,n){(K+Q,n | #, (@, | K,n)

’i‘,n(Q,] - 2 2
k Q (e-—»n—f—}z+—6 ) "‘(ﬁ&))
etiw (E,nl%eph ,j)lk Q,n><k Qan}V(Q)lkn)
B 2 (3.18)
Q (Ei’n—ei’—fj —(#iw)
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The denominators in (3.18) vanish as Q—>6 so we must be careful not to take Q to zero too early. Now sum over occu-
pied states to get the total intraband current:

(K,n | ¥(Q |k+Q,n><k+Qn | on(Q) |kn>
Q.j)= 2 fer=Teig ) > (3.19)
k,n k+Q, (EE’n k+Q, (ﬁ(ﬂ)

Here the second term of (3.18) has been rewritten by a shift of the dummy index of summation from Ktok'= E—é,
and a relabeling k '—k. At this stage the Q— 0 limit is easily taken. The term —(#®)* in the denominator can be
dropped because w=v,Q is small compared with v;Q. The matrix element (k,n | V(Q) | k+Q,n) can be approximated

as v_> . We have

Fentros) -

- - e — - -
TaQp="3 | 70 | | (K4 Qo | 7ol Q) | Kon) (3.20)
X,n X+Q,n Xn Q.VT(’n

For simplicity, let us now look only at the longitudinal
part of the current J ,

-

Q'Jra((-j)j):e?w E ‘—‘a'g”f_ (E—i—(_j,n [ﬁ/e_phiﬁ,n) .
Kon Kn

(3.21)

This should be compared with the longitudinal part of
(3.5), using (3.3) for V(7?):

a'i’ra((—j’j)zewm - (iQaug)
m | etf,ap
ew af
=-—&—)I— ; [— aeT; mUT(»naU ?nBSaﬁ . (3.22)
sn n

Finally, we use the definition (1.2) of the electron-phonon
deformation potential in (3.21), and by comparing (3.21)
with (3.22) find, as given in Sec. I, the result

s pF =3 |-5L
Kon T “Xn

mv- V- _.
kna knp

kn
(1.6)

This is a new exact sum rule of surprising simplicity and
power.

First, consider the free-electron limit. The Fermi sur-
face is spherlcal and Daﬁ is independent of the angular
part of k Equation (1.6) then gives the familiar result®
D{; EFSaB For a cubic metal, the result is (DaéJ )

m(vz)SaB To our knowledge this is a new result.
Under the 48-point-group operations in K space, a
second-rank tensor DaB(E,n) has a trace which
transforms according to the identity representation I'j,
and traceless components transforming as 1;12 and T'ys.
Thus, it is clear that only the trace of Dyg(k,n) remains
after averaging over states on the Fermi surface.

It is not clear to us whether Eq. (1.6) has any meaning
in a semiconductor. At T =0 in a pure semiconductor
there are no intraband currents, and (1.6) simply says
0=0. Ina pure semiconductor at high T, (1.6) implies

f

that valence- and conduction-band deformation potentials
have opposite signs, because the velocities on the right will
be very small and the deformation potentials on the left
must cancel.

In Sec. I it has already been shown that (1.6) and (1.5")
together imply that the reference energy of D? in (1.5") is
the Fermi energy. Furthermore, we can speculate that
(1.5') may be a general result and not restricted to the
rigid-ion model from which it was derived. Equation (1.6)
tells us that if there are corrections, dug( E,n) to (1.5')
from non-rigid-ion effects, the correction must vanish
when averaged over the Fermi surface.
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APPENDIX: RELATION TO DERIVATION
BY JONES AND MARCH

Jones and March!® provide a “derivation” of an equa-
tion which differs from (2.31), namely,

DM k)= —tik /Mg

where ¥, is the sound velocity. This is the result stated
without proof by Sham and Ziman.! A careful inspection
of the proof of Ref. 15 shows that their band deformation
potential D ? i is not defined as in (1.4) with the scaled wave
vector (1—S)k, but instead with the unscaled wave vec-
tor. To convert back to a scaled wave vector is easy be-
cause quite generally

ba(k)+m (v, (A1)

Dlg(k)=Dbg(k) ik qop . (A2)
Thus (A1) becomes
DeF"(k)=Dbg(k)+muvqvrp - (A3)

We wish to emphasize that we believe (A1) and (A3) to be
wrong, and (1.5) to be right. The purpose of this appen-
dix is to show where the “derivation” of Ref. 15 goes as-
tray.
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The method of proof parallels that of Sec. II of this pa-
per, except that no rigid-ion model is made. Instead it is
assumed quite generally that there exists a one-electron
potential ¥ (F,{R}) where {R} stands for the coordinates

|
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of all the atoms, not necessarily at their equilibrium posi-
tions. They derive a formula for the shift of a one-
electron energy due to a strain S,

E'(E"n)~E(1?n)=Sa,,<1?n TPaPE | 5 (1, r ) Y (TARYD) kn>, (Ad)
m ] alB
. |

where 1 is the equilibrium coordinate of the /th atom. g =Sag(T)lB- (A5)

This derivation seems correct. Further, if we use the
rigid-ion model (2.1) for V (T, {ﬁ} ), then after an integra-
tion by parts it is quite straightforward to show that (A4)
simply reproduces the first three terms of Eq. (2.16). The
fourth term, given in (2.17d), is missing from Ref. 15 be-
cause they have not considered the more complicated dis-
tortions which occur with more than one atom per cell.

Next, Jones and March calculate an electron-phonon
matrix element. However, instead of considering an oscil-
latory distortion as in Eq. (2.18), they write the displace-
ment of the /th atom as

This equation is only valid for atoms at sites 1 which are
much closer to the origin than the wavelength of the
sound wave. At larger distances Eq. (AS5) does not
correctly describe the oscillatory displacements. There-
fore, it is not possible for their derivation to give a correct
(3 dependence to the electron-phonon matrix element.
Since the deformation potential D" is the coefficient of
the linear term in 6 in the electron-phonon matrix ele-
ment, there is no rigor whatsoever to their derivation.
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