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This paper gives two new theorems about the band deformation potential D p(k, n) which
cxpI'csscs thc shift of electron cncrg1cs under external strains~ BE~ /BS~p~ Rnd thc electron-phonon

deformation potential D'g (k, n) which gives the matrix element for an electmn to scatter from

state (k, n) to a Iiearby state (k+ Q, n) by absorption of an acoustic phonon of branch j and ampli-

tude u{gj), namely ( k+g, n
~
4, ~h ~

k, n } =iu {Qj)QSD'g ( k, n). First, it is shown for a rigid

ion model that O'I" (k, n) equals D tt{k, n)+mu „u„,where v is the electron group velocity.

Second, it is shown that the Fermi surface average of D'g"(k, n) equals the Fermi surface average
of P7lU „U„.FroID thc second thcoI'cID, 1t 1s dcduccd t4Rt tlM first t4corcID 1S probably gcncI'ally

valid in a metal [i.e., not restricted to a rigid-ion model) provided the band deformation potential

D p(k, n) is defined relative to an energy which moves with the Fermi energy undeI' strains. The
first tlMOI'cID contrad1cts thc coIDIDGQ bc11cf tllat .tlM two dcforlTlation potcnt1als Rrc always thc
SRIDc, but pfcscrvcs thc usual form of thc deformation-potential thcorcHl Rt, band cdgcs wlMrc U~

k ptg

VRQ1S4CS.

I. INTRODUCTION

Bardeen and Shockley' introduced the useful notion,
known as the "deformation-potential theorem, " that the
electron —acoust1c-phonon matrii element is directly relat-
ed to the shift in energy of the relevant electron energy
level with an externally imposed strain of the same sym-
n1ct~ Rs the Rcoust1c phonon. Th1s pRpcr dcr1vcs a
rigorous form of that theorem valid for any Bloch state

( k, n) and any acoustic phonon (Q,j) or strain tensor com-
ponent S~p. The theorem is not quite as simple in general
Rs thc or1glnal Bal dccn-Shocklcf 1dcav but 1s st111 vcl f
simple, and reduces to the Bardeen-Shockley version at
semiconductor band edges. The original theorem of Ref.
1 was only stated for the case of a nondegenerate band ex-

tremum at k =0, and the proof was only for longitudinal
phonons.

It is hard to locate a proof of the deformation-potential
theorem in the literature. The proof of Ref. 1 is repeated
in Shockley's book. Herring and Vogt' assert that for
nonpiezoelectric crystals the theorem should be valid for
longitudinal and transverse phonons, but offer no proof,
and use the theorem for many-valley semiconductors with
balld cdgcs away from k =0. B1011Ilt states wltlloll't Rlly

proof that a Hartree-Pock analysis verifies the Bardeen-

Shockley theorem for general (k,n) and branch j. Hunter
Rnd Nabarro and ZiIIlan show that 1n R 01cta1, scI'ccn1ng
will cause a significant alteration of the deformation-
potential theorem. Whitfield gives a full justification of
thc thcorcn1 using thc n1ethod of orthogonalizcd de-
formed Bloch waves, " but Sham and Ziman' claim that
this proof is not completely right; they argue that, away

from band cxtlcma, corrcctloll tcrllls occur.
Our conclusions agree with Ref. 8 about thc existence

of correction terms away from band extrcma. We find a
simple explicit forln for the correctio~ which differs from
the one stated (without proof) in Ref. 8 Wc find no fault
with Refs. 1—3, which are explicitly confined to the
neighborhood of band extrema, but dlsag«c with Rcfs 4
Rnd. 7. Qur work provides Rn alternate Rnd nDOI'c coIQpIctc
IIlct11od for IIlctals tllall 'tllc oIlc glvcll 111 Rcfs. 5 Rlld 6.

There seems to be no reliable general proof of the
deformation-potential theorem. The orily attempt known
to us is that of Whitfield. One reason for the neglect of
this subject is because the theorem can be made to seem

trivially obvious. Assume there is a homogeneous strain

S„,in a crystal. The strain will cause a shift 5V(r) in the
effective one-electron potential, and to first order in strain
we should be able to write this as P =5 V( r )

=5V""(r)S&„. This strain will cause an electron energy

Ek toshiftbyan amount

5e„=(k,n i
A

i k, n }=D„„(k,n)S„, ,

D„„(k,n)=(k, n
~

5V" (r)
~
k, n },

where D(k, n) is the deformation potential for the state

(k, n). Next consider a long-wavelength acoustic wave in
R solid, with space Rlld time-dependent dlsplaccmcnts

I 'g I —GPgf
given by ue o . This wave causes a strain

S„„(r)=iu„g„e' '' which varies slowly in space. One
expects that the dectrons should feel a perturbation
~, pl, 5V""(r)S„——„(r), where 5V"'(r) is the same as
%'hcn t4c stI'aln %'Rs homogeneous. Thc electron-phoIlon
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IDatrix clcIIlcnt 1s

(k+Q, n ~A, „~ kn }—=D„',u"(k, n)(iu„g, ) . (1.2)

This simple argument suggests that the same deformation
potential should occur in the electron-phonon problem as
in tllc stat1c-stfRin ProMem, Bp~ =a~~.

Unfortunately nature is not this simple, and the argu-
ment above fails, except in the special case of states near a
band edge. (In Sec. II it is shown that a corresponding ar-
gument for optic phonons is successful. ) One major diffi-
culty is that there is no unique definition of the band de-
formation potential for the case of uniform strain. There
are two ambiguities. One is that the reciprocal-space unit
cell changes its dimensions under the influence of strain.
The lattice vectors R; and reciprocal lattice vectors 6
chaQgc to

suID fUlc 1S pfovcd,

X - „D'-I"(k')= X—
k, n

f js the Fermi-DII'ac occupation fllllctloll
p(e~ —p)

(e "" +1) '. This sum rule is a consequence «
translational invariance, specifically, the requirement that
when the nuclei of a crystal are translated rigidly in space,
the electrons follow adiabatically giving zero net electrical
current. Finally, by comparing Eqs. (1.5) and (1.6) we are
able to identify what the physical zero of energy was in

Eq. (1.5). First note that (1.5) and (1.6) require that

Q D p(k, n)—
R;~R,' =(I+S)R, , (1.3a)

G~G'=(I+X) 'G=(3.—S)G .

The band deformation potential used in this paper will be
defined as

e(k ', n;S p) —c(k,n;0)
D p(k, n)= lim

~aP S~p

From tllls It follows tllat the reference zero jmphcjt jn Db
Rs used In (1.5) Is the Fermi energy (or some energy that
moves with the Fermi e~e~gy under strains). This can be
scen by obscrvlng that thc totR1 number of clcctloIls Is Ilot
changed by the stlaln

g f-„=g (~-„—p) . (1.&)
af d

kn I)C dS p
kn

k„n k, n

de((1 —S)k,n;S)
dS~p

(1.4)
To be completdy unambiguous, we now rewrite the defini-
tion (1 4) of Ds.

O'I" (k, n) =D,p(k, n)+mu- u- (1.5)

is proved, where v - is the group velocity of the electron
kn

state (k,n). At this stage the reference zero of energy for
Db has not been clearly specified. The constant back-

gmund potential which remains behind when atoms are
slightly moved has been taken to be zero. In Sec. III, a

that 1s, thc wave vcctof 1s taken to scale with thc stI'ain,

rather than remain fixed. This has the virtue that a zone-

boundary cncI'gy before thc strain 1s bciQg compared with

a zone-boundary energy after the strain. However, alter-
nate definitions have been used often without explicit
mention (see Ref. 8). The qualitative notions of Eq. (1.1)

do not scale the wave vector as in Eq. (1.4).
The second more serious ambiguity in both Eqs. (1.1)

and (1 4) is the question of the zero relative to which ener-

gy j~ measured. It is hard to identify the vacuum zero of
e~~rgy in an infinite crystal. If the muffin-tin zero is

used, this zero changes when the crystal is strained. Thus,
the definitions (1.1) or (1.4) are reference dependent.
Differences of deformation potentials Ds(2) Db(1) are-
well defined, and experimentally measurable, but absolute

values D (1) are not measurable, and so far not even de-

fined. We shall largely avoid this difficulty by a trick to
be described below. By contrast to Db, the electron-

phonon deformation potential O' I'" defined in Eq. (1.2)

I1as no ambiguity.
We now state our principle results. In Sec. II the

deformation-potential theorem is examined in a rjgj¹ion
Glodcl~ Rnd the I'csUlt

D~p(k, n) = . (1.9)
d [c((1—S)k,n;S) —p(S) j

dS~p 5=0

Thc set of equations (1.2), (1.5), (1.6), and (1.9) together
p«vide»ew rigorous basis for the deformation-potential
theory. In a separate paper we intend to show how these
equations are necessary to give a simple unified version of
Pippard's theory of ultrasonic attenuation in metals.

II. THE RIGIl3-ION DEPORMATION-POTENTIAL
THEOREM

Let us assume that the crystal potential V(r) felt by an

electron is given by a sum of atomlike potentials V„

V(r)= g V, (r —RIn),

where R;~ =R;+v~ locates thc ath atom at Iocat1on

relative to the origin R; of the ith unit cell. We further
assume 'that (2.1) rcIIIRIIls valid, wltll Vn unchanged, whllc

the atoms undergo small displacements u;, from their

cquilibriuGl pos1tions R;~. Within th1s model wc can cool-
pute both energy shifts caused by strains (Sec. II A) and
electron-phonon matrix elements (Sec. II 8). Then by ex-

plicit comparison a deformation-potential theorem (1.5) is

constfuctcd. It should bc noted that this rig1d-1GQ model
is certainly not exact. However, to first order in the dis-

placemcnts U;~ 1t seems often to be Rn excellent RppI'oxi-

mation, Nevertheless, the reader is cautioned that
theorem (1.5) has not been proved exactly, but only within
the rigid-ion model.
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A. Static energy shift

The energy eigenvalues e of perfect and strained
kn

crystals are given by

detI[(k+G~) —e-„]5(G&,G2)+ V(G~ —G2)I =0, (2.2)

of the state labeled by quantum numbers 1, taking into
account that under strain, k shifts to k '=(I —S)k.
formula is

(k, n IG&)~H(Gi G2)(G2~ k,n), (2.11)

det{[(k'+G() —e'„, ]5(G'),G2)+ V'(G') —G2)J =0 .

(2.3)

bH(G1, G2)= [(k '+GI) —(k+G)) ]5(G),G2)

+[V'(G )
—G2) —V(G$ —G2)] . (2.12)

The plane-wave representation is used only for conveni-
ence. It is not assumed that there is a weak pseudopoten-
tial or that Eqs. (2.2) and (2.3) are necessarily viable for an
actual calculation. Primes are used to denote quantities in
the strained crystal and are given as in Eq. (1.3a) for lat-

tice vectors R; and Eq. (1.3b) for reciprocal lattice vectors

6;. The unit-cell volume is

(2.4)

The potential (2.1) of the unstrained crystal has a Fourier
transform given by

5e-„=( k, n
~
(A &+A 2+.A 3+4 4)

~
k, n ), (2.13)

~~ ———p S p/m,

A 2
———tr(S)V(r),

i, a

(2.14a)

(2.14b)

(2.14c)

The kinetic energy term of (2.12) can be written as
—2(k+G) S (k+G). Taking Eq. (2.10) into account,
the answer (2.11) can be written in operator form as

V(G)—: f dr e ' '' g V, (r —~, ) (2.5) A 4
—— i g—QG 5, V, (G)e

l, a
(2.14d)

= g Vg(G)e (2.6)

To work out the corresponding quantity for the strained
crystal, we need an explicit formula for the location of the
atoms:

R;,~R, =(I+S)R,,+5,
=R,'. +(l+S)~,+5, .

(2.7)

(2.8)

V'(G') =(1—trS) g V, [(l—S)G]e ' ', (2.9)

Here 6, is the "internal shift" of atom coordinates within
a cell which in general must accompany a strain, except in
Bravais lattices or simple crystal structures such as rock
salt where there are no optic modes at Q=O which
transform in the same way as 5 under point group opera-
tions. The internal shift 5, has the same order of magni-

tude as Sr, and can be regarded as a Q=O optic-mode
displacement which mixes with the external strain. The
Fourier transform for the strained crystal which corre-
sponds to Eq. (2.5) is

(2.15)

The final formula for the band deformation potential Db,
defined in Eq. (1.4), follows from Eqs. (2.13)—(2.15):

D (k n
~

(D )+D2+D3+D4)
~

k n) (2.16)

(D~) p
———p~p/m,

(D, ) p
——V(r)5 p,

(D3) p ———g g G VGpV, (G)e
6 i,a

(2.17a)

(2.17b)

(2.17c)

The quantities 1=% =2m have been restored in Eq.
(2.14a). In order to extract the deformation potential
from these equations, it is necessary to find explicitly the
internal strain coordinates 5, which accompany the ap-
plied external strain. Procedures for doing this are in the
books by Born and Huang, ' Venkataraman et al. ,

' and
by Lax. ' It suffices to know that for each crystal there is
a unique linear relation, which we can write symbolically
as

V'(G') = V(G) —tr(S) V(G) (Dg) p= —i+ QGrl-r pV, (G)e
l, a

(2.17d)

—gG S V'GV, (G)e

i g G 5, V,(G)e— (2.10)

where Eq. (2.10) is the linearized version of (2.9).
Now we can compute the energy shift 5e- to lowest

kn

order in strain by starting with the eigenvector
~

k, n ) to
(2.2) and treating (2.3) in first-order perturbation theory.
Note that 5t..- is defined as e'-, —e-, i.e., it is the shift

kn k 'n kn'

In a piezoelectric crystal the G= 0 term of (2.17d) will not
cancel in the sum over a, because the internal shifts gen-

erate a macroscopic E field. In this case the deformation
potential cannot be strictly defined, and the deformation-
potential theorem does not exist. Thus, we restrict atten-
tion to cases like metals or homopolar semiconductors
where atoms are neutral and V, (G =0) is a constant, or
else to nonpiezoelectrics where 5, =0 by symmetry.

Jones and March' give an expression for D which
reduces in the rigid-ion model to a form equivalent to Eqs.
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B. Electron-phonon ma, trix element

When a phonon of mode (Q,j) is present in the crystal,
the atoms have displacements given by

u' = [u{Qj)+5.(Q,j)le (2.18)

(2.16) and (2.17), except that (2.17d) is missing because
they have only one atom per cell. The relation between
our work and theirs is explored in the Appendix.

S p(x)=igpu (Q,j)e'~'" . {2.20)

In the Q~O limit, u vanishes for optic modes and 5,
vanishes for acoustic branches. However, for acoustic
branches with small but finite Q, 5, is proportional to S
and is given by the static formula (2.15), with nonadiabat-
ic corrections being negligibly small (and higher order in

Q).
The perturbation felt by an electron at r because of the

phonon (Q,j) is fixed by the rigid-ion model (2.1) to be

where u is the "acoustic" component and 5, the "optic"
component. These can be defined by requiring that the
optic component have no center-of-mass displacement:

~.-ph(Q j)= y [ Va{r R(a —uta(—Qj))

—V, (r —R;, }]. (2.21)
QM, 5,(Qj)=0. (2.19}

The macroscopic strain S is the gradient of the local dis-

placement u;„namely,

We wish to find the matrix element [Eq. (1.2)j of this per-
turbation between the electron state

~
k, n ) and the nearby

state (k+Q, n ~:

&"+Q» l~ .Q—ee, ()ljk»&= —((k+Q» e' "g g[u(Qj)+5. (Qj)] (Q+G)V(Q+G)e' ' " k n)
E,a

In the limit Q—+0, the result for an acoustic branch j vanishes linearly with Q. To prove this, note that since 5, is
linear in S p ig pua, ——the only part of (2.22) which is zeroth order in Q is

-l k, n uO, J GV. Ge"' "'k,n =-uO, J k, n V, v... r k, n
6 a

This vanis11cs bccausc Vv VI()I ls (I /A)[pe oTj wllic11 has vanishing I11Rgollal matrix elements. This ls)ust RII Rwkward wRy

of stating the familiar truth that a Q= 0 acoustic phonon is a rigid translation of the lattice, which cannot perturb the
electrons.

Our task is to examine the parts of (2.22) which are linear in Q. There are four, which we label M] through M4..

(k+Q, ~nm, p„(Q,j) ~
k, n) =M]+M, +M3+M4, (2.23)

M] = —I «Q l)'5t(k+Q n
I

e' '
I g 2 GV.«)e

6 i,a

M, = —(u(Q j) Q(k, n g QV, (G)e " k, n),
6 i,a

Me= —(u(Q j) (k, n g QG[Q () V, (G)]e " k, n),
I,a

(2.24a)

(2.24b)

(2.24c)

M4 ———i kn 5a,j GVa Ge " kn
i, a

where in (2.24a), 5I .
I means the term furs«rd« in Q

in the Taylor expansion of I
' ' ' I. Wc can lmmcdlatcly

see a correspondence between M2, M3,M4 and the corre-
sponding parts A z,P 3,A 4 of Eqs. (2.13) and (2.14). This
correspondence can be written

M2+M3+M4 S p(k n ~(D2+D3+D4} p~ k n)

(2.25)

where S p is igpu (Q,j) following {2.20) and D; is de-
fined in Eq. (2.17). It remains to find whether M] corre-
sponds to S p(k, n ~(DI) p~ k, n}. The impossibihty of
such a correspondence can be seen immediately by consid-
ering the weak pseudopotential limit of Eqs. (2.17a) and
(2.24a), i.e., the case when the wave function

~
k,n)

is approximately a plane wave
~
k+ G„}. Then

(k, n
~
(D]) p~ k, n } is approximately —{k+6„)(k
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+G„)p/m while Mi is approximately zero because & k

+Q, n
~

e' ~' is the same plane wave as & k, n ~, i.e., the
correction linear in Q is small.

The expression (2.24a) for Mi can be written as

M, = —u(Q, )) &5y„~ V V(r)
~
k, n &,

i 5$„&=e 'q''
i k+Qn &

—
i
k, n & .

(2.26)

Using k.p perturbation theory, the formula for
~
5P- &kn

to first order in Q is

~5y„&= g ~
k, n &&k,n

~ p ~
k,, &

n' (~n)

the conventional formula is correct. However, on the Fer-
mi surface of a metal, the correction term m v v is often
very large, and the conventional formula is totally invalid.

C. Optic phonons

The algebra in parts A and B of this section permits a
treatment of optic phonons by the simple expedient of
abandoning relation (2.15), allowing the internal shifts 5,
to remain finite as Q~O, and requiring the strain S to
vanish. This greatly simplifies the expressions for both
energy shifts and electron-phonon matrix elements. Equa-
tion (2.13) can be written as

{IrIQ/m)(e —e. ) (2.28) 5e „=g 5, D, (k, n),

Using (2.28) in (2.26), and using the fact that V' V(r) is

equal to (i/III')[p, A ], Mi can be written as
D.(r,n)= —i(r, n g QGV. (G)e " k, nl6 i

Mi ——S II(& k, n
~

(Di ) p i
k, n &+ III-„u-„u) . (2.30)

The correction term in (2.30) involves the group velocity
= & k, n

~
(p /m)

~
k, n & and has just the right form

to cancel the first term D, of Mi in the nearly-free-
electron limit, as is required by the argument given above.

Combining (2.25) and (2.30), we now have a complete
expression for the electron-phonon matrix element. This
matrix element is written in terms of an electron-phonon
deformation potential D I in Eq. (1.2). Comparing with
Eq. (2.16) for the band-structure deformation potential,
we find the fundamental form of the deformation-
potential theorem:

O' I'"(k,n) =D~(k, n)+m v-„v-„

M, = igII—u (Qj)

X g &k, iI ipZik, n'&&k, n'ip
i
k, n&/m .

n' (~n)

(2.29)

If we now add and subtract the n'=n term in the sum
over intermediate states in (2.29), and use the complete-
ness relation, the result is

=
& k, n

i
V -, V„,(r) i k, n & . (2.32)

For the case of an optic phonon of branch j, frequency coj,
at Q=O, the displacement u;, in Eq. (2.18) is just 5,(j)
where

5, (j)=(III'/2M, ¹oj)'~ e J' (2.33)

Tllc SRBlc optic dcformatlon potcIltlals gD( k, )IIappcR1
in {2.31) for the energy shift and (2.34) for the electron-
phonon matrix element. Thus, all optic-phonon matrix
elements can be constructed from calculations of electron
energy shifts caused by sublattice displacements. The
naive reasoning of Sec. I is correct for optic phonons; ex-
tra complexity occurs only for the acoustic case.

III. TRANSLATIONAL-INVARIANCE SUM RULE

and e z is a normalized eigenvector, obeying

g, e J e J =5JJ . Equation (2.23) can be written as

&k, II ~~, ~h(j)
~
k, II &=(&/2M, N~, )'~ e,' D, (k, n) .

This is the main result of this section.
This result violates the conventional view that the two

deformation potentials are the same. However, the con-
ventional view was already rejected in the authoritative re-
view by Sham and Z1IIlan. They quoted a result some-
what different from (1.5'). The origin of this difference is
hard to trace because they give no hint of how it was de-
rived. A "proof" of the Sham-Ziman formula is given by
Jones and March. " However, there seems to be an error
in this proof, as is explained in the Appendix. As Sham
and Ziman have pointed out, a common use of the
"deformation-potential theorem" has been at band extre-
ma in semiconductors. At these points, vkn vanishes, and

In this section a proof is given of Eq. (1.6) for the
electron-phonon deformation potential. After establishing
the theorem, it is used in conjunction with Eq. (1.5 ) to
clarify the zero of energy relative to which Db is defined.
The basic idea is that in the presence of an acoustic wave,
the electron-phonon interaction establishes an electronic
current, which cancels the current of the moving ions, ex-
cept for corrections which vanish at least as fast as Q
when Q goes to zero. In other words, if all positive ions
are moved slowly and uniformly, no dc electric current re-
sults. The potential felt by the electrons is given by (2.18)
and (2.21), except that we want to recognize explicitly the
(slow) tlInc dependence of tllc 10111cBlotloll
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A, h(Q, j;t)= —g 7' V, (r —R;, ) [u(Q,j)+5,(Q,j)] J„=—e g v- f(k —mv/A', n)/0

i( Q R, —cot)
Xe (3.1)

k, n

J;,„(r,t) =ne v(r ,t),. (3.2)

The ions and the tightly bound core electrons have a net
charge Ze, which gives a macroscopic electrical current

= —em — v(rt),
eff

v~ v~
eff

m kn kn
a

a~„n

(3.5)

(3.6a)

where n =Z/0, is the number of valence electrons per
atomic volume, and the ion velocity v is

v( r, t) = —icuu(Q, j)e' q " (3.3)

In the small-Q limit, there is an exactly compensating
electronic current:

J,)
—— (e/NQ—, ) g vf(k, n),

k, n

(3.4)

where f(k, n) is the equilibrium Fermi-Dirac function.
We now make a microscopic investigation of the sources
of this electronic current.

There is a surprisingly simple prescription for calculat-
ing the intraband part of the current. Provided that co is

small, the electronic relaxation time ~ is always short
enough that co~&&1. A more stringent requirement is
that the lattice wave should have a wavelength 2~/Q
much longer than the electron mean free path I, or
Ql «2m. , or cur(uF /u, ) «2m, where uF and u, are the Fer-
mi and sound velocities. We shall assume that Q and co

are small enough that this is satisfied. Then the electrons
reach a local equilibrium in which they move with the
ions at the velocity v of the ions. In the stationary frame
this corresponds to a shifted Fermi-Dirac distribution

f(k —mv/A, n). This result does not seem very obvious
to us for Bloch electrons, but it is a basic element of
Pippard's theory, manifestly true for free electrons, and
has been given a rigorous basis for Bloch electrons by Hol-
stein. ' The displaced equilibrium distribution carries a
net current

Q 2g
7n f(k, n)

(3.6b)
akak

where (3.6b) follows from (3.6a) after integrating by parts.
This fails by a factor (1—m/meff) to agree with (3.4) and
cancel the ion current (3.2). The difference is made up by
an interband current J„as demonstrated by Holstein. '

Holstein's proof will now be summarized, because we will

later recalculate the intraband current J„copying
Holstein's method.

To find J„,we calculate the current j'-' (Q,j) induced
kn

by interband transitions in the state
I
k, n ) by the phonon

perturbation A, ph [Eq. (3.1)], and sum over occupied
states:

J„=g j'-" (Q,j)f(k,n)e'O''
k, n

(3.7)

The state
I
k, n ) acquires a small admixture I5$- ) of

kn

states
I
k+Q, 'n) in other bands n'&n because of the

phonon perturbation. When the velocity of the new state

I
k, n ) +

I
5$- ) is calculated, the cross terms contribute

kn
a current due to the interband matrix elements of the velo-

city operator v(Q)=(pe '~''+e 'O''p)/2m. The in-
terband contribution is polarized in the direction of the
ion motion, and gives a macroscopic contribution when
summed as in (3.7) over occupied states. From time-
dependent perturbation theory we get

(k n
I
v(g)

I
k+Q n')(k+Q n'I ~.-ph(g j)

I

k n)
n' (&n) , +Aco

kn k+ Q, n'

(k, n
I
A, ph(g, j) I

k —Q, n')( k —Q, n'
I
v(Q)

I
k, n )

n' (+n) ,
—%co

kn k —Q, n'

This term when summed in (3.7) will be almost canceled by the current induced in the state
I

—k, n ):

(k, n
I
v(Q)

I

k Q+, ')n(k+Q, n'IA, ph(g, j) I
k, n)

i "- (Q j)=-—kn —e~ ~,—15con' (~n) kn k+ Q, n'

(k, n
I
A, pk(g, j) I

k —Q, n') (k —Q, n'
I
v(Q)

I
k, n )

n (~n)' E~ —E'~ ~,+fKO
kn k —Q, n'

(3.9)

In writing (3.9) we have simply reversed the sign of k in (3.8) and then used the time-reversal symmetry g —kn kn'—+„e - =e, e -,=e - „and ( —k, n
I

v —k, n) = —(k, n
I

v
I
k, n). The second—k —Qn' k+ Qn" —kn kn' —k —Qn' k+ Qn'

term of (3.8) generates the first term of (3.9) and vice versa. Except for the fact that the sign of co is reversed, (3.9)
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would completdy cancel (3.8). We next add (3.8) and (3.9}:

(3.10)

f (k, n
l
M, .ph(Q, j) l

k, n')(k, n'l v(0)
l
k, n)

e' (+n)

—(k, n
l
v(0)

l
k, n') (k,n'

l
4, ph(Q, J) l k, n ) j/(e-„e—-„,}

In (3.11), the wave vector Q of the phonon has been set to zero everywhere except in the outside factor co=u, g, because
we are interested only in the result which is lowest order in Q. In this limit the internal strain 5, in (3.1) vanishes, and
the electron-phonon perturbation is just a rigid shift of the whole lattice:

~, ph{0,j)= —u(0,j) V V{r),

where V(r) is the crystal pote~teal of Eq. (2.1). Because 7 Vis {i/A') [p, P'j, the matrix eleinents of ~, ,h(0,j) beconM

(3.13)

Also note that the operator v(0) is just p/m. Therefore, we can rewrite (3.11) as

J" (r, t)= ——
kn '

Q
v(r, t), (3.14)

(k, n
l p l

k, n')(k, n'
l p l k,n)

m ~

( )
(e- —e-, )

kn kn'

(3.15a)

where v(r, t) is given in Eq. (3.3). The identification of (3.15b) with (3.15a) is the well-known effective-mass
theorem. "' When summed over occupied states as in (3.7), the resulting interband current is, using (3.6b),

This is exactly sufficient to make up the missing part of J„in Eq. (3.5) and yield zero net current:

J10.+ Jra+ Je.=o .

Tllls also prov1des coilflfinlllg ev1dence that Eq. (3.5) for the lntraband current is coi rect.
We now derive our sum rule by making a direct perturbative calculation of the intraband current J„induced by the

phonon perturbation (3.1) and comparing it with (3.5). We begin by denoting as j '-' (Q,j) the missing n'=n term from
kn

(3.8), and similarly for j ' „(Q,j) from (3.9). Next these two terms are averaged to give J i,„(g,j) as in Eq. {3.10):

efico (k, n
l v(Q)

l k+Q, n)(k+Q, n lP, &i(Qj) l k,n)
J'-„' (Q,j)=kn ' Q {e-„—e-„- ) —(fico)

ceo &k n
I
~.-ph{Q j}I

k —Q n && k —Q n
I v{Q}I

k n &

Q (e-„—e-, - )'—(fico)'
(3.18)
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The denominators in (3.18) vanish as Q~O so we must be careful not to take Q to zero too early. Now sum over occu-
pied states to get the total intraband current:

«n
l
v(Q)

l
k+Q n) &k+Q n

l
~,-ph(Q J) k n &

J-(Q j)=— (fk„j--„ (r- —e- - ) —(irico)
k, n kn k+ Q, n

(3.19)

Here the second term of (3.18) has been rewritten by a shift of the dummy index of summation from k to k '=k —Q,
and a relabeling k'~k. At this stage the Q —+0 limit is easily taken. The term —(fm) in the denominator can be

dropped because co=u, Q is small compared with uFQ. The matrix element & k, n
~

v(Q) k+ Q, n ) can be approximated
as v- . We have

kn

J„(Q,j)=
k, n

kn k+ Q, n

k+ Q, n kn Q'v~
kn

& k+Q, n M, uh(Q, j)
~

k, n ) . (3.20)

For simplicity, let us now look only at the, ongitudinal

part of the current J„
Q J-(Q j)= „X

k, n

&k+Q, n ~A, ~h kn,) .
Bc

kn

(3.21)

(iQ up)Q J„(Q,j)=ecom
eff, aP

k, n

af mu- u- S~p . (3.22)
kna knP

kn

Finally, we use the definition (1.2) of the electron-phonon
deformation potential in (3.21), and by comparing (3.21)
with (3.22) find, as given in Sec. I, the result

This should be compared with the longitudinal part of
(3.5), using (3.3) for v(rt):

that valence- and conduction-band deformation potentials
have opposite signs, because the velocities on the right will

be very small and the deformation potentials on the left
must cancel.

In Sec. I it has already been shown that (1.6) and (1.5')

together imply that the reference energy of D" in (1.5') is
the Fermi energy. Furthermore, we can speculate that
(1.5 ) may be a general result and not restricted to the
rigid-ion model from which it was derived. Equation (1.6)

tells us that if there are corrections, 5 p(k, n) to (1.5')

from non-rigid-ion effects, the correction must vanish
when averaged over the Fermi surface.
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k, n

O'I~(kn),
k, n

PlU~ U~
kna knp

kn

(1.6)

APPENDIX: RELATION TO DERIVATION
BY JONES AND MARCH

Jones and March' provide a "derivation" of an equa-
tion which differs from (2.31), namely,

This is a new exact sum rule of surprising simplicity and

power.
First, consider the free-electron limit. The Fermi sur-

face is spherical and D~I is independent of the angular

part of k. Equation (1.6) then gives the familiar result
O'I" =—', @F5 p. For a cubic metal, the result is &O'I~ )
=—', m&u )5~p. To our knowledge this is a new result.

Under the 48-point-group operations in k space, a

second-rank tensor D p( k, n) has a trace which

transforms according to the identity representation I &,

and traceless components transforming as I &2 and I"25.

Thus, it is clear that only the trace of D p(k, n} remains

after averaging over states on the Fermi surface.
It is not clear to us whether Eq. (1.6) has any meaning

in a semiconductor. At T=0 in a pure semiconductor
there are no intraband currents, and (1.6) simply says

0=0. In a pure semiconductor at high T, (1.6) implies

D'I (k) =D ~p(k)+m (u, —Ak Im)ukp, (A 1)

where v, is the sound velocity. This is the result stated
without proof by Sham and Ziman. A careful inspection
of the proof of Ref. 15 shows that their band deformation
potential D" is not defined as in (1.4) with the scaled wave
vector (I —S)k, but instead with the unscaled wave vec-
tor. To convert back to a scaled wave vector is easy be-
cause quite generally

D~p(k) =D p(k) —erik ukp .

Thus (Al} becomes

D'I" (k) =D p(k)+mu, ukp .

(A2)

(A3)

We wish to emphasize that we believe (Al) and (A3) to be
wrong, and (1.5') to be right. The purpose of this appen-
dix is to show where the "derivation" of Ref. 15 goes as-
tray.
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The method of proof parallels that of Sec. II of this pa-
per, except that no rigid-ion model is made. Instead it is
assumed quite generally that there exists a one-electron

potential V( r, I RI ) where I R I stands for the coordinates

I

of all the atoms, not necessarily at their equilibrium posi-
tions. They derive a formula for the shift of a one-
electron energy due to a strain S,

where 1 is the equilibrium coordinate of the Ith atom.
This derivation seems correct, Further, if we use the
rigid-ion model (2.1) for V(r, IRI ), then after an integra-
tion by parts it is quite straightforward to show that (A4)
simply reproduces the first three terms of Eq. (2.16). The
fourth term, given in (2.17d), is missing from Ref. 15 be-
cause they have not considered the more complicated dis-
tortions which occur with more than one atom per cell.

Next, Jones and March calculate an electron-phonon
matrix element. However, instead of considering an oscil-
latory distortion as ln Eq. (2.18), they write the displace-
ment of the Ith atom as

u -, =S p( 1 )Itt .

This equation is only valid for atoms at sites 1 which are
much closer to the origin than the wavelength of the
sound wave. At larger distances Eq. (A5) does not
correctly describe the oscillatory displacements. There-
fore, it is not possible for their derivation to give a correct

Q dependence to the electron-phonon matrix element.
Since the deformation potential D'I is the coefficient of
the linear term in Q in the electron-phonon matrix ele-
ment, there is no rigor whatsoever to their derivation.
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