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In this paper electronic collective excitations of type-7 and -II superlattices are examined in detail.

Type-I superlattices consist of quasi-two-dimensional layers of electrons, while type-II superlattices

consist of alternating quasi-two-dimensional layers of electrons and holes. %c use a simple model

of the electronic structure and linear-response theory to calculate the density response of the system

to an external perturbation. Prom this, we obtain an expression for the dielectric tensor, the zeros

of which yield the dispersion relations of the collective modes. The theory is such that one can take
into account many-body effects (depolarization and excitonic shifts), magnetic fields, and electron-

phonon coupling iIl R slHlplc way. A rich spectrum of cxcltatlons is found: quasi-two-dimensional

PlaSIQons~ lntersubband P1RSmoIlS, ITlagnetOPlasmonss Phonon-Plas]ElOn modes, RIld SO On. SOIHC jIl"

tcrcstlng fcaturcs of thc cxcltatlons Rrc cxaImncd, RIld thclr rclcvancc to experiment 1s discussed.

I. INTRODUCTION

Superlattices are a novel class of material composed of
alternating layers of two (or more) different constituents.
The development of molecular-beam epitaxy (MBE) has
made it possible to pr'oduce high-quality superlattices
made from two different semiconducting materials (e.g. ,
InAs/GaSb, GaAs/A1As, Ge/GaAs, etc.) with similar lat-
tice structure and matching lattice parameters. In the
direction of superlattice growth (called the superlattice
axis, and taken to be the z direction), a number of atomic
monolayers of semiconductor 2 are deposited in an atomi-
cally. sharp way on atomic monolayers of semiconductor 8
to form new superlattice unit cells. A macroscopic sam-

ple of such an A/8 superlattice is a new bulk material
with properties intern1ediate between those of materials 2
and 8.

There are two types of superlattices whose properties
11avc been stud1cd 1n soIHc dctR11. Thcsc R1c kIlown Rs

type-I and -II superlatt1ces. Type-I superlatt1ces are typ1-
fied by the GaAs/AI„Ga& „As system, in which the band

gap of GaAs is smaller than, and contained within, that of
Al„GR» „As, giving rise to band-gap discontinuities in
both the valence and conduction bands of the resultant su-

perlattice system. If we dope the Al„Gal „As layers with
donor impurities (which is done by "modulation-doping"
methods), electrons will be released from the donors to
drop into GaAs sides of the band-gap discontinuities. The
resulting one-dimensional potential well quantizes the
motion of the electrons in the z direction, and so the con-
duction band of GaAs will be split into a series of sub-
bands (if the electron wave functions in adjacent potential
wells do not overlap) or minibands (if they do), each of
which represents a continuum of free-electron-like states
in the x-y plane. Thus as far as electronic properties are
concerned, type-I superlattices consist of a periodic array
of quas1-two-dlmenstonal electron gases.

In type-II supcrlattices, as typified by the InAS/GRSb
system, the band matchup is such that the conduction-
band minimum of InAs is below the valence-band max-
imum of GRSb. In this case there is a transfer of electrons

from one layer (GaSb) to the other (InAs), resulting in a
spatial separation of electrons and holes into adjacent po-
tential wells, with the formation of electron and hole sub-
bands (or minibands). We see that in contrast to type-I
sUpc11attlccs wlHch cons1st pUr'cly of clcctI'on layers, typc-
II superlattices consist of alternating electron and hole
laycl s.

Many aspects of the physics of superlattices have been
studied in the past decade. The structure of the sub-
bands and cyclotron I'csonancc have been 1nvcstlgatcd by
far-infrared-absorption spectroscopy and resonant light
scattering techniques. (These experiments were first
performed on surface inversion layers; subsequent mea-
suremcnts have also been made on semiconductor super-
lattices. ) Considerable work has been performed on trans-
port pl'occsscs ln t4csc systcn1S, s1ncc t4c spRtlal scparR-
tion of the carriers and impurities promises to yield high-
IIlobility carriers, Rnd bccaUsc of thc ncgat1vc-Ics1stancc
regions in their I-V characteristics (with the voltage gra-
dient applied in the direction of the superlattice axis).
Some work has also been performed on the possibility of
laser action 1I1 these stluctUI'cs.

II1 this paper wc examine tII1c clcctron1c collcctlvc Diodes
which occur in these systems. Although a good deal of
experimental work has been done on optical absorption
and light scattering, for example, there is relatively little
theoretical work on the interpretation of ihe results in
terms of the excitation of various sorts of collective
modes. A good deal is known about the collective oscilla-
tions of electrons in single quantum wells [as typified by
surface inversion layers in metal-oxide —semiconductor
field-effect transistors (MOSFET) devices] but, up to now,
little of this 4as bccn Rpp11cd to t11c clUcldatlon of clcc-
tI'on1c collective osclllatlons 1n IIlult1plc —quantuID-well
systems (superlattices).

Plasmon collcct1vc IIlodcs 1n a two-dimensional clcctI'on

gas (2D EG) were first discussed by Stern, "who calculat-
ed the dynamical polarizabiHty of a two-dimensional (2D)
elec'tron laycI, as R model foI' tl1c gIOUnd state of R11 clcc-
tron gas in a surface inversion layer. He found that in the
nonretarded limit, the frequency of a ZD plasmon co-~q,

29 3318



29 THEORY OF COLLECTIVE EXCITATIONS IN. . . SUPERLATTICE STRUCTURES 3319

where q is the wave vector in the plane. The 2D plasmon,
associated with the ground subband as it is, is essentially
an intrasubband collective mode.

Intersubband collective modes, associated with the tran-
sitions between subbands (the quantized motions of the
electrons in the z direction), were discussed by Chen,
Chen, and Burstein' in a simplified model. More com-
plete treatments of the intersubband modes were given by
Dahl and Sham' and by Eguiluz and Maradudin, ' who
considered different polarizations and effects of retarda-
tion. They showed that the effect of resonant screening is
to shift the resonance energy above the subband separa-
tion; this is the depolarization shift. In a discussion of
many-body effects, Vinter' stressed the importance of
vertex corrections. Ando' showed that in a static local
approximation the vertex correction introduced another
shift in the resonance energy which almost exactly can-
celed the effects of the depolarization shift for typical
inversion-layer electron densities. This other shift is
known as the "final-state interaction" or "excitonic shift, "
and is associated with the interaction of the excited elec-
tron in the higher subband with the hole left in the lower
subband. Tselis and Quinn' gave a unified model of col-
lective modes in surface inversion layers in which the ef-
fects of dispersion in the x-y plane on intersubband modes
were given to second order in q, along with the effects of
resonant screening and the vertex corrections (the latter
evaluated in a static local approximation). They also in-
cluded the effects of magnetic fields and obtained the 2D
analog of the hybrid magnetoplasmon mode in three di-
mensions, with co =co, +co~(q), where co, is the cyclotron
frequency and co&(q) is the 2D plasmon.

The plasmon modes of a two-layer system were dis-
cussed by Chiu, Quinn, Lee, and Eguiluz, and by Das Sar-
ma and Madhukar, ' who found, in addition to the usual
2D plasmon, an acoustical plasmon mode with co-q; the
latter was also found to be undamped under appropriate
circumstances.

Considerations of multiple-layer systems have usually
been restricted to one-dimensional (1D) arrays of purely
2D EG's. Visscher and Falicov' have discussed the static
dielectric function of such systems in the random-phase
approximation (RPA). Fetter has given an extensive dis-
cussion of the plasmon modes of such systems in a hydro-
dynamic approximation. Apostol ' has done a similar cal-
culation using the equation-of-motion method, obtaining
results in RPA. Caille et al. considered the effects of
LO phonons on interface plasmons in multilayer systems.
Mizuno et al. calculated the effects of magnetic fields
and obtained magnetoplasmon modes in these systems.

Recently, Das Sarma and Quinn" have given a fairly
complete discussion of plasma modes in type-I and -II su-
perlattices with two-dimensionally confined carriers.
They showed explicitly the existence of quasi-2D
plasmons and magnetoplasmons for type-I superlattices,
and coupled quasi-2D electron and hole plasmons and
magnetoplasmons for type-II superlattices; these modes
reduced to the correct behavior in the appropriate limits.
In addition, they considered a hydrodynamical model of
the modes in a magnetic field, and pointed out the possi-
bility of transverse modes such as helicons in type-I super-

lattices and helicon and Alfven waves in type-II superlat-
tices. Some of the results of Das Sarma and Quinn were
reproduced by Bloss, and Bloss and Brody, who also
considered the effects of electron-phonon coupling. A few
papers have included the effects of subband structure, in
which the finite widths of the wells are taken into ac-
count, on the collective excitation spectrum.

In this paper we shall present a unified picture of the
electronic collective modes in single —and multiple—
quantum-well structures by using a relatively simple
linear-response formalism. We will show that the sub-
band structure of the wells can have important effects on
the light-scattering and optical-absorption resonances ob-
served in superlattices. The theory accommodates in-
trasubband and intersubband modes on an equal footing in
both types of superlattice structures and allows an easy in-
clusion of the effects of magnetic fields and the electron-
phonon interaction. By using a self-consistent-field
method, we are able to include many-body effects such as
resonant screening and vertex corrections, leading to depo-
larization and excitonic shifts.

This paper is organized as follows. After a brief discus-
sion of supercells and electron miniband structure, we
consider the linear response of the system to an external
perturbation and the resulting dielectric function, the real
and imaginary parts of which describe the reactive and
dissipative aspects of the elementary excitations. A quali-
tative discussion of the nature of the collective modes fol-
lows. We then examine the particular case of superlattices
with flat minibands in detail, calculating the density
response and obtaining the dispersion relations for longi-
tudinal intra- and intersubband modes in both type-I and
-II superlattices, taking into account effects of electron-
phonon interactions, magnetic fields, and vertex correc-
tions.

II. SUPERLATTICES

A. Minibands and supercells

As described in the Introduction, superlattices consist
of alternating layers of two (or more) semiconductors.
Consider, for simplicity, a superlattice made up of two
semiconductors, A and B. The superlattice is made by
depositing (usually by MBE) nq atomic layers of A on ne
atomic layers of B, and repeating the process until a mac-
roscopic sample is obtained. The properties of the final
crystal can be tailored by selectively doping the different
layers with appropriate impurities. Assuming that the A
and 8 layers are doped in a periodic way (i.e., all the A
and B layers doped the same way, but the 2 doping not
necessarily the same as the 8 doping), one obtains a new
unit cell along the superlattice axis (the direction of the
superlattice growth, here taken to be the z axis), the super-
cell, consisting of nz atomic layers of 3 and nz atomic
layers of B.

One can readily see that the band structure of the AB
superlattice is quite different from that of bulk samples of
A and 8. An approximate picture of the band structure
can be given, if the layers are not too thin, as follows:
Well within a particular layer, the bands are the same as
in the bulk material, but when one reaches the interface
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with the next layer, the band structure discontinuously
changes and assumes the character of the other bulk ma-
terial. Of course, the presence of carriers will modify this
picture; some of the modifications, such as Schottky bar-
riers and local-field effects, have been described by Ruden
and Dohler. Nevertheless, the basic picture described
above is useful for understanding the behavior of these
systems.

In type-I superlattices, such as GaAs/Al„Ga& „As, the
band gap of one of the semiconductors is smaller than and
contained within that of the other. If the material with
the larger band gap, 8, for example, is doped with donor
impurities, electrons are released, and then drop into the
potential well formed by the part of the conduction band
of the other material, A, which is below that of the first.
Thus, just as in the case of the inversion layers, the x-y
motion of the electrons is free while motion in the z direc-
tion is quantized. If the electron wave functions of the
adjacent A layers do not overlap, then the quantized wells
are called subbands. The appropriate wave function for
an electron with (x-y) momentum k in the nth subband in
the lth layer is

~

n, l, k) =e' "''g„(z —la) .

The electron is essentially regarded as being bound in the
lth layer. On the other hand, if electron wave functions in
adjacent 3 layers do overlap, then it would be more ap-
propriate to use a tight-binding sum of the states given
above, so that the electron is regarded as having a quasi-
free-motion in the z direction. The tight-binding wave
functions are of the form

,»= Re
I

where a is the superlattice "lattice parameter, " the length
of the supercell. These "minibands" have a nonzero band-
width and allow electron motion along the whole length of
the superlattice. Subbands Inay be regarded as a special
case of minibands with zero bandwidth. We shall restrict
our attention in this thesis to the case of subbands. (Much
of this discussion applies to type-II superlattices as well. )

B. Dielectric function e(m)

The optical properties of a superlattice, as for any other
solid, are given by the dielectric functions. As is well

known, the dispersion relations of the collective modes are
given by the zeros of the dielectric functions,

e(q, co) =0 .

In a preceding publication' we showed that the equivalent
condition for the inversion electron gas is that the deter-
minant of the dielectric matrix (in "subband space") van-

ishes.
In the case of a superlattice, we obtain an expression

similar to that obtained for the inversion layers, ' except
that we have structure factors multiplying terms related to
V„. If we expand our quantities to O(q ), then we ob-
tain the quasi-2D EG (Q2D EG) result, with V„multi-
plied by a structure factor.

The collective modes are well-defined excitations when

the real part of e(q, co) has a zero in a region where the im-
aginary part of e(q, co) vanishes; the latter describes the
dissipative aspects of the excitations, while the former de-
scribes the reactive part. The problem of the damping of
the excitations is not a simple one, and we shall not treat
it here.

C. Qualitative description of
the collective modes

The collective modes which we examine will have wave
vectors which can be decomposed into an in-plane part q
and an out-of-plane part k, . The modes depend on q in a
different way than on k, . The k, dependence occurs only
in the structure factors. The reason for this is physically
evident, since k, is directly related to the three-
dimensional (3D) aspects of the system, and the structure
factors precisely describe these aspects. In fact, physical
variables, such as electron-density fluctuations and self-
consistent perturbed potentials, are related in adjacent

ik a
layers by a phase factor e ', where a is the superlattice
parameter (distance between adjacent layers). The limiting
cases of propagation in the x-y plane or in the z direction
(q&O, k, =O or q=O, k, &0, respectively) present some
subtleties which will be examined in due course.

Two special cases are of particular interest; namely,
those of strong and weak coupling between adjacent
layers. In the weak-coupling limit, the superlattice pa-
rameter is so large (in the sense that qa &&1) that the
layers act independently of each other. In the strong-
coupling limit, on the other hand, the layers are so close
together (in the sense that qa « 1) that the modes in one
layer strongly affect those in the others. We shall examine
this in more detail below.

The longitudinal modes, in which there is electron
motion parallel to the wave vector of the excitation, will
in general consist of the oscillations of the electron layers
about their equilibrium positions along the z axis, in addi-
tion to density oscillations in the x-y plane. In the pres-
ence of a dc magnetic field parallel to the superlattice axis,
the oscillations in the x-y plane change somewhat. Upon
introducing electron-phonon coupling, we find combined
plasmon —optical-phonon modes, which are analogous to
the 3D-plasmon —optical-phonon modes. In the case of
type-II superlattices, we find the existence of coupled
electron-hole modes; these have some new features associ-
ated with the relative phases of the electron- and hole-
density oscillations.

~

n, k, l)=e'" 'g„(z —Ia), (la)

D. Flat minibands: Type-I superlattices

We proceed to discuss the linear response of a superlat-
tice to an external potential in the flat miniband limit, in
which the carriers are confined to their quantum wells.
(The reason that the minibands are called flat is that the
energy of an electron does not depend on the momentum
p„so that the velocity in the z direction Be/Bp, vanishes. )

Thus, the minibands become subbands, and electron wave
functions in adjacent layers do not overlap.

The electronic wave functions are given by
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where )I is the subband index and / is a layer index. We
shall assume that the subband structure is the same in all
the wells. The energy eigenvalues are

Ak
~nkvd '4 + (lb)

2m

where e„ is the energy at the bottom of the nth subband.
We assume an isotropic effective mass and no valley de-
generacy. (This is valid for GaAs, but not for silicon. )

An external perturbing potential of the form

uext(~rz t) uext(~q ~.z)ei(at —q ~ r)

will induce a perturbed electron density, which in turn in-
duces perturbed Hartree and exchange-correlation poten-
ti.als. The total perturbation

(3)

is also of the form (2). We use the Ehrenreich-Cohen
self-consistent-field prescription to calculate the induced
electron density (as in Ref. 17)

f(e —f(e )
5n(r, z;t)= g — - (a

I
u

I

a')
E~ —E~—Ado

x (a'
I
5(r —r')5(z —z')

I
a) .

Here, c is the composite index n, (,k. The electrons are
assumed to feel the total self-consistent potential (3), so
that we are constructing the RPA here. Although the
RPA is a high-density approximation, it has been used
with success in the inversion-layer problem where the den-

sltlcs arc only moderate. This turns out to bc duc to thc
fact that the effective coupling constant r, =rola() (where

ro is the mean distance between electrons and (I o is the ef-
fective Bohr radius) is small for low-effective-mass sys-
tems since ao is inversely proportional to the effective
mass. (In GaAs, m =0.068mo. }

Assuming no overlap between electrons in different sub-

bands, %vc have

(a
I

u
I

a') =5)i 5-„,-„(n I
ui( q, to)

I
n'),

, k+q

where

(n Iui(q, )In' )= f d g„( —/(t)u(q, ; )g„( —/a). (6)

USIIlg (5) 111 Eq. (4), we obtain

5n(q, co;z)= g II„„(q,(o)(n Iut(q, to)
I

n')

g g„(z /a)g„(z /a), — —

The exchange-correlation perturbation is given by

u"'(r, z, t) = 5n (r,z, t) .uxe[)I]

n

The matrix elements of v~ are

(n, /
I

u (q, to;z)
I
)I', /) = g II (q, co) v„„(q;/, /')

x (m
I

ut ( q, co)
I
m'), (l l)

2%eV„„(q;/, /') = f dz dz'g„(z)g„(z)
Egg

—S ~x —x'+() —I')e
~ g ( ig

The matrix elements of u"' are

(n, /
I
u"'(q, a);z)

I
n', /)

II (q,a))
rn, m', f'

X V„"„' (/, /')(m
I

ui (q, co)
I
)II'),

5u„,[n]
V„"„' (/, /') = — dz g„(z —/a }g„(z /a)—

5n

(z /'a)g (z —/'a) . —

5u„,[n]
~nnmm —— & n& n& m& m&.

5n
(16)

Setting (11) and (13) in (3), taking the electric quantum
limit, and defining

V„() (q;/, /')= V„(q;/, /'), V„() ()(/, /') = V„"' (/, /'),

Since the wave functions in different layers do not over-
lap, we must have / =/' in (14) in order for it not to van-
ish. In that case, we can shift the origin and use the
periodicity of 5u„,/5)I to write

V„"„' (/, /') =5i i V„"„'»,

f(e„,k+ q) —f(e„,k)
I( q )to) =2

k et k+q —e ~—1k'n &

n, k

ls thc 11rcduclblc polarization insertion.
The perturbed Hartree potential is given, as before, by

2&e
u (q, ro;z)= f dz'e ~ ~' '

~ 5(nq, co; )z. (9)
q oo

&& [V„(q;/, /') V„"' (/,/')]-
&&(m Iui IO),

~m0+ ~om r

which determines thc response of thc system to aIl cxtcr-
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nal perturbation v"'.
In view of the translational symmetry, we make the an-

satz

1= IIpp(q, cp)S(q, k, ) .2'
e,q

(24)

&"
I
"p I0& (18)

+S V„(q)]&m Iup Io& .

(19)

where

To see what this ansatz means physically, note that the
electron-density oscillation 6n and perturbing potential U

are proportional, so that Eq. (18) indicates that the phase
of 6n is advanced by an amount k,a from one layer to the
next. We shall assume that all relevant z,z' in the integral
for V„are much smaller than la and l'a. Then, substi-
tuting (1S) and (18) into (17) yields

(n
I up 0) =(n up' 0)

+ gP p(q, cp)[ V„(q)—V„"' +S+ V „(q)

This is just the dispersion relation of Das Sarma and
Quinn. Equation (24) can also be derived by considering
the solutions to Maxwell's equations between the layers
and using the appropriate boundary conditions. If the
electric field in the space between the lth and (l+ 1)th
layers is of the form

l —l AltE=e

)&(0 E+e' '+E e ' '
qp —'(E+e' ' E—e' '))

with p =e,cp /c q, t—hen the boundary conditions that

E& be continuous at z = la and the discontinuity of
D, =eE, at z =la be equal to the induced charge 4n5pi,
yield

iP sinh(iPa)

q
~ ' cosh(iPa) —cos(k, a)

where we have used the ansatz

and

V„ (q) = f dz dz'g„(z)gp(z)
&2q

X '' ' 'e ( ')g( ')

2 e
V„ (q) = f dz dz'g„(z)gp(z)

&sq

Xe '" ')g„(z')g, (z') .

(20a)

(20b)

E+ i' laE +
~- ——e 0

In the nonretarded limit, ch oo, and this reduces to Eq.
(24).

In the weak-coupling jiimit, the planes are well separat-
ed in the sense that qa )&1, so that the distance between
the planes is much larger than the wavelength of the den-

sity oscillation in the plane. In this limit S(q, k, )=1, and
the dispersion relation is that of the 2D plasmon.

In the strong-coupling limit, the planes are close togeth-
er in the sense that qa «1. In this limit there are two
cases to consider, k,&0 and k, =0. We look at the second
case first. For k, =0 and qa (( 1, we have from (23),

The structure factors S+ are defined by

1+S+(q,k, ) = —gQ z
1 —e e

+S+ V „(q)]
I

=0 . (22)

It is convenient to introduce the structure factor S defined

by

S(q,k, )=1+S+(q,k, )+S (q, k, )

sinh(qa)

cosh(qa) —cos(k, a )
(23)

1. Jntrasubband modes

For purely two-dimensional layers, only the n =m =0
element contributes. In this case the electron-density pro-
file in the z direction is a 5 function, g„(z —la) =5(z —5a).
We have V„~= V„~ =2me /e, q, and Xpp(q, co) =Ilpp(q, cp),
the 2D polarizability; thus (22) becomes

The condition for the collective modes of the system is
that self-sustaining oscillations in the electron density
occur. This means that u'"'=0, while u&0. From (19),
the condition for nonvanishing u is

det
I

5„—X p(q, cp)[ V„(q)—V„"' +S V„(q)

S(q, k, )=2/qa,

and Eq. (24) becomes

4me1= Ilpp(q, co) .
&saq

Using the long-wavelength form of IIpp,

ns
IIpp( q, cp)= 2,Pl Q)

where n, is the electron concentration (cm ) and m is the
electron mass, we find

2
2 2 4~n eye

CO =Op =
m6~

which is a 3D plasmon, with an effective 3D electron den-
sity n, f~ ——n, /a.

The physical origin of this mode is evident. The
electron-density oscillations are in phase (k, =0) in all the
layers which are close together, so that effectively the
mode is indistinguishable from a 3B plasmon propagating
perpendicular to the superlattice axis.

For the case k,&O and qa && 1, we find

S(q, k, )=
1 —cos k,a
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and thus the mode has the frequency

2mn, e aq
2 2

me, 1 —cos(k, a)

above, and

15=
2

—1

E1o L, 1o1+ 2
Q)01 a

L, 1O

co =co~(1—5), (25)

with co~ the intrasubband acoustical plasmon defined
I

This is an acoustic plasmon with co-q. The mode is
softened because the electron-density oscillations in adja-
cent modes are no longer in phase, and the restoring force
is decreased from what it would be in the 3D case.

If we include the effects of coupling between the intra-
and intersubband modes, then we have to keep the off-
diagonal matrix elements in Eq. (22). If we include cou-
pling between the intrasubband mode and first intersub-
band mode only, we find that the effects of coupling are
important only in the strong-coupling regime. The inter-
subband mode is affected only in O(q ), while the in-
trasubband mode becomes

2
sink, a z1o

X 1+ z [1—cos(k,a)],
1 —cos k,a

where

a'=a+L pp[1 —cos(k, a)] .

Here, E1o is the separation between the ground and first
excited subbands, z&p is the dipole matrix element, coD, is
the depolarization shift of the 0~1 transition, and

L„=—f dzdz'g„(z)gp(z) ~z —z'~ g (z')gp(z') .

If we include effects of coupling to the first and second
excited subbands, we again obtain Eq. (25), but now the
quantity 5 is given by

2L&z(L& Lpz +psz&pzzp) —L»(L&p+s z&p)(1+Etp/cop&) —Lzz(Lzp+s zzp)(1+Ezp/copy)
2 2 2 2 2 (1—cosk, a),2a' L

~ &Lzz(1+E & p/coD &)(1+E2p/Q)Dz) L12—
with a', L„as defined above, and s =sin(k, a)/
[1—cos(k, a)]. The factor 1 —5 essentially corresponds to
a renormalization of the electron's mass.

2. Intersubband modes

We now consider the higher roots of (22). It is difficult
to obtain exact dispersion relations from (22), as in the
single —quantum-well case. We make two approxima-
tions. Firstly, we truncate the determinant by neglecting
off-diagonal elements: This is equivalent to neglecting
mixing between different intersubband excitations.
Secondly, we expand all quantities to O(q ). In doing so,
however, we shall fix the quantity qa, so that S can be
treated formally as a constant. We then obtain the disper-
sion relation

co = Q„p(1+a„„—P„„) Q„gp„„S(q,k,—)q
+ I (fiQ„p/m) [1+—,(a„„—P„„)]

+U [ ~+ I/(~« —P„„)] Q„py«—Iq . (26)

The symbols a«, P«, y«, and p, «are given by

2~s 2m'e

&~n a &s

X —f dz dz'g„(z)gp(z)
~

z —z'
~

g„(z')gp(z')

n, 2ns 2P«=
&&

I'«, Ann=
&&

'lznpI
no no &s

2ns 2n e 1y„„= —f dzdz'g„(z)gp(z)
i
z —z'

~AQ p e, 6

xg„( ')gp( ') .

I

Here a«and P«give rise to the depolarization and exci-
tonic shifts, respectively, and are well known in single-
layer intersubband transitions. We note that Eq. (26) is
the same as the dispersion relation for the intersubband
collective modes in a single quantum well which were con-
sidered in Ref. 17, except that the term linear in q is modi-
fied by the structure factor S(q, k, ). The constant term
and the coefficient of q are exactly the same as in the
single —quantum-well case, and they are interpreted physi-
cally in Ref. 17. In the weak-coupling case, with qa »1,
S = 1 and each layer supports its own intersubband mode.

In the strong-coupling limit (qa && I), we have, as be-
fore, two cases to consider: k, =0 and k,&0. For k, =0,
we have

~'= II„'p(1++« —P„„—2p«/a)+ 0 (q'), (27)

co = Q„p(1+a„„—/3„„)

2
&n Opnn a

+ +
1 —cos(k, a)

AQnp
1+ ~«P«

1 3+ UF ~ +
4

—~nOTnn
+nn Vnn

where the coefficient of q is exactly the same as in (26).
In this case, the term proportional to S(q, k, )q becomes in-
dependent of q and softens the constant part. To see
physically why this happens, note that the wavelength of
the electron-density oscillations in the x-y plane is long,
and that the oscillations are in phase in all the layers. The
electrons in any particular layer will then "feel" the (at-
tractive) potential in the adjacent layer (since it is un-
screened by its own electrons), so that the restoring force
due to the original layer is decreased.

For the k,&0 case, we find that
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FIG. 1. Plot of co [given by Eq. (26)] as a function of k,a for
different values of qa. Typical values of the parameters from

Ref. 30 have been used; m~ ——3.66&10' sec ' and a=3.09
y10" sec-'.
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so that here the term proportional to S{q,k, )q is softened
to 0(q ). Physically, this is because the density oscilla-
tions in adjacent layers are no longer in phase, and thus
the sort of decrease in restoring force discussed previously
is no longer as effective.

In Fig. 1 we have plotted the frequency nI given by Eq.
(26) for the 0~1 transition as a function of k,a for dif-
ferent values of qa. In the numerical calculation, a model
system has been used in which the quantum wells have in-
finite barriers, and thus

g„(z)=&2/L sin[(n +1)Irz/L]

e„=(A /2mL )(n+1) Ir

The parameters in the model have been chosen to corre-
spond to the systems studied by Olego et al. For q =0,
nl=nll ——nolo(1+IIII)=3. 66)&10' sec ' (we have neglect-
ed vertex corrections in the numerical calculation) and the
intersubband mode propagates perpendicular tc the layers.
For q&0, but k, =0, co=co~~=3.09X10' sec ', and the
mode propagates parallel to the layers. Note that, with

k,a fixed, the mode softens as qa increases, as expected
from the discussion above.

The peculiar behavior of the intersubband mode as a
function of k, and q can be traced to the fact that the
strllcturc factol S dcf1ncd 111 Eq. (23) ls 11011R11Rly'tlc at thc
origin of the q-k, plane. For any q&0, the frequency of
the mode drops to ~, while at q =0, ~=~, ~ ~~I. To sec
this, consider thc case when qa (~ 1. If wc expand coshqa
in the denominator of S to 0 {q ), then Eq. (26) becomes

FIG. 2. Plot of co given by Eqs. (24) and I26), as a function of
qa slowing the band structure of the intrasubband and intersub-
barid plasmon bands.

2ap~~ Q~o

(qa) +4sin ( —,'k, a)
J

where y„ is the coefficient of q in Eq. (26). Suppose now
that both qa and k,a are very small compared to unity
(but are of the same magnitude). Then the second term
wlth111 'tllc 1RIgc PRlcIltllcscs ls —2P„„Q„n/Q 8, whcl'c

Q =k, +q . In this case,

nI'= Q„0[1+a„„+p„„—(2p„„/a)sin'8]+y„q',

where |) is the angle between Q= q+k, z and the z axis.
This explicitly displays the character of the nonanalytici-
ty. Thus in this limit, co starts. at a constant value which
dcpcnds upon thc angle of thc propagation of thc collec-
tive mode relative to the electron layer, and its dispersion
is proportional to q . In Fig. 2 we have plotted Eqs. (24)
and (26) as functions of qII for a model system in which
the electrons are confined to their layers by infinite
square-we11 potentials, with n, =7.3&10"cm, a =600
A, and I. =250 A. Note that for small qa, the bandwidth
is at a maximum. This is because the layers are close to-
gether and are therefore strongly coupled: If one layer is
excited, the excitation is not localized to that layer, but
spreads throughout the system. For large qa, the band-
width becomes very small, and individual layers support
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their own plasmons; the excitation in any layer will
remain localized at that layer.

Xg„(z ja)g.—(z ja), —

where II' ' is the irreducible polarization insertion defined

by

(~) 1 f(Fni) f«n~—)
11n'.'(q,~)=, X I Jri(q) I',

ll' n'l* nl

CO

Jl ((q)= dx e "
up(x +1~A)ug(x) .

%e assume the electric quantum limit, and go through
precisely the same steps as before to obtain the condition
for collective modes,

det
I
5„—y' p(q, co)[ V„(q)—V„"' +S Vn~(q)

+S+ V „(q)] I
=0 . (29)

In the 20 case, only the n =m =0 matrix element contri-
butes, thus Eq. (29) becomes

If we impose a uniform dc magnetic field parallel to the
superlattice axis, the solutions to the Schrodinger equation
in the Landau gauge are

I
n, l, kj ) =e' ui(x+10k)g„(z ja)—,

where l is now the Landau-level quantum number and j is
a subband index. A perturbation of the form Eq. (2.3) in-
duces an electron-density oscillation

5n(q, co;z)= g II„'„'(q,co)(n
I U, (q, co)

I

n')
n, n,

I =IIIO'(q, co)S(q, k, )[(2me Ie,q) —Vpp] . (30a)

in addition to higher-order terms in q, with n an integer.
These are obtained by expanding the polarization insertion
in Eq. (30a) to higher order in q. The Bernstein modes
have minimal spectral weight at long wavelengths, and
thus we do not discuss them any more.

In the strong-coupling case with k,+0,
2&Pig 8 Vxc

q, (30b)

which is a cyclotron-acoustic plasmon mode. For the case
of k, =0, on the other hand, we find

N =N~+0& . (30c)

Here, Q~ is the effective 3D plasmon frequency. The
physical interpretation of these modes is essentially that
given for the zero-magnetic-field intrasubband modes, ex-
cept that now there is an extra restoring force due to the
motion of the electrons perpendicular to the magnetic
field.

The higher roots of Eq. (29) are obtained, upon truncat-
ing the determinant to diagonal form in the usual manner,
as

This is just the result of Das Sarma and Quinn, if we put
V"'=0. Equation (30a) contains a large number of reso-
nances (higher cyclotron modes and Bernstein modes). To
first order in q, Eq. (30a) becomes

co =co, +co&(q)S(q, k, ),
where co~(q) is the 2D plasmon frequency. Note that in
the weak-coupling limit, qa ~~1, S=l, and each layer
supports its own 2D magnetoplasmon. The higher cyclo-
tron (or Bernstein) modes occur for higher values of co,

4«.n
—p..)

co =Q„p(1+a„„—P„„)—Q„pPn„S(q, k, )q+Q„p Q„p
2

(alHn, +3)Q+
x

Q„p(a„„—P„„)—co, —2co, Q„p

(man, + 1)Q

Q„p(a„„—P„„)—co, +2co, Q„p
(31)

This is the same result as in the case of a single quantum well, except that the term linear in q is modified by the struc-
ture factor S(q,k, ). Note that as in the single —quantum-well case, only the 0(q ) term is affected by the magnetic
field.

In the weak-coupling limit, 5 = I, and. each layer supports its own intersubband plasmon. In the strong-coupling lim-
it, we have two cases: k,&0 and k, =0. These give the following results.

Case l: qa &~ l, k,&0. Here, S =qa [1—cos(k,a)] ', and thus

co = Q„p(1+a„„—P„„)

Ann&

1 —cos(k, a)
l~(a„„P„„)—

2

(mlHn, +3)Q+
2 2Q„p(a„„—P„„)—co, 2co, Q„, —

(ml~n, +1)Q.
2 2

Qnp(ann Pnn) e+ 2ccoQnp
(32a)
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As before, the term proportional to S(q,k, )q becomes
0 (q ), and the constant term is unaffected.

Case 2: qa &&1, k, =0. In this limit, S(q,k, )=2/qa,
and the dispersion relation simplifies to

co2=Q„o(1+a„„—P„„2p—„„/a)+0(q ) . (32b)

The 0 (q ) term is unaffected. The physical interpretation
of these results has been discussed above.

4. Effects of electron ph-onon coupling

Since GaAs/Ga& „Al„As (our prototypical semicon-
ductor superlattice) is a polar semiconductor, we expect
that the effects of electron-phonon coupling are impor-
tant. To include the effects of phonons, we modify the
background dielectric constant e, into a frequency-
dependent dielectric function

2 2
'

CO —COL

e, (co) =e„ (33)
CO —COT

where eq and eT are the longitudinal- and transverse-
optical phonon frequencies. Then the quantity V„~ we
defined in Eq. (17) becomes

2 — 2

V„(q,co;I,l') =
2 V„(q;l,l'), (34)

CO —COL

where V„(q,l, l') is the quantity defined in Eq. (12), but
with n'=m'=0, and with e, replaced by e„.

The effect of the electron-phonon coupling on the
exchange-correlation perturbation is somewhat more diffi-
cult to take into account, however. We include the effects
of electron-phonon coupling in the simplest possible
manner. We write the exchange-correlation perturbation
as a sum of an exchange part and a correlation part. The
latter is discarded. We note that the former depends
linearly on the coupling constant e, and thus we can in-
clude the phonons by simply replacing e by e /e, (co).
This can be done, however, when the conduction band
contains a single nondegenerate minimum (valley). In the
case of a multivalley structure, exchange effects can have
profound consequences for the electronic structure of
Q2D EG's, as shown by Yi and Quinn. ' Here, we will
assume that only a single valley exists (this is true for
GaAs, but not for silicon and germanium). V„"' then be-
comes

2 — 2

Vnm('l l')=,
~ Vrim(l l'»

N —NL
(35)

where V„"~ is the quantity defined in (14), but with
n'=m'=0 and V„,[n] replaced by V„[n]. A commonly
used form of the latter (especially for numerical calcula-
tions) is the Slater Xa form,

V„,[n] = an '~—

By using (34) and (35), we can express our condition (22)
for the collective modes as

det 5„„—,I o(q, co)[V„(q)—V„' +S V„(q)+S+V „(q)] =0.
N —NL

In the limit of 2D quantum wells, this yields

(36)

co = ,
'

[coL+coJ,(q)S——Pooq ]+—,
'

[[cog+co~(q)S Pooq ) 4coT—[coJ, (q)S ——Pooq ]}' (37)

Here we have defined Poo ——X, Voo/m. This is just the result of Bloss and Brody if we neglect the effects of exchange
(Poo=0). In the weak-coupling limit, S = 1, and Eq. (37) yields coupled 2D-plasmon —optical-phonon modes. In the
strong-coupling hmit with k, =0, we have S (q, k, )co~ (q) = II~, and Eq. (37) yields coupled effective 3D-
plasmon —optical-phonon modes. In the strong-coupling limit with k, &0,

2mn, e aq
2 2

co~(q)S (q, k, )=
me„ 1 —cos k,a

and Eq. (37) yields coupled 3D-acoustical-plasmon —optical-phonon modes.
In the case of a uniform dc magnetic field pointing along the superlattice axis, the collective modes are given by (36),

but with X o replaced by X~o. For 2D wells, Eq. (36) yields

co = —,
' [cog+~, +co (q)S]+—

I [coL+co, +co (q)S] —4[coLco, +coTcop~(q)S]I '
2

(38)

where we have neglected the effects of exchange. In the weak-coupling limit, this yields coupled optical-phonon —2D-
magnetoplasmon modes. In the strong-coupling limit, with k, =0, we obtain coupled optical-phonon —3D-
magnetoplasmon modes, where the effective 3D magnetoplasmon frequency is (co, +Qz)' with Qz as defined above.
In the strong-coupling limit with k,&0, on the other hand, Eq. (38) yields coupled optical-phonon —"acoustical"-
magnetoplasmon modes, where the acoustical-magnetoplasmon frequency is given by {co,+ —,'q a [1—cos(k, a)]
In Fig. 3, we have plotted the two branches of Eq. (38) as a function of magnetic field for parameters corresponding to
the systems studied by Qlego et al.

The results for combined optical-phonon —intersubband modes [these are the higher roots of Eq. (36)] are much sim-
plified by keeping only 0 (q) terms. Keeping only the diagonal elements in (36) yields, to 0 (q),
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a) = —,
'

[rot +Q„o(1+a„„—P„„—P„„Sq)]+—,
'

I [co +Q„o(1+a„„—P„„—P„„Sq)]

4—[o L+ T(a.. P—.. V—,Sq)]Q.'oI'"
Equation (39) also persists in the presence of a magnetic field; only the coefficient of q changes.

In the weak-coupling limit, we have the phonon-intersubband modes

=
2 [~t,+Q,o(1+a,„—p„„—p„„q}]+—, I[cot,+Q'„o(1+a„„—p„„p„—„q)] 4[v—oL+ror(a„„—p„„—p„„q)]Q„oj'~z

(39)

In the strong-coupling limit, with k,&0, Sq is of 0(q ), so the terms in (39) involving p„„disappear. For k, =0,
Sq=2/a, and (39) becomes

co = —,
' [coL+Q„'o(1+a„„—P„„2p—„„/a)]+,' I [—a)L+Q„o(1+a„„—P„„—2p„„/a)]

—4[~~+~T(a..—p..—2v..«]Q.'o] '",

which shows the typical softening of the intersubband
part of the mode in this limit.

E. Flat minibands: Type-II supcx'lattices

We now proceed to discuss the electronic collective
modes of type-II superlattices. The model we use for the

50

50 55 80 65 (~c/~„)

FIG. 3. P1ot Qf Eq. (38) Rs R function of magnetic field. The
tvvo bI'Rnchcs of thc coup1cd QpticR1-phonon-rQRgnctop1RsIQQQ

Inodes RrC C1CRI'ly ShoWQ, The 1Q%'Cf pRrt Qf the flgUI'C 18 RQ CQ-

1RrgcIQcnt of thc intcrRction I'cgion Qf thc two bI'Rnchcs Qf thc
coupled optical-phonon —1IlRgnctoplasIIlon Dlodcl.

electronic structure of type-II superlattices is essentially
the same as that adopted for type-I superlattices, except
that every other layer contains holes instead of electrons.
The 18pefS RfC 18bC1Cd by RQ lntCgC1; CVCQ-QUmbefed layCfS
will be taken to be electron layers, while odd-numbered
layers are hole layers. The solutions of the Schrodinger
CqURtiOQ RfC tRkCQ to be

g . „(x) =e' " 'Q„J(z —ja) . (40a)

VVh ere

g„(z —ja) for j even,

q„(z ja} for j—odd.

Here, g„(z} is the nth electron subband wave function,
while ri„(z) is the nth hole subband wave function. The
ClCCtfOQ-QUIDbef dCQSlty Rnd IDRSS RI'C dCQOtCd by n~ 8QCI,

m„respectively, and are taken to be the same in all elec-
tron layers, while the hole-number density and mass are
denoted by nh Rnd m~, fespectively. The eigenvalue be-
longing to the solution (40a) is

fi kz
.~=6'+&+ (40c)

2mj

ThUS ClCCtfOQ RQd h01C 18yefS hRVC thClf O%'Q SUbbRQd

18ddcfs. It should bc noted thRt oUI' model Rlso includes
the possibility that the odd layers have, instead of holes,
electrons with a different density and effective mass than
CvcQ layCf S.

To obtain the electronic collective modes of the system,
we use the same procedure as before. We assume an exter-
nal perturbing potential of the form given in Eq. (2). This
gives rise to some total self-consistent potential to which
the carriers (electrons and holes) respond. Linear-response
theory gives the carrier density perturbation in terms of
the total self-consistent potential; this closes the self-
consistency loop and yields conditions for the collective
IDOdCS to OCCUf.

%c pfocecd csscQtlRlly Rs bcfofc. % c RssUIDc RQ cxtcf-
QRl pcftufbRtiOQ 'with 0Qlp oIlc FoUfief component, RQd
assume a total self-consistent potential additively com-
posed of the external part, a Hartree perturbation, and an
CXChRQge-CofI'Clatlon potCQtlal. ThC dCQSlty ICSpOQSC 1S

5n(q, m;z}= g II'1' (q, ~)(m
~
u~(q, co)

~

m')

Xg, (z ja)lt;(z ja), — —
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f(e, - . ) f(—e -.)
Il(j) (~ ) 2~ B, k+q J N, k j

mm' q~ =
E, ~ .—e ~. fK—O

n', k+q;j n, k;j
(42)

where we have assumed that carriers in adjacent layers
have zero overlap, and

Note that V"' now depends on the layer index I; this is be-
cause the exchange-correlation energy will be different for
electrons and holes, since they will have different densities
and effective masses.

Taking the electric quantum limit and setting n' =0, we
obtain Eqs. (44a) and (45a) in the form

is the irreducible polarization for the jth layer. Note that
O'J' depends on whether j is even or odd, in contrast to
the case of the type-I superlattices. The Hartree and
exchange-correlation perturbations are given, as usual, by

u (q, co;z)= dz'e vi' ' ~5n(q, co;z')
2 lT8

ESg

(n
I u; (q, co) I0) = +X~0(q,co)(m

I u,'(q, co) I0)

X V„(j,j'),

(n
I

uJ."'(q,co) I0) =—gX'~(){q,co)(m
I uJ(q, co) IO)

(46)

and

5V„,[nj
V"'(q, co;z) = 5n(q, co;z) .

5n

The matrix elements of V and V"' are

(n lu (q, co) ln')= g IIJ' (q, co)(m lu (q)
I

.m')

X V„"„'(j,j'),

where V„(q;j,j') is the expression in (44b) with
n'=m'=0, and V„"' (j,j') is the expression in (45b) and
(45c) with n'=m'=0. Thus the matrix elements of the
total self-consistent potential satisfy

X V„„(q;j,j'), {44a)

(n Iu, (q, co)IO)= (n IuJ'. "'(q„co)I0)

+ QX"u(q)(m luJ(q, co) I0)

2

V„„(q;j,j')= J dz dz'P„; (z)g„;(z)
&s9

—g(Z —Z+(J —J )Q~Xe

XQ~J (z')g J'(z')

x[v. (q;j j')—v."'{j,j')] .

The condition for the collective modes follows as

(n
I uJ(q, co)

I
0) = gX'~0(q, co)(m

I
uJ'(q, co)

I
0)

(48)

(n
I
uJ"'{q, co)

I

n' ) = —g II~~~ ( q, co) (m I uJ ( q, co)
I
m') x[v» (q'J j')—V."'(jj')] (49)

X V„"„', (j,j'),

V„"„' (j,j') =5JJ V„"„' (j),

5u..[no{j)]
(j)=— dz )t{„,(z)Q„J(z)

5n

Xp„,(z)p;(z) .

(45b)

(45c)

We can use Eq. (45b) to bring the exchange-correlation
perturbation matrix elements to the left-hand side of (49).
The sum over j' on the right-hand side can then be split
into two parts: one over even j' and one over odd j'. In
the former, we set X'J '=X", the electron polarizability,
and in the latter we set g'J '=7'"', the hole polarizability.
Since V„ in Eq. (49) is not diagonal in the layer indices
(this being due to the electrostatic interaction of the
electron- and hole-density perturbation in adjacent layers),
we have to write Eq. {49)as two equations, one for even j
and one for odd j. We can then use the ansatz

e * (n Iuo(q, co) In') for j even,
(n lu, (q,co)ln')=' g, U )),

e '
&n

I
u)(q, ~)

I

n'& for j odd,

and make the usual assumption that wave functions of carriers in adjacent layers do not overlap, to arrive at

yt5„—X",(q,~)[V„"(q)—V„"'(e)+S V."{q)+S+V" {q)j]&m Iuol0&

= gX' o(q, co)[S+V'"„'(q)+S V'„' "'(q)](m
I u)

I
0) (51a)

and

y l5 —X 0(q co)[v, "'(q) —V,"'(h)+S V'"„"'(q)+S V'"„"'(q)]j(m lu, lo)

=+X o(q, co)[S V„~'(q)+S+V'„)(q)](m Iu, lo) . (51b)
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Here we have introduced the symbols S+ and S+ defined
b5f

S (1 z —2') —i

+&k~+ —g+, +2ik a —2qu,

V„'.-"'(q)=- ' f dzdz g„(zg,(z)
&s9

Xe-&'-"q (z )q,(z), (54)

It is useful to define

S =1+5++5
cosh(2qa) —cos(2k, a) '

2 cos(k, a)sinh(qa)S'=S++S = . (52b)
cosh(2qa) —cos(2k, a)

Note tliat tllc stiuctuic factoi' iil (52a) is tllc saiiic as tllc
one considered before, except that a is replaced by 2a.
This is because the superlattice parameter is doubled; note
the analogy with a linear diatomic chain. In Eq. (51), we
have also defined

V„"(q)= J dz dz'g„(z)g, (z)
&s9'

Xe-e ~ -'~g. ('@('),

5U„,[no(e)]
V."'(e)=—I dzg. (z)go(z)

"'
g (zg, (z) . (SS)

5n

The quantity V'„' ' is defined as in (53), but with
replaced by (z —z'). The quantities V„'" "' and V'„" "' are
the same as V' ' and V' ', except that the electron func-
tions g„are replaced by the hole functions ri„; similarly,
V„"' (Ii) is obtained from (55) by replacing g„with il„and
the electron density no(e) by the hole density no(Ii). Fi-
nally, V'" ' can be obtained from (54) by interchanging
the roles played by the electron and hole functions.

To solve Eqs. (51) as they stand is very difficult, and so
we make the approximation that only the n =m terms
contribute. This yields two linear equations relating
&n

I Uo
I
0& and & n

I Ui I
0) Requiring tha«hese matrix

elements bc nonvanishing g1vcs

I, X~ &(q )[y~
-

~(q) V„„(,)+(S,+S )V'„'„'(q)]jI1—X'„"0(q,~)[v„'„""'(q)—.".'(I)+(S++S )V'.. '(q)]l

=X'„",(q, co)X„'",'(q, a))[S V„'"„'(q)+S V„'„"'(q)7[S V„'".'(q)+S V.'„"'(q)] . (56)

l. Intrasubband modes

rl"rr'"'(s')' (s7 )

[co cop, (q)S][co co—pi, (q)S] =cop, (q—)copi, (q)(S')

where

2&n~ e
cop, (q) = q

Ple 6s

(57b)

~pa(q) =

are the squares of the 2D electron- and hole-plasmon fre-
quencies, respectively. Equations (57) can be solved as

2 I 2 2Q)+= 2 (co +co I )S

+ ,'[cop, —
copy, )S +4cop, c—opp(S') ]'i . (58)

To obtain the intrasubband modes, we set n =0 in E~.
(56). Then, Voo' ——V,'","'=2me /e, q and Voo' ——Voo

'

=2ire /e, q. We assume the long-wavelength limit,

q ((2kp, tlius Xoo~neq /meN aiid Xoo ~niq /niI, co .
By omitting the vertex corrections for simplicity, Eq. (56)
fields

2 8 2 e
1 — II"(q,co)S 1 — II'"'(q, co)S

&s9' &s9'

In the weak-coupling limit, qa ~~1, so S =1 and S'=0;
Eq. (58) then yields the two solutions

co=ct7~(q), ap=copp(q),

and thus each layer supports its own 2D electron or hole
plasmon.

In the strong-coupling limit, qa ~~1. In this limit we
have three cases to consider. First, we consider k, =0.
From Eqs. (52), we then have S=S'=1/qa. Equation
(58) then yields the two modes

ai2 =Qz +Q2s, aP =[Q~Qpp, /(Qp, +Qpl, )](qa)

wllcic Q~ =41rn&e /Pi&ac& aild Q&g =O'llnge /ingaEz ~''
The first mode is that of two independent simultaneous-

ly excited 30 election and hole plasmons, in which the os-
cillating charge densities are in phase from one supercell
to the next, and are out of phase within the supercell.
This would be analogous to an optical phonon in a linear
diatomic chain. In the second mode, the oscillating
change densities are in phase within the supercell and also
between supercells, so that in effect they cancel each oth-
er, the restoring force disappears, and the frequency of the
mode 1s zero.

Next, we consider the strong-coupling limit with k,&0.
In this case, Eqs. (52) become

2'
1 —cos(2k, a)

2qa cos(k,a)S'=
1 —cos(2k, a) '
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and thus Eq. (58) yields

2&e aqN+=
e, 1 —cos(2k, a)

n~
X

me

nh +
mh me

2
nh

1/2 '

4n, nh
+ cos (k,a)

memh
(59)

Note that both branches are acoustic modes, with co ~q.
Equation (59) was first derived by Bloss. The modes
correspond to in-phase and out-of-phase motion between
the electrons and holes within the unit supercell, with a
phase difference between oscillations in adjacent cells
given by k, .

Finally, we consider the strong-coupling limit with
k,a =(n+ —,

'
)m. . In this case, Eq. (58) yields the indepen-

l

dent 30 acoustical plasmons

co+ ——Q&,qa, co =Qzhqa .

2. Intersubband modes

The intersubband modes are obtained from Eq. (56),
with n&0. To simplify the dispersion relation, we shall
expand all quantities to 0 (q) only. In the long-
wavelength limit, q &&2kF, we have

2n, Qnp
X„'O(q,g) ) = —np

2nh no
X„o(q,co)=, 2

Ct) —0 np

where fiQ„o is the subband separation between the ground
and nth hole subbands. Equation (56) then becomes

[ro —0 o(1+a'„'„' P'„'„' (M—'„'„Sq)—][co Qo(1+—a„'"„' 13'„"„' p—, '„"„'Sq)—) =Q„Q„( 'tu'S'q)( „')u"„'S'q) .

Here, we have introduced a number of symbols which are defined below,

(60)

(e) 2ne 2'
Anp 6,

(h) 2nh 2'
&nn =

0

—f dz dz'g„(z)g (o)zI z —z'
I
g„(z')g (z')

—f dz dz'rl„(z)tlo(z)
I

z —z'
I
2I„(z')go(z')

and

2' I/.„,(e) (h) h 2ne
Vx~(h) 'e'= 2~e

I

z'
2n 2n 2n

nn nn e ~ nn
=

nn ~ I nn= ~~ Znp
7lhLn 0 Fs ~no 7~lVLn 0 Es

(h) 2nh 2me (h) 2
2

Ann = —
I zoo

no

Equation (60) may also be written as

(1+ ( ) P( ) ( )S )+II (1+~(h) P(h) (h)Sq)] +4 ( ) (h)(g II P ) ]
/2

In the weak-coupling limit, S = 1, S'=0, and Eq. (61) yields two modes,

2 2 (e) (e) (e)
+no( I +rznn Onn Ann q)

and

2 2 (h) (h) (h)+ no( I +(znn Pnn pnnq)

(61)

As expected, each layer supports its own intersubband mode independently of the other layers.
In the strong-coupling limit, qa « 1. For the case k, —0, we have S =S'= 1/qa, and Eq. (61) yields the two branches,

I [II2 ( I+~(e) P(e) p(e)/a) II 2
( I+ (h) P(h) (h)/a)]2+ (4p(e) (h)/a2)f12 II 2

]
(/2

Thus we have two branches of coupled electron-
hole —softened intersubband modes. In these modes, there
is in-phase and out-of-phase motion of the electrons and
holes out of their planes, and since k, =O, this motion is
repeated periodically in all the supercells.

For the case k, &0, on the other hand, S=2qa[1
—cos(2k, a)] ' and S'=Scosk, a, and thus Sq and S'q are
of 0 (q ). Equation (61) then yields the interesting result,

~'= &'o(1+~.".' —P.".')+ o(q'),
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co2=Q „o(1+a„'"„'—P„'"„')+0(q ),

and thus, to 0 (q), we obtain separate electron and hole in-

tersubband modes. Actually, the coupling occurs in the
coefficient of q, but the fact that k, @0 screens zero-
order and first-order (in q) coupling.

We have plotted Eqs. (58) and (61) in Fig. 4 for an
InAs/GaSb system in which the carriers are confined to
their respective layers by infinite square-well potentials.
The qualitative features are in Fig. 2 for type-I systems,
except that the intra- and intersubband plasmon bands are
split due to the fact that for these two-component sys-

tems, the two species can move in phase or out of phase;
this is analogous to the phonon modes in a periodic 1D
chain. (We have neglected the coupling between the in-

tersubband and intrasubband modes. )

A(d
(me V)

II

!00

90

80-
70—

60-
50

40

ne= &h= 4.1~ lO" cm'

L,= Z50u,
Lh= 300 A
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3. Effects of dc magnetic field

The effects of a uniform magnetic field (assumed to
point parallel to the superlattice axis) are taken into ac-
count by using the solutions to the Schrodinger equation
in the Landau gauge; these are

~
n, l, kj ) =e'"~uij(x +lJk)Q„J(z —ja),

where n is the subband index, k is the momentum in the y
direction, I is the Landau-level index, and j is the layer in-

dex.
The density response is given by

20

IO

0
I

2
ga

4
a

FIG. 4. Plot of co given by Eqs. (58) and (61) as a function of
qa, showing the band structure of the intrasubband and intersub-
band plasmon modes for a two-component system. Note the
splitting between the modes due to the extra degree of freedom.
Compare with Fig. 2. (Here, L, and LI, are, respectively, the
widths of the electron and hole square wells. The arguments of
co+ are the values of k,a.)

5n(q„co,z)= g II„'~„" '(q, co)(n
~
UJ(q, co)

~

n')Q„J(z ja)p„,(z —j—a),
n, n'

where the polarizability is given by

m.lH i p &n pj ~nlrb'

We assume the electric quantum limit, and go through the same steps as before to obtain the condition for the collective
modes. It is

I 1 —P'„'o" '(q, co)[ V„'„' '(q) —V„"„'(e)+(S++S ) V'„'„'(q)]J I 1 X„'"o' '(—q co)[ V„'"„"'(q)—V„"„'(h)+(S++S ) V'„"„"'(q)]I

=X„"' '(q, co)X„'"" '(q, co)[S V„'"„'(q)+S V'„'„"'(q)][S V„'"„'(q)+S V'„'„"'(q)] . (62)

For the intrasubband modes, we set n =0. The dispersion relation then becomes

2 2 2 2' II"" '(q~)S 1 — ' 11'h"~'(q, ~)S =
&s9' &s9'

2 2
2&e II"" '( co)II'"" '(qco)(s') (63)

or

(co coee co&es—)(co —c—oeh —co&hs) =co&eco&h (S )

which can be solved to give

= 2~ [~ee+~eh+(~,'e+~,'h )S]+ ,' t [~,'e ~—eh +(~pe COph )S]'+4~,'e~,'h(S')'I '"
(We have omitted effects of exchange and correlation for simplicity. )

In the weak-coupling limit, S = 1 and S'=0, and Eq. (64) yields the two modes
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Thus in this limit, each layer supports its own electron (or hole) 2D magnetoplasmon, as expected.
In the strong-coupling limit with k, =0, we have S =S'=1/qa, and Eq. (64) yields the two branches

2 2 2 2 & 2 2 2 2 2 2 2 &/2ol = , (co—„+co,i, +Q», +Q»I, )+ —,[(co„—ol,s+Q», —Q»g) +4Q~Q»l, ]

which are the coupled 3D magnetoplasmon modes of a two-component system. For k,&0, on the other hand, Eq. (64)
$1elds

2(Q», +Q»g)(qa) 1 1 2 2(Q», Q»1, )—{qa) 16',Q»I, (qa) cos (k,a)

which are coupled electron-hole acoustic magneto-
plasmons. When k,a =(n + —, )rr, these modes are decou-

pled by the screening, and reduce to

Ql =Ol~q+Qpq(qQ), Ol =Ol~g+Q»Il(qQ)

Thcsc Rrc lndcpcndcIlt clcctI'on Rnd hole RcoUst1c IQRgnc-
toplRsmons.

For the intersubband modes, the effects of the magnetic
field show up only in the q term. Since we investigate
these modes only to 0 (q), they are unaffected in this or-
der~ RAd wc obtR1Q thc sRmc cbspcIs1OQ iclRtlons Rs Rbovc.

4. Eff8crS of 818cfron Jlllonon lnf-8rocrlon

The effects of electron-phonon coupling may be taken
1nto RccoUQt bp IcplRC1ng thc bRckgroUQd dielectric con-
stant with a frequency-dependent dielectric function,

2 2
CO —NL

8, (Ol)= 2 8„,
N —MT

as bcforc.
Consider first the intrasubband modes. Then,

2 2 2 22' (q I, )
+I Pe, hII' (q, ol)= 1

Ez (co)q

Setting this into Eq. (57a) yields

(co», +82~1, )S+[(ruz, co»s ) S—+4(ol», co»&S')1]'~2

2(Ol», 81»1, ) (S —S'2)

Note that Eq. (65) yields four branches, since the (+ ) sign
in front of the radical is uncorrclated with the {+)sub-
SCriPts On y.

In the case of weak coupling, we obtain two sets of
modes corresponding, respectively to y and y+. These

ol+ =
& {ol~+Nz )+

& [(ol»l +olL) 481&~olr—]

~+ = l (~»s+~k)+ & [(~»~+~8 4~»nT]—
The modes are identified as coupled 2D-electron- (or
hole-) plasmon —optical-phonon modes; they occur in-

dependently in each layer.
In the limit of strong coupling, we consider three cases:

k, =0, k,&0, and k,a=(n+ —,')lr. For k, =0, y+' ——0
alld p =Q»~ +Q»g, so thc modes arc

2= 2
QP+ =NL ~

This can be solved for ol to give

(I+y+olz, )+[(I+y+L)' —4y+ol T]' '
2y+

+[(Q~+Q»1, +ol L) 4(Q~+Q»g —)air]'~~I .
The ol+ modes are just the longitudinal-optical phonons,
~hllc thc 6P Blodcs Rrc coUplcd opticRl-pRI, onoQ—
electron-hole plasmons.

For the case of k,&0, on the other hand, we obtain the
four branches,

812= ,' (oPg+a+q2)—+ ,' [(o)L+a+q2—) 4o)Ta+q2]'~—,
(65)

%'herc

2(CO»lal»g ) 0

(a)», +ol»l, )+[(ol», —ol»1, ) +4(81»,al»1, ) cos (kla)]'
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Note that cI+, as defined here, is independent of q, but de-

pends on k, . These excitations are coupled phonon-
electron-hole acoustIcal-plasmon modes.

For the case in which k,a =(n+ —,
'

)m, the oscillations
are out of phase from one supercell to the next. We then
obtain two decoupled sets of excitations of the form

+ =
2 [~r.+ I Q»r (qa) l
1 2 1

modes given by

2 1 2 2 2co+=
& (co»g+co, +col.)

+ ~I[(co»~r +coc+col.) —4(co»r coT+co~coL) l

2 1 2 2 2m, = —,(~~+~,+~,)

(70a)

and

+
2 [[r. + 2 Q»r (qa}'l' —2~TQ»r (qa)']'"

~+ = I [~1.+ I Q» (qa)']

+ —,
'

[ [cor + —,
'

Q», (qa ) ) —2coTQ», (qa) ] '~,

2 2 2 2
2~e (, p)(~) N —NT Npe, hII ' (q, co)=

c, (co)q N —Ng N —N~~ p

which may be substituted into Eq. (63) to yield

2 2
N —NT

1 —
2 2

N —NL

2
Np~5
2 2

N —N ce

2 2 2 2
co —coT (co»eco»gS )

(co —co.e )(co —cow }2 2 2 2 2 2

which are coupled phonon-3D-electron (or -hole} acousti-
cal plasmons.

Next, let us consider the effect of electron-phonon cou-
pling on the intrasubband modes in a magnetic field. In
this case, we have

+ I [(co»e+co~+cor, ) 4(—co»ecoT+co~coL)] . (70b)

Equations (70) may be compared with Eqs. (67). We see
that the effect of the magnetic field is to shift the 2D
plasmon frequencies by the cyclotron frequency, and thus
we obtain coupled phonon-electron (or -hole) magneto-
plasrDon modes.

In the strong-coupling limit, we have four branches for
k,&0. These are given by

co = T(coro+co&+cc+q )
2 1 2 2 2

+ —,
'

[(coLO+co,'+cr+q')' —4(coLco, +coTcr pq 2) ]'~I,

with cI+ given by the expression given before. This result
is also understandable physically: The coupled electron-
hole acoustical-plasmon frequencies are shifted upward by
the cyclotron frequency. Thus we have coupled
phonon —electron-hole acoustical rnagnetoplasrnons.

For k,a =(n+ —,
' )n., we obtain two decoupled sets of

phonon-electron (or -hole) 3D acoustical magneto-
plasmons. The dispersion. relations are

co+ = I [cor.a+co~+ 2 Q»e(qa) ]
+ —,

'
j [coL+co, + —,

'
Q», (qa) ]I

—4[coroco, + —,
'

coTQ», (qa ) ] j
'~

Solving this equation analytically, as it stands, for co is
a difficult task, since we obtain a quartic. The solution is
greatly simplified, however, if we assume that the electron
and hole cyclotron frequencies are the same. This essen-
tially amounts to assuming that the effective masses of the
electrons and holes are the same. This is not usually the
case, but we will be able to obtain at least a qualitative
idea of tlie structure of the modes this way. By setting

co„=co,r, =co„Eq. (68) gives

2 2I + (coc +cor„))'+ l 2 2
N+ = + [[l+(co.+~L)r+l'

V+ 7+

co+= 2 [cor.o+co~+T~Q»r (qa} 1

+ Y~ [ [cor.o+co~+ Y~ Q»r (qa) ]
—4[~LA+ —,

'
~TOQ»'r, (qa}'l] '" .

For k, =0, on the other hand, Eq. (68) yields the optical-
phonon mode

2 2
N+ —NLQ

and the cyclotron IDode

Finally, we consider the effect of electron-phonon cou-

(69) pllllg 011 tllc llltcl subband modes. A stl alglltforwal'd gcll-
eralization of the procedure given in the discussion of the

where y+ is the same as in Eq. (66). effects of electron-phonon coupling on the intersubband
In the weak-coupling limit, Eq. (69) yields two sets of modes in type-I superlattices yields theexpression

N —NT
2 2

1 —
2 2

N —NL
, "', X'„'„'(q)

N Qnp

N —NT
2 2

1—
N2N2

2

N —Qno

N —NT
2 2

2 2
N —NL

'2 2 2
no np (e), (p)—,(w:.~'q)(v«~'q»

N —~nON —
O

(71}

where we have defined
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(e) (e) (e) {e)
~nn(q) =ann Pnn pnnSq ~

and similarly for A, '„h„'(q). As in the case of the intrasubband modes, Eq. (71) is difficult to solve as it stands [compare
Eq. (68)]. We make the approximation that the electron and hole subband separations are equal, Qno ——Qno, to obtain a
qualitative idea of the modes implied by Eq. (71). Then, Eq. (71) yields

~+=— +(~L+&,o) +—1 1 2 2 1

2 y+

2 T

2+(~r+.II no)
—4 T+~LIIno2 2 2

y+ y+

1/2

(72)

where now

g(e) +g(h)+ [(g(e) g(h) )2+4 (e) (h)(S )2]1/2

Q2 2[g(e)gth) (e) (hj(S~q)2]
(73)

In the weak-coupling limit, Eqs. (72) and (73) yield two sets of modes, corresponding, respectively, to y and y+.
These are given by

~'+ = ,' [&'.o(—I+~.". P.".' —p.".'q)—+~L]+ ,
'

[ [&'.o—(1+a.".—P.".' —p.".'q)+~L] 4[~L+~T«':.' —P':.' —p.".'q)]&'.oI
'"

(74a)

and

~+ =
2 [&'o(1+&'n' —P'.' —p'n'q)+~L]+ 2 [[II'o(1+&'"n'—P'"' —p'"n'q)+~z. ]'—4[~z.+ ~o(T'a"' 13n' —pn'q)—]II'o] '

(74b)

These expressions show that in the weak-coupling limit each layer supports its own coupled phonon-intersubband mode.
In the strong-coupling limit, on the other hand, we have two cases to consider, k, =0 and k,&0. For k, =0, Eqs. (72)

and (73) yield the four branches

2 [~L+~Ino( I +&n+ )]+ ~ [L+ &no( I +bn+ )] —4~n o[roL+Tbn+ ]

where we have defined rjnn ——ann —I3nn and

(e) (h) —1 (e) (h) (h) (e)
2[gnnqnn a ( gnnqnn gnn inn )]

"+ (e) (h) —1 (e) (h)
[9nn+gnn a (pnn+pnn )]+I[gnn R'nn a (pnn pnn)] +4 pnnpnn I

(e) (h) —1 (e) (h) 2 —2 (e) (h) 1/2

In this case, the excitations have the character of corn-
bined phonon-electron-hole intersubband modes.

For the case k, &0, S=2qa [1—cos(2k, a)] ' and
S'=S cos(k, a), so that Sq and S'q are of 0 (q ). Since we
limit our analysis to 0 (q) for the intersubband modes, we

can, to this order, put Sq and S'q equal to zero. The
dispersion relations then reduce to those of Eqs. (74),
differing only by terms of 0(q ). The reason for this is
that since k,&0, the density oscillations change in phase
from one supercell to the next and the coupling between
the electron and hole intersubband modes is screened out.
We have already seen this sort of behavior in our previous
discussion of the intersubband modes of type-II superlat-
tices in the absence of electron-phonon coupling.

III. CONCLUSIONS AND DISCUSSION

In this paper we have presented a survey of the elec-
tronic collective modes in single- and multiple —quantum-
well systems, including the effects of electron-phonon cou-
pling, magnetic fields, and retardation. We have found a
very large variety of such modes: quasi-2D plasmons and
magnetoplasmons, acoustical plasmons, intersubband
modes, coupled phonon —quasi-2D plasmon and phonon-
quasi-2D magnetoplasmon modes.

We have shown that the intrasubband modes display
the appropriate crossover behavior (from 2D to 3D) on

going from the weak-to strong-coupling regime. The in-
tersubband modes also display a change in behavior upon
going from weak- to strong-coupling regime, but the
behavior in the strong-coupling limit cannot really be
called 3D, since there is no 3D analog to intersubband
modes.

The electrostatic modes (i.e., those which exist in the
nonretarded limit) can be detected by light scattering,
inelastic-electron-scattering, and infrared-absorption mea-
surements. The effects of dispersion in the x-y plane are
more easily seen by light scattering experiments. In par-
ticular, it should be possible to observe the large softening
of the intersubband modes in type-I superlattices for q&0,
which was described above. The q&0 intersubband modes
have been seen by Olego et al. , who also observed the
acoustical intrasubband plasmon predicted in Eq. (24).
The electrostatic modes in type-II superlattices are prob-
ably not so simple to observe. Part of the difficulty is that
the applicability of the theoretical results is not certain;
the subband approximation may not be justified in sys-
tems in which the conduction-band edge is below the
valence-band edge. Clearly, more work needs to be done
on this system.

In our work, we have not considered overlap of carrier
wave functions in adjacent layers. For systems in which
the layers are thin, such overlap is important. In particu-
lar, the peculiar band structure of these systems (in which
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the minibands are no longer flat) suggests the possibility
of so-called saddle-point excitons, in which an electron is
excited from a valence-band maximum to a conduction-
band saddle point (and vice versa). We have already dis-
cussed the necessary modifications to the above theory. In
addition, it would be interesting (and important) to in-
clude the effects of the spacer layers (i.e., the layers

separating the electron layers from each other) on the
linear response of these systems.
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