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Conditions for the quantum Hall effect
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The quantum Hall effect occurs in imperfect two-dimensional systems of electrons subjected to
strong perpendicular magnetic fields. We determine the conditions on the random imperfection po-
tential, relative to the magnetic field, under which the quantum Hall effect may be expected to
occur, if electron-electron interactions are neglected. It is found that all physically reasonable disor-
dered potentials should exhibit the effect in the limit of large field (with electron density increased
proportional to the field). This is done by examining the behavior of the eigenstates in various kinds
of potentials and collecting the results. Earlier work is reviewed in this context. The consequences
for localization in two dimensions in a strong magnetic field are discussed. The mechanism of lo-
calization turns out to be qualitatively different from that of Anderson localization.

I. INTRODUCTION

The quantum Hall effect' is one of the most exciting
discoveries in physics of the past decade. Although much
of the theoretical interest has shifted to the anomalous
quantum Hall effect, there are important questions
remaining in the normal case. In this paper we discuss the
theory of the normal quantum Hall effect. Our main con-
clusions were published earlier in a brief communication.

The Hall and longitudinal conductances, a.
~ and o.»,

of a pure, two-dimensional noninteracting electron gas in
a perpendicular magnetic field can be calculated exactly if
an integral number of Landau levels are precisely filled.
Then o (and the resistance p„„) vanish, since the elec-
trons drift perpendicular to both the electric and magnetic
fields, while o„y =ne/8=XI e /h, where XL is the (in-

tegral) number of filled Landau levels, and h is Planck's
constant. This result relies on the fact that a single filled
Landau level has density n =e8/h.

In actual experiments in inversion layers, at sufficiently
stroIlg flclds, low temperatures, Rlld lllg11 mob111tlcs, tllcsc
1dcal values Rrc found, 1ndccd to RQ Rstonlsh1ng pI'cc1slon.
%hat is more, they persist over a finite interval as the
density or magnetic field is varied, giving a step structure
to the Hall conductance versus electronic density plot.
This is illustrated in Fig. 1. This aspect cannot be ex-
plained without invoking impurity effects.

These step values are observed to be quantized to an ac-
curacy of almost 0.1 ppm. Since the fine-structure con-
stant a=e /hc=2oy„/Et. c has been previously deter-
mined oIlly to about tllis Rccll1'Rcy (Rnd SIIlcc c Is ktlowtl to
nine significant figures), the two-dimensional electron gas
offers a way to improve our knowledge of this fundamen-
tal physical quantity. '

The conductance of a two-dimensional electron gas in a
strong perpendicular field is thus a case in which impuri-
ties, imperfections, and finite temperature do not neces-
sarily have a big dissipative effect. In that respect the sit-

uat1on 1s similar to the Meissner effect in superconduc-
tors, or for that matter, similar to the effect of a small
number of impurities on an insulator. Obviously, the ex-
istence of an energy gap is the common denominator in
these cases. Then temperature effects, for example, have
the possibility of being exponentially small.

The effect of the interelectron Coulomb interactions is
somewhat complicated and is the main interest in the case
of the anomalous effect. ' On the one hand, the basic
quantum Hall effect phenomena and the gap (between
Landau levels) already exist for the noninteracting elec-
tron model» whcI'cRs supcrcoQduct1vlty exists only by v1I'-

tue of the electron™electron interaction. Qn the other
hand, the anomalous quantum Hall effect corresponds to
fractionally filled Landau levels, e.g., XI ———,', —', , —', , etc.
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FIG. 1. Hall conductance vs density showing the step struc-

ture found in clean two-dimensional systems. The straight line
is the conductance in the absence of impurities.
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This can only be explained on the basis of electron interac-
tions, in which the Coulomb repulsion favors a state with
an energy gap at these rational fractional fillings. This
situation is not unlike the case of the insulator, where in
the simplest cases the gap is a consequence of the non-
trivial external potential of the substrate ions. There are,
however, (Mott) insulators for which the Coulomb in-
teraction plays an essential role.

In this paper we shall consider the two-dimensional
noninteracting electron gas in the presence of random sub-
strate potentials in a strong magnetic field. We thus con-
centrate on the effects of imperfections, which are also
essential to the problem. This is the case because the Hall
steps are seen for a range of densities, not just those corre-
sponding to integer Landau level occupation. In fact, if
there are no imperfections, but with any interactions and
at any temperature, it is easy to show (by going to the

frame of reference cE&&B/8 ) that o„~=nec/8, with n

the two-dimensional number density of electrons and this
density is not quantized.

The general picture which is developed is that there is a
subset of electrons (in extended states) which carry a net
current and form a sort of fluid of effectively the ideal
(perfect Landau-level) density. The local velocity, actual
density, and current density of this fluid varies from point
to point, depending on the potential in which it finds it-
self, but the total current is the ideal current. This type of
behavior 1s scen 1n experiments Using spcc1al pl obcs to
measure the internal currents of a sample. The remaining
electrons, or holes, are localized by the random potential.
Extra electrons can be accommodated by the localized
states, up to a point, which account for the plateau struc-
ture. The electrons in the mobile fluid cannot undergo in-

elastic dissipative scatterings when all these states are well
below the Fermi level (and the temperature is sufficiently
low), i.e., there is an energy gap against changing the state
of the fluid. The gap is between bands of extended (fluid)
states, which are separated by the localized states. This
applies when the density is in the middle of a step. Also,
in order that the Fermi level r'emain between steps, there
must be states to be occupied, else the Fermi level will

)Ump with R small change 1n dcnslty.
%hen the density is between steps, the Fer'mi level is in

the middle of the fluid electron states. Then there can be
dissipation, o~ will be positive, and oz~ will not have an
1dcal valUc.

This p1ctuI'c pI'csUITlRbly Rppllcs to thc RIloITlaloUs qUan-

tum Hall effect as well. However, it has yet to be worked
out for that case. The convenient independent electron
concepts of localized and extended states are not manifest-
ly applicable there.

In this work we shall treat cases of strong disorder.
This is thus of interest because of its connection to the
general question of localization in two dimensions. It is
known from scaling arguments that all states, in the ab-
sence of magnetic field, are localized, if only logarithmic-
ally. Both the power and the shortcoming of these argu-
ments, however, is that the finer details of the electronic
states in the random potential are irrelevant to their valid-
ity. Not too much needs to be known about the wave
functions, but little can be concluded about them either.

This is especially true of the extended states. In the
strong-field case treated here we believe we can say a cer-
tain amount about the properties of the states, and in a
quantitative way. It turns out that the process by which
localization in a strong magnetic field is produced by dis-
order is quite different from Anderson localization. This
lends credence to the view ' that even weak magnetic
fields have an essential effect on localization in two di-

mensions, since that case can be considered as intermedi-
ate between Anderson localization and the type of locali-
zation considered here. We will not attempt to link all

these together in the present work, but only to explicate
the nature of the states in the strong field.

The plan of the paper is as follows. Section II is a dis-
cussion of the pure system, some special cases of impurity
potentials, and the qualitative nature of the disordered po-
tential in real systems. Sections III—V each analyze a dif-
ferent kind of disordered potential. In each case the quan-
turn Hall effect is derived and the criteria for validity of
the derivation are discussed. The three sorts of potential
are as follows: Sec. III, small potentials; Sec. IV, scatter-
ing potentials; Sec. V, smooth potentials. Section VI com-
bines the results of the previous sections, and deduces as
much as possible about the Hall effect and localization.
Some remarks about finite temperature and interactions
are added. Section VII is the conclusion.

We will find that the quantum Hall effect occurs for all
nonpathological disordered potentials in sufficiently
strong field. The phenomenon is not peculiar to any par-
ticular model. This conclusion has been stated before, '

but without detailed discussion of its microscopic justifi-
CRtlon.

The system is a noninteracting gas of electrons confined
to the x-y plane and subjected to a magnetic field in the z
dlIcctlon. Wc consider only onc spin dllcctlorl Rnd em-

ploy units in which m, the effective mass of the electron,
fico„ the cyclotron energy, and the magnetic length

(Ac/eB)'r—are all unity. (The length I is about 50—100
A.) The Hamlltonlan ls

1H =——i +A +——i +~y
2 Bx 2

1——+U(x,y) .
2

(2.1)

with m = —co, . . . , —1,0, 1, . . . , co). These functions

A is the vector potential and U is the disordered potential
V plus the applied electric field. If U=O the energy levels
are E„=n and each is infinitely degenerate. It is possible
to choose linear combinations such that the energy eigen-
functions are either localized or extended. For example, if
we choose to diagonalize the z component of angular

momentum, the solutions in the gauge A= —,(y, —x) are

f(p, g)=[2nl ( —,
~

m
~
+ I)] ' e' ~e ~ (Tp ) ~

(2.2)



form rings around the origin of approximate radius
p=(2

~
I

~

)'/ and width l. They are thus localized. On
thc othcf hand, wc can choose to diagonallzc the p com-

ponent of momentum. The Landau gauge A=(0, —x) is
convenient and the solutions in t4e lowest level are

g(x,y) =(LMm)'. / O'I'~e ("+r) /2 . (2.3)

Thc dcgcncfacy 1s completely bI'okcn, Rnd wc have tIUc lo-
calization. In fact, as we shall see below, (2ll states are lo-
calized for a potential of infinite range in the absence of
an external electric field. (Even a potential of finite range
will bind all states, though in this case the binding energy
will be exponentially small for most of them. For practi-
cal purposes the number of bound states is finite. ) This
holds regardless of whether the potential is attractive or
fCpulS1VC.

If instead of an impurity potential we apply an electric
field in the —x direction, then U= —ux, where u =E/B is
the classical drift velocity. E is the applied electric field
and 8 is the magnetic field. The y component of momen-
tum is still a good quantum number. The states in the
lowest I.andau level are

Here p=2Irk/I. , with k integer. 1. is the length of the
system in the y direction, and

~ p ~
& W/2, where W'is the

lcngtll of tllc systcIII III tllc x dlrcctlon. These states alc
extended and form strips along the line x =const, again of
width l.

If U&0 then the degeneracy is broken, and the eigen-
states are uniquely specified. Their localization charac-
tcrist1cs Rrc Qo longcI' ambiguous. An exactly solvablc ex-
ample is U=C/(x +y ). Let I(= —,'(I +C )'/. Then
the energies are F„=n+a.+m/2 and the eigenstates of
the n =0 level are

I (~)]1 /2iemg —
e P2/42 —a 2a.

(2.5) can be seen by direct application of the current
operator to have an expectation value for the current of
(O, eu). The total number of states in one level is WL/2Ir.
Thus the total current in the y direction contributed by
one level is Jz Cud——"L/2Ir, which, reverting to normal
units, glvcs a Hall conductance 0'rz =Jy /@LE =e /iI, thc
quantum of conductance. This value persists even if we
add the 5-function impurity. The extended states carry
additional current such that they compensate for the zero
current carried by the bound states. The total conduc-
tance of one Landau level is precisely e /iI for this case.
%c w111 show that siII111af plctUlc holds IDore gcncIally:
There are a number of bound states which carry no Hall
current, but the same potential which binds these electrons
accelerates others, producing the ideal quantized conduc-
tance.

As a final characterization of the pure system and for
future reference we calculate the retarded Green's func-
tion in the presence of an applied field. Then the com-
plete set of eigenfunctions is

(2.6)

Here H„ is the nth Hermite polynomial and again we
work in the Landau gauge. The eigenenergies are

E„r=n+pu so that the degeneracy is completely hfted.
Each lcvcl hRs broadcncd 1nto 8 band and wc RssUIIlc that
u is sufficiently small that the widths of the bands are
smaller than their spacing. The expression for the Green's
fUQCt1OQ 1S

() 2' E E+jQ—

which Rftcf soIIlc algcbl Ric man1pulation bccoIIlcs

(I~ )
I /2&i (p—+u)ye —(x+p+u)2/2 (2.5)

where p satisfies the same conditions as in Eq. (2.3). The
energies of these states are E,~ =pu so that the degeneracy
is completely lifted. Again the wave functions follow the
contours of constant potential, which are now the lines
x =const. These lines escape off to infinite distance so
that the stationary states are extended.

The question of localization in this sytem can be seen as
a competition between the impurities and the electric field.
The former produce closed-contour lines and favor locali-
zation, whereas the latter carry some of these lines off to
lnf1nlty, g1vlng cxtcndcd states. Thc1c 1s onc IIlorc exactly
solvablc case w41ch combines an Rppllcd flcld Rnd RQ

impurity potential: U= —ux+A, 5(r). For a sufficiently
weak applied field (u & A, /10), a condition which is always
satisfied in practice (u is of order 10 ), there is one
boUIld state pcf Landau lcvcl Rnd thc remaining states Rrc
cxtcndcd.

To understand the Hall effect we need the current of
the stationary states in the y direction. Each of the states

H„(x +p)H„(x'+p)e (~+~/2)
XJ'dp "

E —n —pU +15

(2.7)

Here X is defined as exp I i [u —(x +x ') /2](y —y')
(r r')2/4I an—d a=x—+x' i (y —y'). L—et us examine

the expression (2.7) first in the case where E lies in a gap,
i.e., E&n+pu for any n,p Then the te. rm pu in the
denominator of the integrand can safely be ignored. The
integral can be performed, leading to

6 =(X/2Ir) g (E —n) 'L„((r—r ') /2),

=(1/2Ir)XI'( E)4( E, 1;(r—r —'—) /2) .

%' is a confluent hypergeometric function of the second
kind. To obtain the last expression we have used the gen-
erating function for the Laguerre polynomials. 4 behaves
for these values of its parameters asymptotically as

~

r r'
~

. Together with —the definition for X we find



3306 ROBERT JOYNT AND R. E. PRANGE

~

r —r'( ~00 . (2.9)

CalCU18tlon to hlghef Order ln U does Qot Change CXpOQCQ-

tially decaying behavior of G.
Now take the case where E lies in the Mth band, say

E=M +you. We will not bother to get the exact form for
thc GI'ccQ s function, but onlp the RSQIDptotic bcIlaviof.
The terms in the sum with n&M give exponential decay
as above. The integral can be conveniently performed
around an infinite rectangular contour with the real axis
as one edge and the line Imp=(y —y')/2 as the other.
This extracts the asymptotic form as

Go(r r *E)= e(y —y )exp[ ——,(po+x) ——,(po+x ) +~(pa+~)(y —y')]H~(x+@0)JIM(x'+go) .
77U

Thus the Green's function vanishes unless x -x'-po. We
will explore the implications of this later on.

We intend to examine the behavior of the electronic
states in several different types of disordered potentials,
but first it would be nice to know what the potential looks
like in a real system, at least qualitatively. This is fairly
well known for the zero-field case. A comprehensive re-
view has bccn «I«)nc 4p Ando, FowlcI; Rnd StcI'Q,

A chief difference in the two-dimensional, as opposed
to the three-dimensional, case is that an average fluctu-
atio V bet%"ccn t%'G states ls

If I (x,y)g(z) V(x,y, z)fz(x, y)go(z)dx dy dz . (2.11)

The f's are the two-dimensional wave functions, and the
go's are the lowest energy eigenfunctions of the one-
dimensional Hamiltonian of the z direction. These last are
the same for all states of interest. The effective potential
to bc Used ln thc two-dlIDcnslonal Schrodinger c«IURtlon ls

V, (x,y) =J i go(z) i
V(x,y,z)dz . (2.12)

For example, consider an unscreened point charge Qe at
the origin. The effective potential would be

Ot)

V, (x,y)= — b' zze s'(r'+z') '~ dz, (2.13)
2x

where we have substituted the approximate form of Fang
and Howard' for the wave function of the third dimen-
sion. 1/6 is the extension in the z direction, about 50—100
A. The Coulomb form for the effective potential holds
for distances greater than this, but is cut off at small dis-
tances. In the above, I« is the dielectric constant, which is
assumed to bc thc saIDc ln tile semiconductor Rnd insula-
tor. Otherwise, image charge effects should be included in
(2.13).

The overall effect is a smoothing on the scale b, which
is, unfortunately, of the same order of magnitude as 1.
The same will hold for impurities located far away from
the interface, both those in the oxide and those in the
semiconductor. There will be many such defects, produc-
ing 8 potential wIllch ls disordered, but still qUltc smooth.

Screening' will be important also, unless all Landau
lcvcls Rfc either complctclp full GI' CGIDplctelg cHlptp RIMI

viftUR1 lIltcf-Landau-level tI'Rnsltlons can bc neglected. Its
effect will be complementary to the finite-thickness
sIDGGthlng~ since lt %'cakcns thc long-%'Rvclcngth coID-
poIleI1ts of thc potcIlt181. However, thc «detailed effects of
screening in the strong-field case have not been worked
out. The exchange correlation effects are even less clearly

Understood. IQ par ticUlar, thc chRi Rctcnstic scI'ccnlng
lcngtll ls Qot known. Howcvef, IQost of thc basic lengths
in the problem, such as b, I, the Coulomb length l, defined
by e /xl, =Pm„and n ' are comparable in practice.

A further argument goes as follows: Suppose a conduc-
tivity is defined, which can be done by averaging over a
sufficiently large length scale. Suppose cr„„although
snlall ls positive~ which %'ill be tluc at finite tcIDpcI'RtUfc.
Then (B /Bx +B /By )4(x,y)=0, since the current is
divergence free, where 4 is the two-dimensional electro-
CIlclmcal potcntlR1. Thus 4' has no IDaxiITlUID of
minimum in the sample interior. Now 4 is to first ap-
proximation just a smoothed V(x,y). If the scale over
which one must average to define conductivity is l, this
suggests that the fluctuating potential V has its important
Fourier components in the range of wavelengths about l
bUt tllc CGIDponcnts Rt much 18I'gcl GI' smallcf wavelengths
Rfc not so 1IDportRnt. However, %'c shall not 1IIlposc thc
condition that the long-wavelength components of V have
no lntcfiol maximUDl of IDiI11IDUID slncc wc do Qot kno%'

very well the scale of averaging required for this to be
true. Still, we must show that even quite SID811 potentials
have no effect on the total current, since we are interested
in vcr' pI'cclsc answcI's.

The rms magnitude of V can presumably be fairly large
(of order Ace, ) in dirty systems, and considerably smaller
in clean ones. The maximum magnitude of V can prob-
ably be on this scale (for example, near a charged impuri-
ty) even in a clean system, but this will occur rather rare-
ly.

A further source of scattering which cannot be treated
on quite the same footing is surface mughness. The inter-
face is really a mugh wall into which the inversion layer
may not penetrate. It gives rise to an effective potential
with a correlation length estimated to be about 15 A.
ThC lattCf ValUC ls OpCQ to SOIDC doubt 4CCRUSC lt 1S dC-
duced from theoretical fits to conductivity data and the
Rgfccmcnt still lcavcs soIHcthing to bc dcsifcd. It is
tllougllt that soIIlc soft of IDGfc short-range scattering
may be necessary for a full explanation of the data, espe-
c18117since t4c conductlvltg in weak IDRgnctlc fields sccnls
to fe«IUlfc such Rn RssUITlPtlon.

In summary, the effective two-dimensional disordered
potential in a strong magnetic field probably has its dom-
inant wavelengths at just the most difficult range. It is
Qot cvcQ pI'oven that 8 single-particle potcQtlRl ls well de-
fined, or is a smooth function of density and/or field, in
view of thc anomalous Hall cIIfcct. Nevertheless, %'c can
make considerable pmgress by studying the effects of the
potcntlal Un«icI' various RssUIDptions,



CONDITIONS FOR THE QUANTUM HALL EFFECT

III. GAUGE ARGUMENTS

Here we review the gauge arguments of Laughlin, ' in
the geometry of Halperin. ' Consider a flat annular sarn-

ple in the x-y plane. There is a uniform field 8 in the z
direction, and, in addition, a magnetic flux 4 threading
the hole. There is an applied dc electric field directed to-
wards the origin and consequently a Hall current flows az-
imuthally. The setup is shown in Fig. 2. Now let 4 be
changed adiabatically by one flux quantum from 0 to h /e.
In this process the energy levels of extended states mill
move because the phase of a wave function which wraps
around the origin must change by an additional e4/h in
order to rejoin itself. (See Fig. 3.) Energy levels of local-
ized states will not change since a state localized at E.
suffer only an overall constant phase change, with the
phase being proportional to the value of the gauge func-
tion at R. When the value of 4 reaches h/e the energy
lcvcls Rrc thc same Rs when 4=0, s1ncc thc phase advance
is 2m., and the problem has returned to its original boun-

dary conditions. This fact is the basis of the Byers-Yang
theorem on the periodicity in 4 of the free energy of a su-

perconducting ring. ' Also, see Ref. 19 for a formal state-
ment of the argument.

In spite of the circumstance that the leuels remain unaf-
fected by the flux change, the total energy of the system

may change since some electrons may have changed their
adiabatic occupation. %hat we must investigate is the
adiabatic movement of the levels as 4 changes. Figure 3
shows the energy-level structure of the system, where it is
assumed that there is an inner and outex "guard" ring
which is free of imperfections. In this region the eigen-
states are localized in the ax'eas between the lines, i.e., they
lie in circular annuli. As the threading flux changes, the
eigenstates adiabatically transform one step inward, and if
there are electrons filling the states, there will be a corre-
sponding current. Assuming that there are no imperfec-
tions at all, the total change in energy is eER', since the
net result is the transfer of one electron from one edge to
the other. This can be thought of as a transient Hall
current due to the azimuthally directed induced electric
field. Now we set the change in electrostatic energy equal
to the change in the total electronic enexgy to obtain
I&h@=eEW or IH =e E8'/h, which gives a Hall con-

FIG. 2. Geometry of the Laughlin argument in the version

given by Halperin. 8 and E are the dc fields. 8» is the auxiliary
field which threads the annulus. The change in the system as 8»
1s increased ls considered.

FIG. 3. Approximate boundaries of states of a system whose
imperfections are confined to a central ring. As the threading
Aux changes by one quantum, each extended state, which is rela-
tively large all around the ring, passes over adiabatically into its
neighbor. The localized states are not affected by the threading
Aux.

ductance of o~„=e h. If EL levels are filled, then E elec-
trons are transferred and the result is o~„=Mt e /h.

Next we consider the impuxe system. %'e have pictured
the eigenstate boundaries in the central region of Fig. 3.
As we shall see, each state occupies an area approximately
2ml . Some states are localized; others extend all the way
around the ring. The localized states are unaffected by
the threading flux, but the extended states transform adia-
batically into their next neighbor. Note that there is a
natural geometric succession of states for this transforma-
tion. After one quantum of flux has threaded the loop, an
electron has moved from the outer to the inner edge, and
consequently the energy is changed by the difference in
the electronic energy at the two edges. Thi.s is just the
electrochemical potential difference (not simply the elec-
tric potential difference). That, of course, is the potential
which is measured, so again the ideal Hall conductivity is
obtRlned.

We believe this is the correct physical picture of the
states, which shows how they organize in a regular way.
However, an argument of Halperin' gives some condi-
tions which, if satisfied, guarantee extended states and an
ideal quantum Hall effect, and which do not rely on de-
tails of the eigenstate structure.

Consider that, as the threading flux is changed, that the
outcI' guard nng 1njccts RQ clcctlon 1nto thc ccQtral re-
gion while another is "extracted" from the impure ring
into the inner guard ring. This process must be able to go
on at low energy, since the flux is changed adiabatically.
There thus must be some extended states in the central
ring since only they are affected by the change of the Aux.
If these states are all well away from the Fermi level, there
is no other possibility but that they somehow be organized
to pass the charge smoothly along through the central
ring. For if not, charge would accumulate, costing much
energy.

If the mobile states in the impure region go up to the
Fermi lcvcl then thcIc ls thc poss1blllty that chaI'gc 1s Ilot
transferred thxough the central region. The simplest pos-
sibility is that the bulk of the imperfect region is insulat-
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ing, so that there are two new edges (at the junction of the
guard rings and the central region). Then at these new
edges (just as at the sample edges ), there must be extend-
ed states going up to the Fermi level. The density of
states for these two situations is illustrated in Fig. 4.

Thus we must find the conditions under which there are
no extended states at all energies between two Landau lev-
els. Thclc lTlust bc Mme locallzcd states, however, outside
the energy region occupied by the extended states, in order
that the Fermi level can lie in that region for an extended
range of densities. In fact, we shall generally find that the
extended states occupy a narrow range of energies, at least
in clean situations.

An easy sufficiency condition that there be no extended
states between Landau levels (indeed that there be no
states at all) was stated independently by Halperin and

by Thouless. Namely, assume that
~

V(r)
~

is every-
where less than fico, /2, where V is the impurity potential.
In this case, the potential V(r) does not move the original
Landau levels by as much as half the distance to the next
level.

The fact that no level moves by more than V,„can be
shown very simply: ' Let Hl =HO+A, V and libel satisfy

Hi„pl Ei„pi„. E——i is the actual energy in the potential and

E, is the unperturbed energy. Then the Feynman-
Hellmann theorem states that

(3.4)

Intcglatlng this ovcI' X glvcs

Ei Eo& f dA—, f V,„i@1(r)i dzr&fico, /2. (3.5)

It is worth recording a slightly simpler version of this
argument which avoids the microscopic question of how
the system changes its energy, and focuses on the total
charge transported as the flux changes. Using the same
geometry as in Fig. 2, dravv R hne in the sample which
winds once around the origin. Let this loop have line ele-

ment dI. Rnd thc cncloscd RI'cR have clement dS. Take thc

6- ='Ell

FIG. 4. Spectrum of the system in the guard ring 6, the cen-
tral impurity legion I, and their junction. The system boundary
is at 8. The Fermi level is given by the dashed line. In the left
diagram, the hypothesis is made that there exist gaps in the ex-
tended states (slashed region), separated by regions of localized
states (cross-hatched boundaries). This case would give the ideal
quantum Hall effect. To the right, it is assumed that some ex-
tended states near the junction rise up to the Fermi level.

applied electric field to be 0 and change 4 from 0 to il /e.
Then

Integrating this ovcI' tiIHc yields

where the hQ is the total charge transferred from one side
of the loop I. to the other. The assumption is that this is
one dectron charge per Landau level. Then Ir~„=1/p~„
(true if p„„=0)is correctly quantized. If IT~ is not strict-
ly 0 then there will be corrections to o.„„oforder
(e /h)(I7„„/IT&„), but these corrections can be made unob-
servably small by the proper choice of experimental pa-
rameter s.

IV. SCATTERING POTENTIAI. S

In this section we examine the effects of a potential
which is due to a random array of scatterers. More pre-
cisely, consider a function V„(x,y) which is 0 except in
lsolatcd lcglons, each such I'cglon bclng scpaI'Rtcd from
every other by distances greater than /. Then the Hamil-
tonian has the form H =Ho+ V„, where

1 8 1 . 8 1
Ho ——— +——— i +—x ———Ux (4.1)

2 Ilx 2 By 2

so that the applied field has been included in Ho. The
eigenfunctions of Ho have been written down in Eq. (2.6).
Each eigenfunction belongs to a distinct energy. The spec-
true of Ho ls completely nondegeneratc. ()vvlng to thc
magnetic field, even degeneracy from time-reversal invari-
Rllcc is lacklllg. This IllcR118 fllat clRsflc scattcrlllg callllo't

change the direction of propagation of a wave packet,
since its mean energy must be conserved. There is for-
ward scattering only. %C shall see that only elastic
scattering is allowed. These facts are the physical origin
of the "vanishing of the scattering rate" invoked by von
Klitzing to explain thc original dRta. ForIDally lt may bc
seen as follows. The Lippmann-Schwinger equation
governs thc scattcrin:

$(r,E)=go(r, E)+f d r'Go(r, r ',E)V„(r ')g(r ',E),

where f(I',E) Is tllc scattering state of energy E, g/go(1;E) is
thc stRtc lfl thc absence of scattering. Thc free retarded
Gl cell s fllllctloll GII has been calculated in Eq (2 g)
Comparison with Eq. (2.6) shows that

Go(r", r ',E)-ig(r, E)P*(r ',E) (4.3)

in the asymptotic region
~

r —r '
~

p~l, y &py'. This fac-
torization property foHows direct1y from thc nondegenera-
cy of the energy levels. Substituting the asymptotic form
of Go into Eq. (4.2) gives

where J is the current across a line of unit length and p is
the resistivity tensor. Let p vanish. Finally we obtain

(3.3)
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g(r, E)-e' ' 'Po(r, E) (4.4)

in the asymptotic region. This means that a wave packet
moving along the line x =const at speed u will suffer dis-
tortion and acceleration in the neighborhood of the
scattering center but will ultimately recover its original
speed and path. It does so after traveling a distance of or-
der i away from the scatterer. This is unlike normal
scattering where the length scale of the approach to the
asymptotic region is set by the size of the potential. The
normal free Hamiltonian contains no parameters having

W(r, t)= f dEF(E)go(r, E) (4.5)

where E is some envelope function strongly peaked around
Eo. The form for W long after it passes the site is

the dimensions of length, but that is not so here.
The most important aspect of the scattering of a wave

packet for the purposes of the quantum Hall effect is the
acceleration. Let the wave packet, before it reaches the
scattering center, have the form

W(r, t)= f dEF(E)go(r, E)e'+ ' ' '= f dEF(E)go(r, E)exp i 5(Eo)+(E Eo) — Et-
dE

d5= exp i 5(Eo)—Eo W, (r, t+t„), (4.6)

where t~ = d5ldE—
~ @ and Wo is the form for the wave

packet in the absence of scattering. The packet is thus ad-
vanced from its unscattered position if d5/dE

~ E & 0, and
0

retarded if d5/dE
~ E &0. We shall see that the former

circumstance is typical when the potential has bound
states. This acceleration makes the extended states carry
an extra current which compensates for the zero current
carried by any localized states associated with the scatter-
ing center. Let us now see how this compensation can be
shown to be exact.

Consider the Hamiltonian
2

H(ri) =— + i +x—+ri —1 —ux+ V„(x,y) .
Bx

(4.7)

Direct differentiation gives dH/dpi= —j~/e, an operator
equation. The Feynman-Hellmann theorem states that

holds also in simply connected geometries and without
resorting to auxiliary fields. What we wish to do now is
to combine Eq. (4.7) with the peculiar scattering theory of
the system to give a microscopic picture of the Hall
current.

For simplicity take the case of a single scattering center
represented by U(x,y) and choose coordinates such that
the region of support of U is symmetrically placed with
respect to the y axis, i.e., U(x,y)=0 for ~x

~

&xo. The
change in the Hall current that the potential produces can
be deduced from its effect on the energy spectrum of
Ho(g) =H(g) —U as shown by (4.7).

Since the observed current arises from the interplay of
bound and extended states, an appropriate mathematical
tool for the problem is Fredholm theory, which treats the
two on an equal footing. In this formulation we find the
exact eigenenergies of the system by locating the zeros of
the function

(g (q) p (q))= (4.&)

D(E)=det =det[1 —Go(E)U] .
E —H
E —Hp

(4.10)

where f (ri) are the normalized eigenvectors of H(ri) and
E (ri) their eigenenergies. Thus

BE /By=a(g) . (4.9)

The variation of ri can be considered either as a gauge
transformation 2 =(0,—x)~A'=2 +f, with f= —riy, or
as a change in boundary conditions:

g(y =0)=f(y =L,)~g(y =0)=e' g(L ) .

Equation (4.8) is closely related to Laughlin's argument.
In that method the derivative on the right-hand side is re-
placed by a differential change of ri from 0 to 2m/L. We
can then verify the statement concerning the invariance of
energy levels by noting the invariance of the boundary
conditions under such a change. The present derivation
differs from that of Laughlin in that Eq. (4.7) is not
summed over a, so that we can use it to find out which
states carry what current. It also makes explicit what was
implicit in that proof: that the quantized conductance

The behavior of these energies under variation of ri can
also be established. We relegate the details of the calcula-
tion to Appendix A and state the conclusions.

The states can be divided into three classes.
(i) Bound states, Nb in number, characterized by

dE/dg =0, which naturally carry no current.
(ii) Extended states having

~

Elu
~

—xo &&1. These
states are unaffected by the potential since they are out of
its range. They have dE/dri=u, as in the pure case, and
therefore their current is unperturbed.

(iii) Extended states which are scattered by U, and carry
additional current. We will devote the remainder of the
section to the analysis of the properties of these states.

Define a function b,(E) which is the energy shift
E~ —E~ at E=E~ and the E~ are the eigenvalues of the
extended states, paired with the E in order from lowest
to highest. Then the analytic properties of D(E) yield the
following behavior for b,(E) over one Landau level: It is
continuous and has limiting values b,(E;„)=0,
A(E,„)=2~uNb/L. E;„and E,„are the edges of the
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unperturbed band. The entire change in b,(E) comes in
the range —UxogE&Uxo, i.e., from the states of class
(iii).

b, (E) is in fact related to the phase shifts of the scatter-
ing. In the region far from the impurity site the perturbed
states have the form

P (x,y)=C~(x)exp[i5(E )+iE~/U] .

The energies satisfy

(4.1 1)

(4.12)

where k~ 1s an 111tegel and 5(E~ ) = I k(E—~ )/U T.he
behaviors of h(E) and 5(E) are thereby seen to be the
form of Levinson's theorem appropriate to the system.
We are now ready to apply Eq. (4.8) to the scattering
states. From Eq. (4.12) we see that as ri runs from 0 to
2m/1. , k —. &k + 1. Equation (4.8) therefore becomes

—
Jy I. L dA

2 2 dE
(4.13)

Summing this over o.'
.total

=(N Nb)u+— [A(E „}—b,(E;„)]
e 2%

(4.14)

where X is the number of states in a single Landau level.
The increased current of the scattered states precisely

compensates that not carried by the bound states. This re-
sult is nonperturbative and completely independent of the
magnitude of U. Since the compensating current comes
from states for which the scattering is strong it is not
surprising that treatments based on the Born approxima-
tion do not give this result.

If U„consists of many centers, it can be represented
schematically as in Fig. 5(a). The multiple scattering

analysis is trivial, however, since the stochastic clement
normally so difficult to deal with is not present. The
scattering states simply follow the lines of constant poten-
tial in the region where U„ is zero. At each encounter
with a scattering ccntcr they suffer a phase shift, but, these
shifts simply add. It is easy to see that the conclusion is
the same as for a single scattering center: The current
Aowing through any region is the same as if no impurities
were present. The Hall conductance remains quantized.

%'hat potentials can be treated as scattering potentials
in this sense7 For scattering theory to be valid we must be
able to specify the boundary condition that the wave func-
tion approaches its asymptotic form to some desired de-

gree of accuracy. Since Go(r, O, E)exp( r li ) —we require
that the scatterers be separated by aIdistance R =sl, where
s is a numerical factor of order 1. If relative errors are to
be of order 10, the accuracy of the Hall-effect measure-

ments, then s-4. Circular impurities of radius d of in-

creasing concentration are shown in Figs. 3(a) and 3(b}.
As the concentration increases, the minimum width of the
potential-tree network decreases. At some critical concen-
tration n, this width will become less than R. Conversely,
at n, the scattering centers, now considered to be of radius
d +8 /2, themselves form a continuous network, a barrier
to the passage of the Hall current. The alternative views

are shown in Figs. 3(a) and 3(b). At n, the scattering
theory argument for the quantized Hall conductance
ceases to be valid.

This percolation problem is equivalent to that of plac-
ing conducting disks on an insulating plane. At a concen-
tration n, of disks the plane becomes conducting. n, has
been determined numerically by Pike and Seager. Their
result, translated into our notation, is

0.35

(d +8/2)
The numerical coefficient is accurate to within about 1%.
If d is assumed to be short compared to the magnetic

FIG. 5. (a) Scattering potential at less than the critical concentration. The shaded potential-free region contains rivers which are
everywhere wider than R. If the sample were infinite, this region would form an infinite connected random network of such rivers.
(b) Scattering potential at a concentration higher than the critical one. The infinite network of potential-free regions has been cut by
a barrier of impurities. If the potential has large-scale homogeneity, then the barriers form an infinite network. The rivers of width

greater than 8 are now isolated lakes within this network. (c) Alternative view of Fig. 3(b) showing the analogy to disc conduction.
At the concentration shown, the discs'will conduct because of the continuous path going up the left center of the picture. In an infi-

nite system there will be an infinite number of such paths in any direction.
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length, then this can be turned into a condition on the
magnetic field

s Acn

1.40 8

Using a typical value n =3)&10"/cm this becomes (in
units of T)

8, =1.3s

This is roughly the field strength at which the quantum
Hall effect is seen.

If the impurities are not distributed at random, the pic-
ture changes slightly. A cluster of impurities can be
grouped into a single center for the scattering analysis.
This reduces the effective value of the impurity density
and hence also the critical value of the magnetic field.

V. SMOOTH POTENTIALS

In this section we consider the case where both an ap-
plied electric field and a disordered potential are presented
but the derivatives of the potential are small (in a sense
which will be specified). What is required is the quantum
equivalent of the guiding center approximation of classical
electromagnetic theory. " In this approximation the
motion of the particle is split into two parts: the fast
motion of the particle around its circular orbit and the
slow drift of the center of that orbit in the potential gra-
dient. The center moves so as to cancel the time-averaged
sum of electric and magnetic forces on the particle. Thus
it gains no energy over a period, and the long-term motion
is along a line of constant electric potential.

The expression for the Green's function in the presence
of a potential U, of arbitrary magnitude, is

i r 2

G(r, r ', t t')= J D—(r(r))exp —' J M
fi t' 2

—eBxy —U( r ) dr

We have returned to conventional units in order to facilitate comparison of relative magnitudes for large B. Classically
the orbit center with coordinates (X, Y) moves according to the equations of motion:

BU BUeBL=, eBF=—
BY '

BX

Immediate consequences of this are

(5.2)

R~~U 8 (5.3)

Our procedure will be to expand the paths in the functional integral about the guiding center path (X(~),Y(r)). This
path in fact minimizes the sum of the last two terms in the integral. We write x =X+u, y = Y+v, and choose initial
conditions X(t') =x (r'), Y(t') =y (t'). Then we can rewrite G as

T

G(r, r ', t —t')=exp —f R eBXY—U(X, Y—) dr G' . (5.4)

Here

G'(uf, vf, 0,0, t t')= f D(—u(r))D(v(r))exp —J dr (u +v ) eBuv MXu —MYu— —

()2U $ Q~U

2 g~' 9XBY 2 gy' (5.5)

In the expression for G' we have kept only terms up to
quadratic in u and v and have integrated by parts where
appropriate. B u /BX is to be interpreted as
B u/Bx

~ „x~,~
and similarly for other such terms. uf

and vf are determined by the guiding center equations of
motion:

uf =x X(t), vf =y —Y(—t) .

Some remarks about formula (5.5): (1) Since in contrast
to the usual stationary phase approximation we did not
choose the Euler-Langrange path about which to mini-
mize, cross terms involving quadratic products of X, u,
etc., appear in the action for G'. (2) Because we have

subtracted out the motion of the orbit center, G' is the
propagator for a particle in a magnetic field in the rest
frame of the center of motion. The particle therefore sees
a potential which is effectively time dependent since in
this frame the (actually time-independent) potential is
moving by it. (3) The first factor is just the exponential
of the "action" of a particle whose differential equation of
motion is (5.2). Since U is independent of time this factor
is a function of the time difference t t' only. Hence this—
must be the case for 6' as well.

In Appendix 8 the effects of the last five terms in the
action for G' are analyzed. If 8 is large or the potential is
smooth, they can be treated as perturbations. The precise
conditions are
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/V' U/ && ~8

for the first two terms involving the derivatives of U to be
small. The conclusion of Appendix B is that these terms
just serve to shift and distort, in classical language, the
circular motion of the orbit. The Green's function of en-
ei.gy E stills falls off exponentially on the scale of l away
from the equipotential line of that energy. Its qualitative
behavior 18 not altcrcd 1n this 1cspcct from thc Green s
function of Eq. (2.10). Thus there will be an equipotential
line associated with each state. The overall correspon-
dence of the contour map of the potential and the elec-
tronic configuration is preserved if the potential is
smooth. In this section we ignore the higher-order terms,
and thc conclusions stated below shoUld bc UndcI'stood 1n

that context.
The overall form for 6 allows us to characterize the

states and settle questions of localization versus extension
for this sort of potential. A contour map for a smooth
potential which includes an applied field looks schemati-
cally as in Fig. 6(a). The entire area may be divided into
two parts: a connected region of open-contour lines and a
disconnected region of closed-contour lines. The ratio of
the areas of these two regions is a measure of the amount
of disorder in the system and in fact determines the ratio
of localized to extended states. We can see this by the fol-
low1ng Rl guGlcnts.

Localized states (closed contours). Take two elec-
trons in the same Landau level and in neighboring orbits.
The difference in their energies, AE, is given by the Bohr
frequency condition as li/T, with T the period of motion
around the contour. The Bohr condition is justifiable for
potentials varying slowly on a scale of l, since one state
occupies an area l, so that the quantum numbers involved
arc large. Thc area bctwccn thc oI'b1ts 18

FIG. 6. (a) Equipotential map of a smooth potential with a
Qonzcro appllcd flcld 1Q thc direction shown. A fln1tc area 1s as-
sociated with the open lines of the potential. This area will per-
colate from one end to the other and will therefore contain ex-
tended states. (b) S~ooth potential without an applied field. In
the infinite-area limit, all contour lines will be closed, except for
possible lsolatcd lines passing through saddle po1nts. Onc such
11nc 1s 1nd1catcd.

where the integral is taken around the orbit. By using
now Eq. (5.2) to find U, KS =2m.l . Hence in a region of
area A of closed contours there are A/2vrl +no states,
with no a constant. no can be shown to be of order 1 by
looking at the properties of the functions (2.2). Thus in
the present approximation, the density of electronic
charge remains essentially uniform in the neighborhood of
impurities (if all the states are full) and is equal to its un-
pcrtUrbcd valUc. This contrasts with thc Usual situation
since the strength of the potential plays no role. It is a
consequence of the fact that the energy ditto, determining
the length scale l and thus the density is much greater
than the energy

~

l P' U
~

which would prefer a different
density. The relative shift in density of a full Landau lev-
el is locally about 4n/n=l

~ V~U /fico, . This small
change in density does not change the net current, howev-
CI'.

2. Extended states (open contours). A similar argu-
ment, with similar results, can be applied to these states.
The separation of neighboring energy levels is determined
by the periodic boundary conditions since the function
higher in energy must have one more oscillation traversing
the system. To apply this condition we need to look more
closely at the first factor of 6 in Eq. (5.4):

exp — dw eBFX—U X, Y

The first term is the result of a gauge change and the ki-
netic energy of the slow motion of the orbit center has
been dropped. (It is easy to show that it is negligible for
large 8.) Recalling that U is constant along the guiding
center path and using

f dr YX=IXdI',

we find an exponential factor exp[ iU(t t')+—i8Se—],
where S is the area between the equipotential line U and
the y axis. (A change of gauge changes the axis rdative to
which S is measured. ) The eigenfunction expansion for 6
1S

g 1(i„(r)11*„(r')exp[ iE„(t—t')]-,
so wc scc that t4c phase advance 18 ploportlonal to thc
area S. Hence the phase difference between two neighbor-

ing extended states is just the area, between them divided
by l . (This quantity is gauge invariant, as of course it
must be. ) Setting this equal to 2n. gives b,S=2m.l . The
conclusion is that the total density in the open-contour re-
gion remains also equal to the unperturbed value. There-
fore the ratio of localized to extended states is equal to the
ratio of the areas of closed- and open-contour lines.

%c can now use this approximation to get the Hall
current. As we have seen, the essential coordinate depen-
dence of 6 comes from the exponential factor, so that we
can calculate the current from it alone. Details can be
found in A.ppeiidix B. Fi'oin Eq. (5.3) i't is evideiit that
charge is transported at a rate c

~

hU
~

/8 in the direction
b, U&&B. The charge crossing a line y= const per unit
time is given by
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There is no contribution from regions of closed-contour
lines since

f I"dx= b,—U/e8=0

across such a fcgion. Thc open-lined 1cgions yield

8
n, c U

where n, is the electron density in these regions. If all ex-
tended states are filled (not the same as the entire Landau
level being filled), we insert our earlier results to obtain a
current of eES'/2Irl 8, corresponding to a Hall conduc-
tance e /h. This shows that the Hall conductance is not
affected by a slowly-varying potential. It also verifies the
conjecture of Tsui and Allen that the impurities "punch
out holes" of zero conductivity but the remaining material
retains the same conductivity. Since the conductance is
independent of area it is unchanged. Note that the present
approximation, by exactly the same reasoning as above,
gives zero transverse conductivity 0.~ .

Although these arguments give a good picture of the
type of states encountered in the case of a smooth poten-
tial, a question remains. This is the question of the mag-
nitude of the corrections coming because of the finiteness
of the potential gradients. The actual arguments given
would suggest that thc corrections alc ordinary pcftufba-
tions, and thus of the order of some power of the V'U.

However, experience in the guiding center problem sug-
gests that the ripples in the potential can be regarded as
adiabatic perturbations. This sort of approximation usu-
ally has exponentially small corrections in the regi, me
where it is applicable. In the present context that would
mean that the current calculated above is correct except
for unobservably small deviations as long as the condi-
tions (5.6) hold. This arises physically because the time
scale of the perturbations in the moving frame is u VU/U,
whereas the underlying time scale is I/co, . More precise-
ly, there are ordinary perturbation corrections to the guid-
ing center trajectory, or in this case, to the wave function,
but certain overall quantities suffer corrections which are
exponentially small, i.e., of order exp( fun, /I

~

V'U
~

). —
Th sth p kt o 1 gl' es h'h
quite the equipotential lines, the density is not quite the
ideal density, etc. , but the current is unaffected. However,
to prove this by directly resuming the perturbation theory
in VU is cumbersome. We shall therefore resort to an in-
direct argument below to reach this conclusion more
rigorously.

Before doing this we must consider whether there are
any extended states at all in the system. For the case of a
scattering potential this is assured becuase the "Aat" re-
gions will contain soIne such states. The smooth poten-
tial, on the other hand, can be nonzero almost everywhere
in the system. A picture of such a potential is shown in
Figs. 6(a) and 6(b) for different situations. If there is no
applied field, then one can expect all states to be localized.
This is easiest to see in Fig. 6(b), where a part of an infi-
nite system is shown. All contours must be closed, except
for isolated ones which pass through saddle points. The

contour map for an infinite system of this type has been
analyzed in gcncI'al by Zallcn and Schcr, and in thc
specific context of the quantum Hall effect by Iordansky
and by Kazarinov and Luryi. They conclude that in the
absence of an applied field only states at a single critical
energy can percolate to infinite distance. The actual argu-
ment is closely related to that of the preceding section.
Suppose there were two equipotential lines belonging to
different energies which percolate. In the absence of an
applied electric field there is no difference between the x
and y directions, so the two percolating lines of different
energy ~ould have to cross, which is impossible by their
defirution.

There are no percolating states in the absence of applied
field because the line occupies an area of measure 0, and
the number of states is proportional to the area. In finite
applied field the situation is different. Now the x direc-
tion is different than the y direction and the percolating
line widens into a strip of finite area as shown in Fig. 6(a).
In other words, the electric field delocalizes some of the
states. The number of such states is proportional to the
electric field, for small field.

We now see that the general line of reasoning which
gives the ideal values for the Hall conductivity applies to
the case of smoothly-varying potentials. Namely, the only
states which can carry current are those which percolate,
and these are in a very narrow band of energies. All the
other states are localized. Exactly what this percolation
energy is, and exactly where the percolating states lie is a
perturbation problem, given the fluctuating potential
U(x,y), Rltllougll to flist RppI'ox1111Rtloll, tllc ploblcII1 CRI1

be solved by consideration of the equipotential lines of U.
As long as the Fermi level is well away from this percola-
tion energy, however, the Laughlin-Halperin argument
has force, and the ideal Hall conductivity is obtained.

Good samples at low temperature may have U's which
are smooth. Then the mobile states should lie in a narrow
energy band, which Imphes that the transverse conductIvt-
ty should have wide plateaus, when the Fermi level is
away from this band, and narrow regions between plateaus
(where also et~&0) when the Fermi level is in the midst
of the band of states. Since the width of this band is a
monotonic function of applied electric field, this would
suggest that the steepness of the Hall steps should increase
as the field is made smaller, and that the conductivity
there should be non-Ohmic. The latter effect has been ob-
scfvcd.

VI. THE GENERAL CASE

In this section we use the results of the previous three
scc'tlolls to Rllalyzc tllc gc11cl'Rl qllcstlon of wllich kinds of
disordered potentials will produce the Hall effect and
which will not. First take the case of a scattered potential
superimposed on a smooth potential so that the Hamil-
tonian is

H=HO+ V, + V„, (6.1)
wh«e ~II i~eludes the applied electric field, p; is the
smooth potential, and V„ is the sum of isolated scattering
center potentials. The Green's function for Ho+ V,
6, (r, r ', t t'), is that of Sec. V. It pr—actically vanishes
unless r(t) is close to the solution of the guiding-center
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equation of motion with initial condition that the particle
is at point r ' at time t'. In particular 6, is exponentially
small unless r and r ' lie on the same equipotential line.
This quasi-one-dimensionality arises from the same cause
as in the pure system —the lack of degeneracy. Now con-
sider the scattering problem posed by the Hamiltonian
(6.1). A particle is traveling along a possibly curved equi-
potential line when it encounters a scattering site. The
one-dimensionality of G, will restrict scattering to be in
the forward direction, i.e., along the equipotential. The
asymptotic states may be classified in precisely the same
way as in Sec. IV and the same phase-shift analysis ap-
plied locally. The total current flowing through the re-

gion containing the scattering potential will be the same as
if that potential were absent. This remains true even if the
scattering center binds some electrons. So even if both
types of potential are present the quantized conductance

may be expected.
We have seen that if the mobile states belonging to a

given Landau level are distinct in energy from those be-

longing to other levels, then the Laughlin-Halperin argu-
ment holds. Clearly this condition holds for potentials
characterized by Eq. (6.1).

Let us next consider the case V=VL+V„, where VL is
considerably less in magnitude than irico/2, e.g. ,
max

~
VL,

~

=fficu, /2. The problem is that we know little
in detail about the effects of VL. However, the limitation
on its magnitude will enable us to bound perturbation
theory to estimate certain quantities.

Consider the Green's function G(r, r ',E) for
r —r'~—:R very large. If G drops off exponentially

with increasing R then there are only localized states at
this energy. (Note that we are not considering an average
G which could become small because of random phase
cancellations. ) Consider doing perturbation theory for G
in powers of VL . Then

G(r, r ',E)=G„(r,r ',E)+f driG„(r, ri, E) VL (ri)

&&G„(ri, r ',E)+

+G„VL G„VL G„VL .
VL 6„+

(6.2)

and we have used a matrix notation to indicate the general
term. Take E= —,

' =fico, /2, halfway between the energy
of the extended states of the unperturbed problem. At
this energy G„vanishes exponentially as a function of
separation R, because there are no extended states at this
energy. In order that G not be exponentially small there-
fore, there must be a term in the series (6.2) which has in-

tegrations over a chain of intermediate positions r &,

r2, . . . , r„, such that
~ rj —rj i ~

=I. To be a bit more
precise, since the potential inside the scattering regions is
arbitrary, we may assume that VL vanishes there and is
only nonvanishing outside the scattering regions. There
will be a minimum distance D between scattering regions
which is necessary to traverse to get from r to r ' with
D » l. Thus there will have to be at least about n =D/l
factors of Vr G„ in the terms of (6.2) that could contri-
bute to a long range for G.

The Green's functions will have their arguments outside
the scattering regions. They therefore may be approxi-
mated by expressions of the form

where the sum is over extended states of essentially zero
energy. It follows at once that G-f r', and since D will

increase on average proportionately to R, 6 is exponential-

ly decaying for large R. Therefore, the states of this ener-

gy, halfway between the energies of the extended states,
are localized, and the Hall-effect argument is applicable.

This argument can be extended in a straightforward
way to the general case in which a smooth potential is
added. Then this smoothness guarantees that, except for
isolated scattering regions, the spatial region near the per-
colating energy contour will be the support of eigenstates
with energies near the percolation energy, and that this re-

gion will be wide compared with l. Again, we do pertur-
bation theory in powers of VL, for an energy equal to the
percolation energy plus —,. Again, the unperturbed
Green's functions will decay exponentially, and this can
only be counteracted by looking at high-order terms in the
expansion. Again, the chain of intermediate states in
these high-order terms will have to cross the region about
the percolation path many times, and many factors of
VL 6„will be encountered, each of which will be bounded
by f/(bE/2). Here AE may be somewhat less than —,',
because the energy difference between E and the states in
the band can be somewhat smaller than —,'. However, if
we make the bound on VL somewhat stronger, we shall
again have proven that the states sufficiently far from the
percolating states remain localized, which suffices to
prove that the Hall effect is ideally quantized.

We have thus found that the structure of the states in a
potential which consists of arbitrary but isolated scatter-
ing centers connected by smoothly-varying regions is
resistant to arbitrary perturbations, provided these are suf-
ficiently weak. This structure is that the extended states
lie in very narrow bands of energy corresponding to the
Landau levels, and that their wave functions are large only
in definite linear regions which percolate across the sam-
ple. The wave functions which are large close to these re-
gions will have energies close to those of the extended
states. Wave functions which correspond to energies well

away from the extended states are also spatially isolated
from the extended-state wave functions. Because energet-
ic isolation correlates with physical isolation, a weak but
otherwise arbitrary potential cannot generate hopping of
long range at energies well away from the original extend-
ed wave functions.

It is not yet clear that adding a potential VL will gen-
erate new extended states close in energy to the original
narrow band of such states. Indeed, experience on the
nonmagnetic problem suggests rather that a random po-
tential tends to localize states which were originally ex-
tended. Here we know that this result is not possible, or
at least that there must remain some extended states, even
though it is no longer clear how narrow the band of ener-
gies which they fall in is. On the other hand, nothing in
the nonmagnetic problem suggests a strong spatial correla-
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tion of localized and extended states.
Presumably, a sufficiently strong potential Vl will de-

stroy the Hall effect. At intermediate strengths it must do
this by creating extended states midway between Landau
levels, else the ideal Hall effect cannot disappear, by
Halperin's argument. (Imagine that the potential in going
from the guard ring to the interior is turned on slowly. )

For extremely strong potentials, it is likely that the states
are completely localized, since this case corresponds to the
low-field, low-density limit, and it is difficult to imagine
that the states in the Lifshitz tails are delocalized by a
weak magnetic field. (Indeed, the Lifshitz tail states are
spatially well separated. ) The detailed evolution of the
states as V~ is increased in magnitude remains an open
question, however.

Thus if (at very low temperature) there is no quantum
Hall effect, the potential could be such that (1) all states
are localized, or (2) the bands of extended states are
broadened sufficiently that there are no mobility gaps.
The former case seems to have been observed in low-lying
Landau levels. There are no plateaus and the transverse
conductance is activated.

The localization of electrons in the strong magnetic
field case differs from Anderson localization in two ways.
The first is the spatial isolation of the localized states, as
we have discussed. The second is the lack of stochasticity
in the scattering processes. With a strong field since the
sequence of scattering centers visited is linear and predict-
able with certainty, a wave packet always escapes from an
array of random scatterers in the end. On the other hand
it will not escape from its equipotential line. If that line is
closed the electron will be localized. The overall scale of a
localized state is not given by a characteristic exponential
envelope but will depend on the contour map of the
smooth background potential. On the other hand, the
wave function is confined exponentially (indeed as a
Gaussian) to the region to which it belongs.

Finite temperatures will of course destroy the quantum
Hall effect when k&T is of the order of the Landau-level
spacing, because the preceding arguments depend on the
assumption of elastic scattering. If inelastic processes of
sufficient energy to excite extended states to the Fermi
level are available, then the ideal Hall effect must disap-
pear.

VII. CONCLUSION

Insofar as the independent electron model is realistic,
we conclude that for a given potential which is not patho-
logical, there exists a magnetic field sufficiently strong so
that the potential is weak in the sense that it is a sum of
isolated scattering centers, a potential smooth on the scale
of the magnetic length, and a potential of magnitude less
than Ace, /2. Estimates of what the potential is like in
realistic systems indicate that at presently available fields,
the potential is close to being weak. The fact that in good
samples the effect clearly exists, while in poor ones it does
not, is a posteriori evidence for this.

The nature of the states, and of their localization, exten-
sion, and scattering properties is quite clear and is also
rather different from the zero-field case. Basically, the

magnetic field controls one dimension of the wave func-
tion, and makes the states to be rather linear, lying near
lines not too distorted from the equipotential lines of the
potential. Thus states associated with closed loops of
equipotential lines are localized, and states associated with
percolating equipotential lines are extended. Potentials
with large curvatures can distort this picture, but not
completely destroy it, provided the regions of large curva-
ture are isolated, or the net amplitude of the fluctuating
potential is sufficiently small. The former fails to destroy
the picture, because the isolated regions can only cause a
forward scattering of the electrons. The potential of small
magnitude cannot destroy the picture because it generates
a convergent perturbation theory which cannot delocalize
states at energies halfway between Landau levels.

Presumably, many of the same arguments can be used
in the interacting case. Much more remains to be done in
that direction, however. Even in the noninteracting
model, we do not completely understand how to find the
width and other details of the steps as a function of field,
impurities, temperature, and density. There is also evi-
dence that the electron-phonon interaction is strong.
These questions are connected with the details of how the
quantum Hall-effect phenomena break down as the poten-
tial becomes stronger.
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APPENDIX A

Here we prove the statements made in the text concern-
ing the behavior of b, (E). D(E) has been defined earlier
as

where E are the unperturbed eigenenergies and E are
the energies of the full Hamiltonian. The number of fac-
tors in the numerator equals the number in the denomina-
tor since states can neither bifurcate nor disappear as V„
is changed. (This can be proved rigorously. The precise
conditions are that the original spectrum be discrete and
V„be a bounded operator. ) We will examine the struc-
ture of D in a single Landau level, so we restrict the E to
belong to this level and define the E to be the energies of
the states which develop from this level adiabatically as
V„ is turned on. The generalization to many levels is
straightforward.

Among the energies E, N~ will correspond to bound
states of V„. Let us separate these out from the product,
as well as an equal number from the denominator:

Nb E —E + ~ N

p ) E —Ep+l6' a=1 E Ea+g
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c is a positive infinitesimal. The Ett will normally lie out-
side the continuum when they correspond to normalizable
states of physically realistic potentials. The choice of
the Etj is discussed below. The second factor is now a
function wltll EL —Xs zeros 011 tllc Ical axis. Eacll of
tllcsc zcl'os Is paired wltll a zclo of flic denominator wlllcll
lies within a distance of order (I/I, ) I.n the thermo-
dynamic limit, that is, I.~ oo followed by c~0:

E Et3+—i e E E~-
D(E+ic)=

o
1—

I E Et—l+ic E E—+ie
E Ep+—I ~ I. S(E')dE'

exp
2wU E' —E+i e

b, (E') is defined as in the text: b,(E')=E Eat-
E =E . To make the definition precise we must specify
how the new and old energies are to be paired. It is con-
venient to take the Ep to be the Xl —Eb highest of the
unperturbed eigenvalues and to pair them with the Ett, the
bound-state energies, in order from lowest to highest. The
E,E pairs are also made in order from lowest to
highest. Then as l. +Oo, the—EtI are all equal to the max-
imum value of the original energies, for example, E,„,
and k(E) ls R collt111110lls fuIlct1011 w111cll Is 0 at E=E
the lower end of the unperturbed spectrum. D (E) is ana-

lytic except for a branch cut on the real axis where Ho has
its eigenvalues for the Landau-level question. Across the
cut D has a phase change but

~
D

~
is continuous.

We now wish to find A(E,„) since that will yield the
information we want about the total current. To do this,

ntinulty of
l
D(E,„) I

is used. We can write this
fullctloll RS

D(E)= g iE E~i iE —E,„i—
. P

max Q(E')dE'
&exp P

2m U Emtn E' —E

for G' in Eq. (5.5) in principle contains terms involving all
such derivatives. Define Go(uf, uf, O, O, t t'—) to be the
propagator for the first three terms of the action of 6'.
The time Fourier transform of this function has already
been calculated in Eq. (2.8) and falls off as
exp[(uf+Uf)/4j. Perturbative corrections to physical
quantities will be given by expressions involving the in-
tegral of powers of Go times other terms in G'. For ex-
ample, any integral involving the third term in 6 will be
pl oportlonal to

~ c d ~Vsm
mXI =mI

e8 dt BI'

=ml (R V' )R ()P

BV, BV,

()I'I BX

A similar analysis may be made for the other terms. The
magnitudes of the third and fourth terms relative to the
zero-order terms are

iV V, //VV, il /a),

fV V, il /co, ,

respectively. For perturbation theory to hold these must
be much less than unity everywhere. If that is so then
V, is really smooth. The main point, however, is not
that the perturbations are very small, but that the elec-
trons still follow the equipotential lines even if there are
perturbations. If we write the Hamiltonian in terms of
the moving coordinates

p= r —R(t),

The singularities at E=E „in the two factors must can-
cel out by the continuity condition. The second term in

the exponent does not contribute because the derivatives
of b, vanish at E=E,„. Continuity then implies

r

wc find

II(p) = — &~+ -L,(p)+, (p +p~)2' emc 8~C

exp —b,(E,„)ln
~

E E,„~ —
~

E —E,„~—I.

+mR(t) p+ —,'(p. V'Il) V,

b,(E,„)=max

b,(E) increases from 0 at the lower edge of the Landau
level to 2m'~~/I. at the upper edge.

APPENDIX 8

Here we address the question of when derivatives of
V, higher than the second can be neglected. The action

1,(p) is the z component of the angular momentum
operator. The third term is an oscillator potential. The
last has its gradients evaluated at R (t). The perturbations
are simply adiabatic changes in the parameters of a har-
monic oscillator, which means that the density will under-
go slow variations in the moving frame, but will remain as
a bound state in that frame. In the laboratory frame, a
wave packet which is once localized on an equipotential
line will remain so forever.
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