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Equilibrium crystal shapes for a three-dimensional ferromagnetic Ising model with both nearest-
neighbor (J;) and next-nearest-neighbor (J,=RJ;) interactions are studied at nonzero temperatures.
Phase diagrams and crystal shapes are first calculated via mean-field theory. Subsequently, fluctua-
tion corrections are taken into account in a qualitative manner, incorporating known results and ex-
ploiting interconnections with other (d=2) models, including both roughening and commensurate-
incommensurate phase transitions. In the resulting picture, crystal facets appear only below ap-
propriate roughening temperatures. Phase boundaries correspond directly to edges bounding crystal
facets and may be either first order (slope discontinuity, sharp edges) or second order (no slope
discontinuity, smooth edges). For R >0, only smooth edges occur, and phase transitions are of the
Gruber-Mullins—Pokrovsky-Talapov type. For R <0 additional, first-order phase transitions take

place at sufficiently low temperatures.

I. INTRODUCTION

At ordinary first-order two-phase bulk coexistence a
large inclusion of one phase may remain in stable equili-
brium with a background of the other. The average shape
of the inclusion is then determined by strictly thermo-
dynamic considerations,! ~3 which involve minimizing the
free energy of creating the necessary interfacial boun-
daries. When both the coexisting phases are isotropic, the
shape of the inclusion is spherical. When one or both are
crystalline or otherwise anisotropic, interfaces of some
orientations are preferred over those of the other orienta-
tions, and the “equilibrium crystal shape” (ECS) of the in-
clusion is nonspherical and may be more or less complex.
Two limiting cases are completely faceted shapes (polyhe-
dra), consisting entirely of strictly planar faces (facets)
joined at sharp edges, and completely rounded shapes,
which are smoothly curved everywhere and lack both
facets and edges. Between these two extremes are shapes
containing both rounded and faceted regions* joined at
edges which may be either “sharp” (slope discontinuity) or
“smooth” (no slope discontinuity). Both sharp and
smooth edges have been seen in experiments.>>® The
equilibrium shape of a typical crystal evolves with tem-
perature T from completely faceted at T=0 to partially or
completely rounded at sufficiently high temperature. It is
the purpose of this paper to study this evolution on the
basis of statistical mechanics and in the context of a sim-
ple three-dimensional (d=3) ferromagnetic Ising model,
equivalent to an attractive lattice gas. Two phases (“up”
and “down”) coexist in this model for all T < T, (the bulk
critical temperature). Anisotropy is provided by the lat-
tice and disappears progressively as T— T, . Despite its
simplicity, the model exhibits a thermal evolution which
is qualitatively similar to that of real crystals.>® In par-
ticular, it provides insight into the important effects of
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further-neighbor interactions, and it leads to a plausible
identification of the universality classes of the interfacial
phase transitions which occur in nature.

Several models have been studied in the past to try to
understand ECS features from statistical mechanical con-
siderations. In d=2, exact results are available for certain
nearest-neighbor lattice models.” The ECS is smoothly
curved everywhere for T> 0. Hereinafter we will concern
ourselves with d=3 crystal shapes. At T=0, crystal
shapes are easy to calculate and turn out to be completely
faceted for lattice (Ising) models with interactions of finite
range.8 For T> 0, no exact results are available and it has
been traditional, since the celebrated work of Burton,
Cabrera, and Frank,’ to explore models in which the inter-
face is microscopically sharp and no bulk fluctuations are
allowed. Such d=2 solid-on-solid (SOS) models can be
built to incorporate the most important low-temperature
interfacial excitations, steps'®!! (necessary to describe
macroscopic tilting away from symmetry directions), and
thermal fluctuations'>!® (necessary to describe roughen-
ing!?). Special models of this type can be solved exact-
ly.19=13 Most recently, such a model has been used'® to
describe in detail the mechanism by which a facet shrinks
and finally disappears as the temperature is raised through
the appropriate roughening temperature 7. These
models are, of course, fully appropriate only at low tem-
peratures (where bulk excitations are rare) and for low tilt
angles (where the SOS restriction preventing overhangs is
reasonable). Furthermore, they are exactly soluble only
with nearest-neighbor interactions.

An alternative approach, which we shall follow here, is
to work directly with the d=3 lattice model, which allows
bulk excitations and overhangs and is, therefore, appropri-
ate over the full range of temperatures and tilt angles. Ex-
act solution is not possible; however, we extend some early
work by Lacmann’’ to obtain a complete picture of the in-
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FIG. 1. Equilibrium crystal shapes for a lattice-gas model with both NN (J;) and NNN (J,=RJ;) interactions. For R=0, the
crystal shape evolves from cubical (T=0) to spherical (T =T,). Below the {100} roughening temperature Ty, rounded regions
separate {100} facets and edges are smooth everywhere. Above T, the crystal shape is completely rounded. R >0 is similar to R=0
except that additional {110} and {111} facets are found at low temperatures. For R <0, the cubic shape is now stable for 0< T < T.
Sharp edges remain above T, and the last piece of sharp edge disappears at T.

terfacial phase diagrams within the mean-field approxima-
tion. This approach leads to calculations which are simple
enough to permit study of the effects of further-neighbor
interactions. Unfortunately, the mean-field approxima-
tion misses entirely certain fluctuation-dominated phe-
nomena such as roughening.!® This deficiency has been
studied in some detail in other closely analogous situa-
tions.!””~?* By drawing on these parallels to supplement
mean-field information, it is possible to construct qualita-
tive interfacial phase diagrams and corresponding crystal
shapes for our model which, although certainly not
rigorous, are probably correct.

The results at which we arrive are summarized in Fig.
1. The model has only nearest-neighbor interactions
(J1 > 0) and next-nearest-neighbor interactions (J, =RJ,).
When R=0 (nearest neighbor only) the ECS is cubical at
T=0. At low but nonzero T, {100} facets remain but are
now separated by rounded regions. Edges are always
smooth. Facets shrink with increasing T and finally
disappear at the {100} roughening temperature Ty, above
which the ECS is completely rounded. R >0 differs from
R=0 in that, at sufficiently low T, {111} and {110}
facets are found in addition to {100} facets. As T is in-
creased, each set of facets disappears at its own roughen-
ing temperature in the order indicated. For R <0, on the
other hand, the ECS remains cubical from T=0 up to a
nonzero temperature Ty. Rounded surfaces first appear at
the cube corners. Smooth and sharp edges are both en-
countered, as we shall discuss in more detail below.

The outline of this paper is as follows. The remainder

of this section will serve as a brief introduction to the idea
of interfacial phase diagrams. Section II A describes the
model and defines the interfacial free energy per unit area
fi(T,m), where m specifies the interface orientation rela-
tive to the crystal axes. The Wulff construction’>2>26 re-
viewed in Sec. IIB supplies the connection between
fi(T,) and the ECS r(T,ft\ ), where r measures the radius
in direction / from the center of the crystal. Section IIC
presents the exact analysis at T=0. Mean-field results are
displayed in Sec. III. Calculational details are relegated to
an Appendix. In Sec. IV we propose and defend what we
believe the exact interfacial phase diagrams should look
like.

A thermodynamic phase diagram is by definition a plot
of the loci of singularities of a certain intensive free ener-
gy. We shall use two types of interfacial phase diagrams,
that based on the interfacial free energy f;(T,/) and that
based on the crystal shape itself r(T,k). The fact that
r(T,fz\ ) may be regarded as a free energy’ may at first
seem surprising. This connection was first established by
Andreev,?” who showed that the pairs #,f and h, I are
conjugate under Legendre transformation. The singulari-
ties at fixed T of F(T,}/l\ ) occur at the crystal edges dis-
cussed above: Sharp edges (slope discontinuity) corre-
spond to first-order phase transitions and smooth edges
(no slope discontinuity) to second-order phase transitions.
Although conjugate, the 7 and h variables have somewhat
different character. h is a “field” variable in that r is well
defined for all 4. by contrast is a “density” variable in
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that it may happen that certain # values are not attain-
able at equilibrium. This leads to forbidden regions in the
(T,m) phase diagram and takes place (for example, at
R <0 in our model) when the presence of sharp edges or
points eliminates certain orientations m from the surface
of the ECS. Interfacial orientations not present on the
ECS are unstable to the formation of hill-and-valley struc-
tures’? in a dynamic process called “thermal faceting,”?®
which represents interfacial phase separation.?’ Although
the (T,m) and (T,l? ) phase diagrams contain the same in-
formation, we shall find the (T, h) representation particu-
larly convenient: It is simply related to the thermal evolu-
tion of the ECS (Fig. 1) and, therefore, easily visualizable.
Furthermore, it provides the more direct link with the
analog systems'’—2* which we use (Sec. IV) to supplement
our mean-field calculations.

II. EXACT RESULTS
A. The model

We chose to study the Ising model on a simple cubic
lattice of N sites (N=L XL XL) with both nearest-
neighbor (NN) and next-nearest-neighbor (NNN) interac-
tions,

W=——J120’;0’j—.]2 20’,‘0'1‘, 0','=il. (1
(ij) Cij)
NN NNN

For simplicity we restrict our attention to J; >0 and small

|R |, where R =J,/Jy, so that the bulk phase is fer-
romagnetic. The equivalent lattice-gas model®*® comes
about by identifying a local particle-density variable
n;=(140;)/2=0,1. The absence of any (odd) magnetic
field term in the Hamiltonian (1) places the system for
0<T<T, on a first-order phase boundary between “up”
({o;) >0, lattice-gas “solid”) and “down” ({o;) <O,
lattice-gas “fluid”) bulk phases.

To define the interfacial free energy f;(T,#) it is neces-
sary to control boundary conditions so as to be able to
produce an interface of specified orientation . For
{100} orientations this is easily achieved’"3? by applying
periodic boundary conditions, and then changing the sign
of the couplings J; and J, which cross (any) one particu-
lar (100) plane. We denote by ##°’ the Hamiltonian with

these reversed interactions. The interfacial free energy per
|

Wille |+ [s N)+202Q2 ¢ [ +2]s |+ |c+s |+ ]c—s]), R>0

filT =0,0)= (27 +8J))(|e|+]s]), R<O

and the equilibrium crystal shapes are as given in Fig. 1.
For R <0 (J,<0) the singularities of f;(T =0,m) are
cusps in the symmetry directions #i= {100} and the ECS
is cubical [with singularities in #(7 =0,¢) at the cube
edges ¢=+m/4,+37/4]. For R>0 (J,>0) additional
cusps appear for directions A= {110} and {111}, and the
corresponding facets show up on the ECS. In particular,

unit area associated with the interfaces thus forced is iden-
tified as

SAT,R)=—kpT lim 112—<mTre—ﬂ’f’~1nTre—ﬂ’f) , @

in which the (bulk) contribution, not associated with the
interface, has been subtracted out. Note that f; vanishes
for T>T,. Generalization of this technique to off-axis
orientations involves using appropriately twisted periodic
boundary conditions and putting in the corresponding
geometrical correction to the interfacial area (which is no
longer L?). Further details are given in the Appendix. In
practice we have performed most (but not all*}) of our cal-
culations for interfaces parallel to the £ axis,
m =(cosh,sind,0). Because of the cubic symmetry,

[i@)=fi(0+m/2)=f(7r/2—6), (3)

so it is only necessary to calculate for angles 0< 0 <7 /4.
To make the symmetry more visible, we shall take in
phase diagrams 0<0<m/2, 0<T <T, for each (fixed)
value of R.

B. The Wulff construction

Once f;(T,m) is known, the ECS follows from the
Wulff construction.!=*% In particular, f;(T,6) generates
an equatorial section (z =0) through the full ECS r(T,fz\ )
covering a range of orientations i =(cos¢,sing,0) with
O.S;g <2m. The curved regions of r(¢) follow from f;(6)
via

x =(cos0)f,-——(sin6)%%, r=ro(x?+y?17?,
(4)

dfi
J’=(Sin9)f,-+(cos0)7fe—, tang=y /x .

Facets in 7 (¢) arise from cusps in f;(8) and have corre-
sponding orientations. r(¢) has cubic symmetry analo-
gous to Eq. (3).

C. T=0 behavior

At T=0 the interfacial free energy f;(T =0,/) is just
the minimum energy per unit area required to produce an
interface of macroscopic orientation 7. Evaluation can be
achieved by direct counting of the number of broken
bonds induced.”® For # =(cosh,sin6,0) results are*
(where ¢ =cos#, s =sinf)

(5)

T
r(T =0,¢) is now singular at angles ¢, where {100} and
{110} facets meet,

142R 142R
1+4R 1+4R °

A special degeneracy attaches to the point R =T =0:
Because J, =0, the energy of a microscopic interface con-

(6)

| tang, | = and |cotg, | =
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figuration of overall orientation # depends only on the to-
tal microscopic interfacial area (and not on the number of
edges, corners, etc.). The minimum-energy state (which is
just the minimume-area state) is, therefore, highly degen-
erate, unless /7 is a {100} direction. One of this set of de-
generate configurations uses only macroscopic {100}
planes. As a consequence, the Wulff construction is mar-
ginal: The {100} directions of A contribute the entire
area of the ECS, while all other orientations have Wulff
planes which pass only through edges or corners of the
ECS. This degeneracy and its associated marginality
makes behavior near R =T =0 especially sensitive to
small changes in the interparticle interactions, etc., and
accounts for important qualitative features of the phase
diagrams which we shall map out in Secs. III and IV. At
R =0, the high degeneracy is associated with the fact that
the phase boundaries near ¢==*w/4,237/4 become
second order for T>0. At T=0, on the other hand, R=0
is the borderline between two rather different behaviors.
For R <0, edges and corners are energetically disfavored,
and the degeneracy noted above is broken in favor of the
maximally planar microscopic configurations. This has
the effect of eliminating entirely the orientations
mM={100} from the ECS, thus stabilizing the sharply
faceted, cubical shape up to a nonzero temperature (orien-
tations #i%{100} are regions of first-order coexistence of
the phase diagram at and near T=0). For R >0, edges
and corners are favored. For interactions which do not
extend beyond NNN’s, this lifts the degeneracy in the
{110} and {111} directions and leads to the appearance of
the corresponding facets on the ECS. The degeneracy is
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reduced but not eliminated for other directions, and phase
boundaries become second order (with rounding of sharp
T=0 edges) for T>0. Additional further-neighbor in-
teractions would lead to new T'=0 facets.

III. MEAN-FIELD RESULTS

Mean-field calculation of the interfacial free energy per
unit area f;(T,/m) is described in the Appendix. We have
concentrated mainly on the equatorial plane
i =(cos6,sind,0), with supplemental work at mi={111}.
Calculation is greatly simplified by choosing orientations
m which give periodic structure in the plane of the inter-
face. Thus we take

tang=p/q , (7)

where p and g are positive integers and relatively prime,
0<p <q<10. This allows 33 distinct values of @ in the
range 0—/4, for which we have calculated f;(T,6) for

0<T<T,=(6J,+12J,)/kp .

Using these data, we then carried through the Wulff con-
struction. Because the set of angles 0 is discrete, the result
is a completely faceted, polygonal ECS in which all edges
are sharp (first order). The angular positions ¢ of those
edges are plotted in Fig. 2 for R=0. Notice that for T>0
facets of all possible orientations appear. To generate the
full mean-field (7,¢) phase diagram it is now necessary to
imagine taking the angular grid (0) finer and finer to ap-
proach the continuum limit. Based on our calculations

1.0

0.8~

06—

T/T;

0.4

—lo
=

0 R=0

—N

0

m/4
FIG. 2. Angular positions ¢ of the edges between facets calculated within mean-field theory for R=0.

m/2

The mean-field free energy

¢

fi(T,0) is calculated for a finite number of orientations 6, resulting in a completely faceted crystal shape. The true mean-field phase

diagram is found by including all values of 8 (continuum limit).



332 CRAIG ROTTMAN AND MICHAEL WORTIS 29

/7,

0 /4 é /2

FIG. 3. Mean-field (¢, T) phase diagram for R=0, obtained by eyeball extrapolation of Fig. 2 to the continuum limit. Lines run-
ning between T =T, and T=O0 give the angular position ¢ of edges of facets. Only low-order facets are included. Values of
tan@=p /q are labeled (6 characterizes facet orientation). Shaded regions contain higher-order facets. Numerical evidence suggests

that all facets occur for 7> 0.
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0
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FIG. 4. Mean-field (¢,T) phase diagram for R=0.1. Note that {110} facets are now present at T=0. Numerical evidence again
suggests that all facets occur for 7> 0.
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FIG. 5. Mean-field (¢, T) phase diagram for R = —0.1. Facets of all orientations are now present only for T/T. >0.55. At low
temperatures (T /7T, <0.28) the ECS is strictly cubic. Rounded surfaces first appear at the cube corners and only reach the equatorial
plane (shown here) at T/T,.~0.4. For 0.28 <T /T, <0.55, facets of some orientations are still missing, so that certain edges remain

sharp.

with g < 10, it appears entirely plausible that, for each ad-
ditional 6 included, an additional line shows up in Fig. 2,
running between T'=T, and T=0. It does not follow,
however, that these lines (edges) become dense everywhere
in Fig. 2, converting the ECS into a smoothly rounded fig-
ure. On the contrary, there is already good evidence in
Fig. 2 that certain regions of ¢ remain edge free in the
continuum limit. These edge-free regions correspond to
planar facets of the ECS. To find their outlines rigorously
would require studying the large-g limit, which is beyond
our present program. Nevertheless, the low-order facets
(g =1,2,3,4) can be picked out with good accuracy from
Fig. 2. The result, shown in Fig. 3, takes advantage of the
fact that®> f; becomes independent of 8 as T— T, so the
angular width of all facets goes to zero in this limit. At
T=0, only {100} facets are present, in agreement with
Sec. IIC. For T>0 low-index (small-g) facets are largest,
especially at low temperatures; however, the numerical
evidence is consistent with the propositions that rational
facets are dense in ¢ and that for T> 0 all rational facets
would appear at sufficiently high resolution.’® If so, the
situation is analogous to what happens in mean-field treat-
ments of the anisotropic NNN Ising (ANNNI) model 2?3
The picture®® which emerges then from mean-field theory
at R=0 is an ECS which is cubical at T=0, but, at T >0,
develops facets at all rational orientations, evolving con-
tinuously to a uniformly rounded shape at T =T,. "Since
all orientations occur, edges are smooth (second order).
The corresponding (7,7) phase diagram is completely
dense with phase boundaries, since for 0<7T < T,, the

Wulff plot must have cusps at all rational orientations.>’

We shall consider in Sec. IV the modifications of these
mean-field phase diagrams by fluctuations. For the mo-
ment, we consider the effect of nonzero NNN interactions
Js.

Figures 4 and 5 are the analogs of Fig. 3 for R=0.1
(R>0) and R =—0.1 (R <0), respectively. For positive
R, the {100}, {110}, and {111} facets (only) are present at
T=0 (Sec. IIC). Numerical evidence again suggests®® that
all facets occur for T > 0, with gradual evolution towards
a smoothly rounded shape as T— T, . For negative R, the
evolution is quite different, and the stabilization of the
{100} facets (Sec. II C) shows up clearly. The lines (edges)
in the representation of Fig. 2 start at 7 =T, but now ter-
minate at T>0 against the (100) and (010) facets. The
cubical ECS is maintained well above T=0. Further
faceting does not occur for R =—0.1 until 7/T,~0.28,
when the {111} facets first appear at the cube corners.
The equatorial plane (shown in Fig. 5) remains square un-
til T/T,~0.4, and it is only for T /T, >0.55 that all ra-
tional facets occur on the ECS. For 0.28 <T/T, <0.55,
facets of some orientations are still missing, and certain
edges of the {100} facets are sharp (first order).

IV. BEYOND MEAN-FIELD THEORY

The mean-field results of Sec. III neglect fluctuation ef-
fects and are, therefore, expected to be quantitatively and
even qualitatively wrong when such effects play an impor-
tant role. Fluctuation effects are known in other contexts
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to be particularly important near second-order phase tran-
sitions and generally in two dimensions (the reader is re-
minded that the interface is a two-dimensional system). In
this section we shall explore the ways in which fluctua-
tions modify the mean-field phase diagrams. This will
lead us to conjecture, at least qualitatively, what the exact
interfacial phase diagrams and interfacial critical behavior
for the model [Eq. (1)] should be.

The principle considerations which guide this extrapola-
tion from mean-field results are the following.

(a) Exact results at T7=0 and T =T,. Section IIC dis-
cussed T=0. As T— T, , the interfacial free energy van-

ishes as*®
[T, A)~A(T, =T~y oo ®)

where v is the bulk correlation-length exponent (v~0.63
in d=3) and the ellipsis includes higher-order terms. The
leading term is independent of A, so both the Wulff plot
and the ECS are spherical in this limit.

(b) Faceting and roughening of symmetry interfaces.
Facets on the ECS come from cusps in the Wulff plot
fi(#), which in turn are related to the existence of a
nonzero free energy per unit length necessary to create a
step or ledge on the corresponding facet.»*° Conversely,
only steps on smooth, planar facets can have nonzero free
energy per unit length.*> Step free energies for d=3 (bulk)
are positive at low temperature but vanish at a roughening
temperature'* Ty (1) < T,, where the corresponding facet,
therefore, disappears. For the NN model* (R =0),
Tg(100)=T, /2. The transition at Ty is second order and
critical behavior is of the Kosterlitz-Thouless type.!> 44!

(c) The d=2 ANNNI model and its analogs. The
ANNNI model?>?® has a mean-field phase diagram which
is very similar to Fig. 3. The ANNNI-model commensu-
rate phases are analogous to the facets. (The competition
between NN and axial NNN interactions in the ANNNI
model is the analog of the competition between imposed
tilt A and microscopic interface-energy considerations.)
In the ANNNI-model context it is known that for d=2
the dense commensurate phases of mean-field theory are
destroyed by fluctuations, leaving only two ordered phases
(ferromagnetic and 111!) separated by an incommensurate
region. The expected analog for the crystal-shape problem
is the destruction of the fully faceted polyhedra of the
mean-field theory, leaving only T=0 facets separated by
smoothly curved regions. Analogous behavior takes place
in other d=2 models showing commensurate-
incommensurate transitions.*?

(d) Relevant excitations at second-order phase transi-
tions. An understanding of the “relevant” excitations at
second-order phase transitions allows plausible identifica-
tion of universality classes. Thus it is known that because
Tgr <T,, pure SOS-type interface excitations suffice to
model the thermal-roughening transition.'>!* We argue in
a similar spirit that the (second-order) phase transitions
associated with edges between faceted and curved parts of
the interface are dominated by excitations of the step or
ledge system introduced by Burton, Cabrera, and Frank.’
The statistical mechanics of these excitations were first
studied by Gruber and Mullins.!° The analogous excita-
tions in the commensurate-incommensurate problem are
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domain-wall excitations, as studied by Pokrovsky and
Talapov!” (stripe domains) and others.'"!#~2! The key
common property of these systems is the absence of dislo-
cation excitations, guaranteed in our model by the im-
posed lattice structure.*3=45 Most recently, SOS models
incorporating both roughening and domain-wall excita-
tions have been used by Jayaprakash, Saam, and Teitel 3
to study facet formation and facet shape near Tx. This
beautiful work exploits the connection between the body-
centered SOS (BCSOS) model> and the six-vertex
models.2%46

(e) First-order stability. It is well known that first-order
phase boundaries are relatively stable to fluctuation ef-
fects. It is, therefore, plausible to assume that first-order
phase-diagram features are not qualitatively modified in
going beyond mean-field theory.

A. R=0

Conjectured (7,7 ) and (T, ,fl\ ) phase diagrams for R=0
are shown in Figs. 6 and 7. Because only the =0 facets
remain [points (a)—(c)], the only cusps in the Wulff plot
are at m={100}. These cusps disappear at a {100}
roughening temperature T [point (b)], above which the
Wulff plot is entirely analytic [Figs. 6(a) and 7(a)]. This
scenario leads to the evolution of crystal shape shown in
Fig. 1 and represented in the phase diagrams of Figs. 6(b)
and 7(b). Comparing Figs. 3 and 6(b), we see that Ty is
now distinct from T, and the infinity of faceted (com-
mensurate) phases present in mean-field theory has been
suppressed by fluctuations.

The phase transitions in Figs. 6(b) and 7(b) are all
second order. The thermal-roughening transition at
#i=(100) (#=¢=0) is of the Kosterlitz-Thouless type
[points (b) and (d)]. For fixed T < Ty, the phase boundary
between the {100} facets and the “rough” or curved re-
gions corresponds to a d=2 commensurate-
incommensurate transition [point d)]. The simple lattice
structure of our model does not permit dislocations, so (in
contrast, for example, to the d=2 ANNNI model??) the
transition is expected to be in the Gruber-

(a)

Te

Temperature
N
T

rough
(100)
Il | 1
0 0] w4 w2 © 0 /4 /2
A
6(m) ¢(h)

FIG. 6. (a) (T,0) and (b) (T,¢) interfacial phase diagrams for
R=0. 9 and ¢ are angular variables which measure interfacial
orientation (/) and crystal shape ( b, respectively, in an equa-
torial section of the full three-dimensional phase diagram. The
(T,0) phase diagram (a) shows the locus of cusps in the Wulff
plot along the symmetry directions for T < Tg. The (T,¢) phase
diagram (b) plots the angular outline of the faceted areas of the
crystal shape; it derives from the mean-field phase diagram (Fig.
3) after correction for fluctuation effects.
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(ole]

inset

)

(101

(e
(a)

(e

(b)

FIG. 7. (a) (T,/) and (b) (T, k) interfacial phase diagrams for R=0. The shaded portion in the inset indicates the range of orien-

tations /4 and / included in the plots. The (T, ) phase diagram is a set of spikes of length Ty in the {100} directions. The (T,A)
phase diagram is a curved surface, cusped in the symmetry directions ({100}), with T=const cross sections which become circular as

T->T,.

class. 10,17,47

Mullins—Pokrovsky-Talapov  universality
17,21,35,48

Critical behavior corresponds to free fermions in
d=1 and is well known. The free energy connects with
the crystal shape?’ r(T,h), and its singularity describes
the behavior of the ECS near the facet edge*® (Fig. 8),

y~x9 with 6==%, 9)

which is quite different from the continuum mean-field
result’’ @yp=2. Finally, near the special point
T =Tg,$=0, both types of excitations are present [point
(d)] and the phase boundary behaves as'>*°

b, ~exp[—A/(Tg —T)'?], (10)

which produces the pointed (T,k) phase boundaries.
Crossover behavior has recently been worked out in detail
for certain SOS models,'* and includes a universal jump in
interfacial curvature as T— TR .

///
facet - X

FIG. 8. Schematic cross section through a smooth edge in the
ECS, where a facet meets a curved surface. Near the edge the
shape of the curved surface is described by y ~x%. The exponent
0 is a critical index.

crystal

curved
surface

B. R+#0

Modification of the mean-field phase diagram for R-40
proceeds similarly, again using points (a)—(e) above. For
R >0, additional facets are present at T=0 (Sec. IIC).
These principal symmetry facets persist for T'>0, while
the remaining mean-field faceting is suppressed by fluc-
tuations. Each symmetry facet roughens out at its own
Tg. The (T,0) phase diagram [Fig. 9(a)] picks up the
Waulff-plot cusps associated with the {100} and {110}
(but not {111}) facets. (T,¢) and (T,l? ) phase diagrams
are sketched in Figs. 9(b) and 10(b). Phase transitions are
all second order and of the same types as for R=0. The
pointed shape of the phase boundaries near roughening

T, (a) T. (b)
) rough
=3
g TR'L
Q
5
2 L
TRZ l
05 w/a /2 05 T w2
8(m) ¢ (h)

FIG. 9. (a) (T,0) and (b) (T,¢) interfacial phase diagrams for
R=0.1. Variables are same as in Fig. 6. The (T,¢) phase dia-
gram (b) is a fluctuation-corrected version of Fig. 4. The addi-
tional (110) facet is present at low temperature and disappears at
its own characteristic roughening temperature Tg,. {111} facets

do not show up in this equatorial cut.
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(1n

(a)

FIG. 10. (a) (T, ) and (b) (T,A) interfacial phase diagrams for R=0.1. Variables are same as Fig. 7. Additional {110} and
{111} facets are present at sufficiently low temperatures. Figure 9 is a cross section of Fig. 10. The observed phase diagram of hcp

“He appears to be of this generic type.

follows from Eq. (10). The corresponding ECS (Fig. 1)
loses its sharp T=0 edges for all 7> 0. Symmetry facets
roughen out, each at its own characteristic 7. Above the
last roughening temperature (presumably #={100} for
small R), the ECS is smoothly rounded and approaches
sphericity as T— T, . It seems clear that adding addition-
al further-neighbor attractive interactions should simply
produce new T'=0 facets, each disappearing at its own
Ty, as seen in recent experiments® on hcp “He.

The procedure is similar for R <0 only here because of
the sharp (first-order) edges which occur at low tempera-
tures in the mean-field treatment (Sec. III and Fig. 5),
point (e) takes effect. Thus we retain in Figs. 11 and 12
the low-temperature features of mean-field theory qualita-
tively intact. The crystal shape (Fig. 1) remains cubical at
low temperature (T < Ty). At Ty, a curved region using

T (a) (b)
L
2
2
a
e T/\
|£., -
T3 forbidden T3 (100) ‘i' (010)
0 L 0 1 i L
(0] 7r//f1 m/2 0] w//? /2
8(m) ¢ (h)
FIG. 11. (a) (T,60) and (b) (T,¢) interfacial phase diagrams
for R =—0.1. {100} facets are stabilized up to a nonzero tem-

perature To. Curved surfaces first appear at cube corners and
then reach the equatorial plane at 7;. The transition at the
equator remains first order until a higher temperasture T,.
First-order phase boundaries are shown dashed. Note appear-
ance of the forbidden region in (a). The mean-field phase dia-
gram corresponding to (b) is Fig. 5.

{111} and nearby directions first appears at the cube
corners, surrounded by sharp (first-order) edges. This
rounded region grows as T increases and finally intersects
the equatorial plane at T=T73. At higher temperatures
the edges become smooth, starting (if mean-field theory is
a reliable guide) near the {111} direction and progressing
towards the equatorial plane. For T, <T < Ty all edges
are smooth, just as for R >0. A line of multicritical
points separates first- and second-order behavior [T, in
Fig. 11(b) and the boundary of the shaded region in Fig.
12(b)]. Our calculation is the first to find first-order
behavior in the context of equilibrium crystal shapes. Fig-
ures 11(a) and 12(a) exhibit the corresponding (T,/)
phase diagram. Note that the region below the curved line
in Fig. 11(a) [and underneath the curved surface in Fig.
12(a)] is “forbidden” in the sense that corresponding inter-
facial orientations are not attainable at equilibrium, as dis-
cussed at the close of Sec. I.
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APPENDIX

Mean-field theory involves the global minimization of
the variational functional,’
ij) ij)
NN NNN

A
+kgT Y, fo dy tanh~ly . (A1)
i
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_— Tr

(Hn
(b)

FIG. 12. (a) (T,/) and (b) (T,hk) interfacial phase diagrams for R = —0.1. In the (T, ) phase diagram the forbidden region is
underneath curved surface. In (b) first-order boundaries (shaded) join a second-order region at a line of multicritical points. Figure

11 corresponds to the equatorial section of this plot.

In the bulk each site is equivalent. By setting .# =.#,
for all i, Eq. (A1) becomes

Fy(My)=N [(—cul 120,43

M
+ksT [, *dy tanh—'y | . (A2)

Here, N is the number of sites. At the global minimum of
Eq. (A2) the bulk magnetization at site i is .#}"" and the

bulk free-energy density is f, =% ,(#5 ")/N. 43" is
easily found by iterating the bulk mean-field equation,

which is the rearrangement of the equation
0F /0.4, =0,
M =tanh[(6J,+12J,)4 /(kpgT)] . (A3)

In the presence of an interface, the magnetizations vary
from site to site. Assuming the tilt is only in one direc-
tion, we may let

M =M i sis i) = M i iy + 1) =M i)

We chose the angle 6 such that tan6=p /q, where p and g
are relatively prime and p <q. Let 1<i,<n, and
1<i, <n, define the sample size, where n,>n, and
n, =I,q (see Fig. 13). The boundaries are taken to be an-
tiperiodic in the j direction,

Mi,0)= —Mix,n,), 1<iy<ny Ad)

Migyny+1)=— Miy,1), 1<ix<ny .

A tilt is forced by using displaced periodic and antiperiod-
ic boundary conditions in the X direction,

MN0,iy) =M (ny,i,+1p) ,
M1+ iy + 1 p)=(1,i,), 1<i,<n,—ILp
MN0,iy) = — M (ny,iy —ny +1eq) ,

(AS5)

M(ny+1,i, —n, +1.q)= — M (L,iy),ny—Lip+1<i, <n, .

Stationary solutions of Eq. (A1) may be found by begin-
ning with a particular set {.#;} and iterating the sta-
tionarity equation which follows from 0% /0.#;=0,
namely,

iy:ny—-— o o e . . « e . .« o .
. e o e o« o e
o e . e e o & e e
. . . . . . . . . o
-
-
g
o« e e e e o e o A .
-
-
e e e e e o o e o e
-
-
. e o o o o € e e e
Ve
-
. . . . DR . . . . .
Ve
I, = — 4/ . . . . . . .
|y_ny [Xp ¢« e o '//
o o -7 o e e e e o e o
-
-
~
o A . o« e .
-
-
. . . . . .
. . o o e .
iy B Y e o e e o o o o « o e
i =1 iy = Ny

FIG. 13. Geometry used to find interfacial free energy f;.
Dotted line indicates the orientation of the interface. Variables
of the Appendix corresponding to this figure are ¢=3, p=2,
l,=4,n,=12,and n,=14.



338 CRAIG ROTTMAN AND MICHAEL WORTIS 29

./I{,-=tanh Jl 2 "”}+J2 E a”] /kBT N (A6)
j NN j NNN
to i toi

with the boundary conditions (A4) and (AS). Of the solu-
tions which satisfy Eq. (A6), the one which minimizes Eq.
(A1), (F )pmin, is found. Then f; may be found as follows:

(y—)min_ x
fil,,6,T,R)= lim (P min—1x1yfo

’

n,— n, /cos@
fi6,T,R)= lim f;(L,6,T,R) .
nx—>oo

For a given T,R,0, a large number of solutions to Eq.
(A6) may be found. From a practical point of view it is
necessary to investigate the periodicity of the mean-field

solution [the global minimum of Eq. (A1)] and its rela-
tionship to the minimum periodicity possible (which is
determined by p and ¢g). We found that, when the value of
(T,0) corresponds to a “forbidden” region [see Fig. 11(a)],
fi(l.,6,T,R) was minimized for I = o, while, for the
single-phase region, f;(l, 6,T,R) is independent of I,. For
example, when 6= /4 the mean-field free energies f;(N)
may be calculated, corresponding (only approximately for
T >0) to interfaces which alternate between N steps in the
x direction and N steps in the j direction. We find that,
as a function of N, f;(N) is minimized for either N=1 or
w. Of course, in the latter case f;(o) is simply
f:(6=0)/v"2, that of two perpendicular, flat interfaces.
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