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Static dielectric screening in undoped semiconductors at zero temperature is formulated within
the framework of the Thomas-Fermi-Dirac (TFD) model of a homogeneous and isotropic solid. At
each point in the solid the valence electrons are treated as a degenerate gas in statistical equilibrium
in the space-varying self-consistent potential of a point-charge impurity. The theory involves the
electrostatic, kinetic, and exchange energies of the electrons in the development of a nonlinear TFD
equation for the screened potential. The Thomas-Fermi (TF) theory of dielectric screening is
recovered when exchange effects are neglected. Closed analytical expressions for the wave-vector-
dependent dielectric function and the spatial dielectric function are obtained by linearization of the
TFD equation and the range of validity of approximation investigated. Numerical solutions of the
nonlinear TFD equation for point-charge screening show an increasing departure from linear
behavior with impurity charge. These properties of the nonlinear TFD theory are already manifest
in the TF scheme. A comparison between TFD- and TF-model dielectric functions shows impor-
tant differences due to exchange. In the linear screening regime, it is found that impurity potentials
are more effectively reduced when exchange effects are included. As a result, the TF theory com-
pares more favorably with accurate band-structure calculations of the dielectric functions for silicon
and germanium. It is expected that improvement in the TFD dielectric functions depends on ex-
tending the treatment to include correlation and/or the quantum correction. In the nonlinear re-
gime, attractive potentials are more effectively screened in the TFD theory, while the opposite is not
generally true for repulsive potentials. Finally, it is seen that donor-acceptor asymmetry is stronger
in the presence of exchange effects.

I. INTRODUCTION

Simplified descriptions of the response of a semicon-
ductor to an external static disturbance are useful for
practical calculations of the physical properties of the
crystal. This paper concerns the development of model
dielectric functions for undoped semiconductors at zero
temperature in the framework of the Thomas-Fermi-
Dirac (TFD) statistical theory of linear and nonlinear im-
purity screening. The Thomas-Fermi (TF) -model dielec-
tric functions obtained by Resta' are found to be in excel-
lent agreement with the accurate pseudopotential
random-phase-approximation calculations of %alter and
Cohen made in wave-vector space. An appealing aspect
of the statistical approach is that dielectric functions are
derived directly in configuration space, thus circumvent-
ing cumbersome Fourier transformations. The TF theory
has been studied in the nonlinear regime by Cornolti and
Resta, and extended to deal with polar semiconductors
and the intervalley mixing effect on donor impurity levels
and excitons in many-valley semiconductors. In order to
obtain analytical spatial dielectric functions, Csavinszky
and Brownstein have devised a variational principle
equivalent of the nonlinear TF screening equation. Chao
defines a local screening length and derives a simple alge-
braic equation which yields the TF spatial dielectric func-
tion in the nonlinear regime.

The first model of a wave-vector-dependent dielectric
function e(k) for a semiconductor appears to be that for-

mulated by Callaway, who modified the free-electron-gas
expression by inserting an energy gap between the valence
and conduction bands. Penn proposed a more sophisti-
cated model by extending the nearly-free-electron gas iso-
tropically in three dimensions, while Tosatti and Pastori-
Parravicini' surmounted the long-wavelength difficulty
in Callaway's model by requiring the f-sum rule to be
obeyed. Srinivasan" improved on Penn's interpolation
formula and obtained consistent results over the entire

range of k. Compared with the detailed pseudopotential
calculations of Nara' and the accurate self-consistent-
field calculations of Walter and Cohen, Srinivasan's
Penn-model results give a reasonably good description of
the static screening properties of semiconductors. Expres-
sions for the wave-vector-dependent dielectric functions
based on the Penn model involve complicated integrations
in k space and simple k-function fits to the numerical re-

sults. A peak in e(k) for small k seen by early Penn-
model works "" is thought to be a numerical artifact.
Some authors' have been tempted to attribute the peak to
a double counting of the normal processes. Detailed
band-structure calculations of e(k) do not show this
behavior. Moreover, a simple tight-binding approach'
and a generalization" of the Penn model containing two
energy gaps have been used to derive wave-vector-
dependent dielectric functions without the hump at small
k. Inkson' has given an especially simple expression of
e(k) in very close agreement with the numerical results of
Ref. 2. Exact calculations' with the Penn model have re-
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moved all inconsistencies in the early efforts, including
the failure of the frequency and wave-vector-dependent

dielectric function e(k, co) to satisfy the Kramers-Kronig
relation or the f-sum rule. A more recent form of e(k, co)

proposed by Levine and Louie' has several desirable
features, including homogeneity, isotropy, causality,
particle-number conservation, and an analytic representa-
tion.

Section II introduces the degenerate-electron-gas model
semiconductor and formulates the nonlinear TFD screen-
ing equation and its linearization. The linear TFD equa-
tion is solved in Sec. III and analytical expressions are ob-
tained for the spatial and wave-vector-dependent dielectric
functions. This development proceeds identically to that
of Resta. Section IV presents numerical results for dia-
mond, Si, and Ge in the linear approximation and investi-
gates its range of validity. Comparisons are made with
TF linear-response functions. TFD nonlinear-response
theory for positive and negative point-charge impurities is
discussed in Sec. V. Finally, in Sec. VI, numerical results
illustrating nonlinear screening effects in the TFD theory
are displayed for monovalent and tetravalent ions in dia-
mond, Si, and Ge. Comparisons are made with corre-
sponding TF predictions. Atomic units are used
throughout the paper, so that e, A, and I equal 1.

II. TFD EQUATION FOR THE SELF-CONSISTENT
SCREENED POTENTIAL OF A POINT-CHARGE

IMPURITY

In the absence of any external disturbance the homo-
geneous and isotropic model semiconductor is translation-
ally and rotationally invariant with a uniform electron
density n. The ground state of the system occupies a
spherical region in momentum space of radius kz (the
valence Fermi momentum) given by

kF —(3~'n) '" .

The response of the valence-electron medium to the pres-
ence of a static impurity point charge Z at the origin
(r=0) may be characterized by a spatial dielectric func-
tion e(r) conventionally defined as the ratio of the un-

screened potential' v = —Z/r to the self-consistent
screened potential V(r) set up around the point probe.
Thus

F(r) =u(r)/V(r), r (R
where R is the screening radius beyond which V(r) has
the Coulomb form screened by the static macroscopic
dielectric constant e(0) of the semiconductor,

V(r) =u (r)/e(0), r )R .

The TF and TFD statistical theories employ a local-
density description of the degenerate electron gas in the
presence of the point-charge external disturbance. It is as-
sumed that Eq. (1) is a valid connection between the local
Fermi momentum kF(r) and the screening charge density
n (r) at point r. In other words,

2EI; ——2 kF ——kp,
7T

(6)

where k~ is given by Eq. (1). It may be considered that
correlation energy between electrons of parallel spin effec-
tively increases the numerical coefficient of kF in Eq. (6)
to a value somewhat greater than I/~. However, the ob-
jective here is to investigate the effects of exchange, and
then in a separate paper we shall deal with an appropriate
procedure for taking correlation energy into account.

In the spirit of the local-density method, the Fermi en-

ergy at point r is written, according to Eq. (6), in the form

EF(r)= ~ kF(r) — kp(r) .

Equations (5) and (7) combine to yield a quadratic equa-
tion for the determination of kz(r) in terms of the poten-
tial V(r) and some constants. Namely,

kp(r) 2ykp(r) —2[Ep+ V(R) ——V(r)] =0, (8)

where y is an abbreviation for 1/2' m.. Only the positive
square-root solution of Eq. (8) is retained, as this is the
choice of physical importance. Therefore

k, (r) =2'"I) +[@'+Z,+ V(R) —V(r)]'"I .

The TF version of this expression is obtained in the limit

y =0. Equation (9) provides physically acceptable values
of the local electron density n (r) of Eq. (4). For negative
values of Z, the potential becomes infinitely positive as
the origin is approached. An examination of Eq. (9)
shows that this behavior causes difficulty with the re-
quirement that kz(r) be real and positive. Unphysical
values of kz(r) are removed from the theory by a
Coulomb hole, ' a spherical region about the negative
point-charge impurity in which the electron density van-
ishes, leaving only the uniform background positive
charge. It is useful to keep in mind that Eq. (6) may be
rewritten, for convenience, as

This approach is justified for an electron gas, which is so
dense that a statistically large number of particles may be
found within a region of space over which the variation of
the potential is very small. In that case, thermodynamic
considerations attribute a local valence Fermi energy
EF(r) to the region about r T. he equilibrium condition for
no diffusion current of electrons is expressed by the classi-
cal energy equation

E~(r)+ V(r) =Ep+ V(R),

where V(R) is a constant, and any change in the ambient
Fermi energy EF due to the introduction of the foreign
point charge is neglected. For a degenerate electron gas of
maximum momentum k~, the energy E~ consists of the
kinetic energy of the electron kz/2, the exchange energy

kF/vr—, and the correlation energy E,(kz). Since this
paper is concerned with corrections to the TF theory of
dielectric screening due to the effects of exchange, the
correlation energy is henceforth dropped and EF is ex-
pressed as

kF(r) = [3''n (r)]'" . (4) 21/2[y+(y2+E )I/2] (10)
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Self-consistency requires that the screened impurity po-
tential satisfy Poisson s equation with a charge distribu-
tion given in terms of the screening charge density. It fol-
lows that

V—V(r) =4n[n.(r)—n] .

The displaced electron charge density on the right-hand
side of Eq. (11) is expressed in terms of V(r), the ambient
Fermi energy EF, the exchange constant y, and the con-
stant V(R) by making use of Eqs. (1), (4), (9), and (10).
Equation (11) then becomes the basic nonlinear TFD
equation

7 V(r)=(2 ~ /3m)([y+(y +Ep)' j Iy—+[y +E~+V(R) V(r—)]'~ I ), r(R . (12)

In addition to developing numerical solutions of Eq. (12)
for both positive and negative integral values of Z, it is of
interest to consider its linearization by assuming that it is
legitimate to use a perturbation approach. This entails
a binomial expansion in which the square of
[V(R)—V(r)]/(y +EF) can be neglected in comparison
with unity. In that case, Eq. (12) takes on the linearized

OflTl

P' V(r)=q [V(r) V(R—)] .

Thc quaIltity g 1s given by

q =q, [k,/(k, —2'"y)]'",
where qu

——(4krlm)'~ . In this paper zero subscripts label
TF quantltlcs.

Equations (12) and (13) first appeared in the literature
about 33 years ago ln conncct1on w1th thc problem of ion1-
zation of hydrogen in metals. In that case, the impurity
proton is screened by conduction electrons. %hen y=O,
these equations reduce to earlier ones developed by Mott,
who treated the screened Coulomb field in a metal
neglecting exchange effects. As a description of linear
screening in metals, Eq. (13) has the solution V(R)=0,
and

V(r) =u (r)e

which includes the boundary condition that V(r) ap-
proach u(r) as r —+0, and is consistent with complete
screening of the point charge at r = ao. This implies that
R is infinite for this situation. Later work established
numerical solutions of the nonlinear TFD equation for the
screened potential around a divalent impurity in a rnono-
valent metal. In essence, these calculations show that the
linearized TF approximation, the nonlinear TF theory,
and the nonlinear TFD theory lead progressively to more
effectively screened impurity potentials. Insofar as linear
screening effects are concerned, this trend follows at once
from Eqs. (14) and (15).

III. ANALYTICAL SOLUTION OF THE LINKARIZED
TFD SCREENING EQUATION

This section is concerned with linear dielectric screen-
ing effects in the homogeneous and isotropic model semi-
conductor. Unlike the situation for an impurity point
charge in a metallic medium, the displaced electron charge
density now has a finite radius R. The analysis is sirnpli-
fied here by dealing exclusivdy with positive values of Z.
This restriction is removed in Sec. IV where nonlinear

sinh(qR) =qRe(0) (17)

for the determination of R as a function of the semicon-
ductor parameters k~ and e(0). In the metallic limit, Eq.
(17) predicts R = oo, a result consistent with Eq. (15).
These various features of the linearized TFD description
of im.purity screening in metals and semiconductors are
familiar from the TF theory. '

An expression for the TFD spatial dielectric function
follows from Eqs. (2) and (16). Again, the result is a repli-
ca of the Z-independent TF form given by

r

e(0)qR/Isinh[q(R —r)j+qrI, r &R
e(r) =

e(0), r &R .

Numerical illustrations of Eq. (18) for diamond, Si, and
Gc ar'c displayed 1Il thc next scct1on. It w111 bc scen that
e(r) exceeds the same TF spatial dielectric function over
the range O~r~R. Thus, it follows from these calcula-
tions that the impurity potential is more effectively
screened when exchange effects are included in the
valence-electron gas of the host semiconductor, a behavior
already known from the metallic case and traced to the
reduced probability of two electrons with parallel spins
approaching one another closely. This effect, due to the
exclusion principle, lowers the energy of the system.

The linear-response eave-vector-dependent dielectric
function is defined as the ratio u(k)/V(k), where u(k) and
V(k) are the Fourier transforms of the unscreened and
screened potentials, respectively. In the present case, this
prescription yields

2 I 2
q +k

k +[q sin(kR)/e(0)kR]
(19)

For a given semiconductor, the TFD-model dielectric
functions require characteristic value of q and R obtained
from Eqs. (14) and (17) in terms of the static macroscopic

dielectric screening effects are considered.
Evaluation of Eq. (9) at r =R leads to k~(R)=kF.

Then, from Eqs. (1) and (4), it follows that n (R) =n, in
agreement with the definition of R. For r &R, the
screened potential has the form shown in Eq. (3), while in
the range r (R the solution of Eq. (13), with continuity at
r =R, is

u (r)sinh[q (R —r)]Vr =-
sinh(qR)

Continuity of the electric field at r =R provides the tran-
sccndcntal cquatlon
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TABLE I. Listing of physical parameters and characteristic quantities entering in the linearized TP
and TFD models of dielectric screening for diamond, Si, and Ge.

Nearest-neighbor distance a (a.u. )

Static dielectric constant e(0)
Valence Fermi momentum k~ (a.u.)

EOI: (a.u. )

EF (a.u. )

qo ——(4m/kg) '~

q =q [k /(k —2'~ y)]'~2
Screening radius Eo (a.U.)

Screening radius R (a.u. )

2.91
5.7
1.46
1.06
0.60
1.36
1.54
2.76
2.44

Silicon

4.44
11.94
0.96
0.46
0.16
1.10
1.35
4.28
3.50

Germanium

4.63
16.0
0.98
0.48
0.17
1.12
1.36
4.54
3.74

dielectric constant e(0) and the valence Fermi momentum
kF. Clearly, the TF-model dielectric functions cp(r) and
ep(k) are recovered when y =0.

The static macroscopic dielectric constant e(0) and the
valence Fermi momentum kF for diamond, Si, and Ge are

listed in Table I. For reasons given in Ref. 3, the effective
number of valence electrons per atom used in calculating
kF for Ge is 5, while for diamond and Si the number is 4.
The Fermi energy E~, the screening radius R, and the
quantity q, along with their TF counterparts, for each of
the semiconductors, are also included in the listing. The
TFD and TF wave-vector-dependent dielectric functions
for diamond, Si, and Ge are calculated from Eq. (19) and
illustrated in Fig. 1. The spatial dielectric functions are

11.940

4.56

7.164

e{k)

4.776

QQQ
0.00

kF

a i a S l i & i i l i i a & ] & i i i l a 1 i i i i 1

0,28 0.56 0.84 1.12 1.40 1.68 196
k{a.u.)

O.DO D.19 0.38 0,57 0,76

k {8.U.)

kF

095 1.14 1,33

16.0

(c)

12.8

3.2

kF

QQ . j j j „ i 1 j l i j l i j l j j j j j j. l j i i i I,j j i i l i j i i 1 l t

0.00 0.19 0.38 Q„57 0.76 Q.95 1.14 1.33
k {8.U.)

FIG. 1. TF and TFD wave-vector-dependent dielectric functions for diamond, silicon, and germanium in the linear regime.



THOMAS-FERMI-DIRAC STATISTICAL THEORY OF. . . 3263

obtained from Eq. (18) and displayed in Fig. 2.
A comparison between the TF and Srinivasan's Penn-

model wave-vector-dependent dielectric functions has been
given in Ref. 1. Except for the low-k region, TF predic-
tions are consistently on the high side of a close numerical
match with Srinivasan's calculations. The small-k
behavior' of the right-hand side of Eq. (19) is a quadrati-
cally decreasing function of k with no peak similar to that
appearing in Srinivasan's results. Moreover, the TF re-
sults are surprisingly close to the same functions calculat-
ed on the basis of accurate band structure for Si and Ge
along the [100] direction. These quantitative agreements
are particularly impressive in view of the analytical sim-
plicity of ep(k). An even simpler analytical fit to the ac-
curate k-theory calculations of Ref. 2 is available. ' How-
cvcI', RIl albltfaly constant ln this cxprcsslon was devoid
of physical significance until a comparison' with ep(k)
was made at low k.

%hile Srinivasan has emphasized that a spatial dielec-
tric function should attain its limiting value over a dis-
tance of thc order of thc ncRrcst-nclghbor distance, his
function overshoots e(0). On the other hand, ep(r) shows a
smooth monotonic approach to e(0) with no such
overshoot. A comparison of the two cases for diamond,

Si, and Ge is made in Ref. 1, where it is seen that ep(r) is
in close agreement with Penn-model results.

Figure 1 shows that j..(k) and ep(k) are monotonically
decreasing functions of k, a behavior also characteristic of
thc accurate band-structUlc calcUlatlon mentioned above.
In light of the comparisons made in Ref. 1, and in view of
Fig. 1, it is evident that ep(k) is more closely representa-
tive of the linear-response functions of Walter and Cohen
for real materials. %ith regard to the spatial dielectric
functions, Fig. 2 makes it clear that e(r) and e()(r) are
smooth monotonic functions of r, while the former attains
the limiting value e(0) before the latter. Thus, as already
noted, V(r) is more effectively screened than Vp(r). The
inclusion of exchange energy in the TF theory is concep-
tually in the right direction for improvement, however, it
acts to diminish the accuracy of the TF dielectric func-
tions Ep(l') and Ep(k).

It is of interest to examine the range of validity of the
linearized TFD screening equation. As before, consider Z
positive. This approximation involves a binomial expan-
sion in which the square of [V(R)—V(r)jl(y +Ep) is
neglected in comparison with unity, or equivalently,

Z sinh[q (R —r)) 2

h( Z)

(a) I- (b)

7.164

2.28
I

I

I

1.14
I

I

QQQ. I I 1 I I ~1 1j t I I I I I I 1 I I'I I I I 1111 I I 1111 I

0.000 0.?] 1.42 2,13 2,84 3.55 4,2g 457
r(a.u.)

4.776

2,388

I

I

I

0.000 0.71 t.42 2.13 2,84 3.55 4.26 4.97
r(a.u.)

I

I

~ ~ ~ s a ~ ~
I

I

3.2

NtUM

I

QQ, 1 t I I I 1 1 1. 1 I 1 1 1 1 I 1 1 I I I 1 I 1 1 I 1 1 1 1 I 1 1 l! j I 1 1

0.000 0.7& t.42 2.13 2.84 3.55 4.26 4.97
r(a.u.)

FIG. 2. TF and TFD spatial dielectric functions for diamond, silicon, and germanium in the linear regime. In each case the single
bond length is denoted by the vertical (dashed) line.
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TABLE II. I.isting of various measures of the railge of validity of thc lincarizcd TP Rlld TFD
scrccmQg cqURtloI1s for diRmond» Sl, RI1d Gc %'hcQ Z= 1. TF vRlucs Rrc iIl PRrcntI1cscs.

~I (R.u.)
P'I /8
P'I /8
e(rl )

[e(r 1 )/e(0)](100%)

0.60(0.49)
0.21(0.17)
0.25(0. 18)
2.29(1.84)

40.2(32.3)

1.09(0.85)
0.24(0. 19)
0.31(0.20)
3.92(2.46)

32,8(20.6)

where Eq. (16) ls used 1I1 Rrrlvlllg Rt Eq. (20).
equality does not hold for all values of r between the ori-

gin and R. %hen Z= 1, it does not hold and neither does

the linear approximation, for values of r less than a criti-
cal value P I glvcn 1Q Table II fof d1RIQond» S1» Rnd Gc.
The inequality in Eq. (20) becomes an equality at r =rl.
The meaning of rl is visualized by comparing it with the
ncarcst-neighbor distance Q Rnd the sciccn1ng radius A.
Rows 2 and 3 in Table II list the ratios of rl and these

lengths, respectively. Further insight is gained by evaluat-

ing the spatial didectric function at rl, and then deter-

mining the percentage of the static macroscopic constant

e(0) attained at r =r1. These quantities are given in rows

5 and 6 of Table II. These various comparisons and

analogous ones in the linearized TF theory show for
each semiconductor that (1) rl is greater than ro, making
the former even more meaningful than the latter on the

lattice scale, (2) the fraction (roughly —,
'

) of the screening

radius over Which thc lincarizcd TFD cqURt1on ls Invalid
exceeds the already significant TF fraction (about —,

'
), and

(3) on the order of 10% more of e(0) is reached at r =r1
than Rt, P' =I'o. Prom thcsc 1csults, lt 1S clear that thc TFD
theory is less tolerant of linearization than the TF scheme.
The space region about the impurity in which this approx-
lmatlon ls IIlcallillglcss ls larger ln tllc former. Ill either
case» thc assumption Undcfly1ng thc pcrturbat1OQ ap-
proach is destined to fail since it certainly is not correct
very close to the impurity where —V approaches infinity.

Another point of interest here concerns the trend in the
above results when Z is increased. To examine this as-

pect, the previous calculations and comparisons are re-
peated for a doubly charged donor ion. The numerical re-
sults Rfc pfcscntcd 1Q TRblc III %'herc P'2 1S thc nc%' value
of the independent variable below which the linearized
TFD screening equation fails. From the increase in r2
over I „it is seen that the breakdown region has gro~n
from mughly —,

' to —,
' of the screening radius. In the TF

case the corresponding charge is from about —, to —,.
Moreover, each of the various other measures in Table III

shows an increase from its value in Table II.
Clearly, the linear form of the TFD screening equation

is less successful than its TF equivalent, and in both cases
perturbation theory is less useful, the larger the attractive
point charge Z. The latter conclusion has already been

pointed out in the TF context, and is consistent with the
sizable deviations from linear behavior seen in the non-
linear dielectric functions for large values of Z. A strik-

ing donor-acceptor asymmetry found in these deviations is
even more prominent in the nonlinear TFD-model dielec-
tric functions presented in the following section. VA'thin

the restrictions of the law governing the process of lineari-

zation, it. is knovvn26 that the approximation is exact only
for vanishingly small impurity charges. It is not surpris-

ing, therefore, to find trouble rooted in Eq. (16), which is
only valid in the mathematical limit Z —+O.

V(r) &Ep+y + V(R) . (21)

The purpose of this section is to present the TFD
theory of nonlinear impurity screening for different point

charges in the model semiconductor. The self-consistent

sclccncd potential around RIl 1Hlpurlty donof of RcccptoI"

ion in diamond, Si, or Ge is obtained by numerical solu-

tion of an appropriate set of hnear and nonhnear equa-

tions. For positive values of Z, the potential satisfies Eq.
(12) and I.aplace's equation for r &R and r &R, respec-

tively. The desirable solution of these equations ap-

proaches u(r)/e(0) and u(r) as r approaches infinity and

the origin, respectively. Moreover, the potential and the

electric field are continuous at r =R.
As noted previously, negative values of Z require a dif-

ferent treatment due to the Coulomb hole surrounding the

point charge. No electrons are allowed in this region of
negative kinetic energy, and hence the range of validity of
thc non11IlcRr TFD sciccnlng cquatloQ 1s subject to thc
constf R1nt

TABLE III. Listing of vRrious ICRsQI'cs of thc I'Rngc of vRHdity of thc lincRrizcd TF Rnd TFD
scrcell1llg cqURtloI1s for diRmoIld, Sl, RIld Gc %hell Z=2. TF values Rlc iI1 PRrcl1thcscs.

r2 (R.U.)

f2/8
rp/E.
@(&2)

[~(rI)A(0)j(100%)

0.84(0.71)
0.29(0.24)
0.34(0.26)
3.00(2.37)

52.6(41.6)

1.41(1.18)
0.32(0.27)
0.40(0, 28)
5.49(3.41)

46.0(28.6)

1.38(1.15)
0.30(0,25)
0,37(0.25)
5.73(3.45)

35.8(21.5)
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TABLE IV. Listing of screening radii and Coulomb-hole radii for nonlinear TFD screening equation
for diamond, Si, and Ge when Z =+1, +2, +3, and +4. TF values of Ref. 3 are in parentheses, and
Z=O corresponds to the linear results of Table I.

Screening radius 8 (a.u. )

Z Diamond

2.18(2.44)
2.22
2.27
2.34(2.64)
2.44(2. 76)
2.72(2.93)
2.95
3.14
3.31(3.30)

Silicon

3.11(3.74)
3.17
3.24
3.34(4.06)
3.50(4.28)
4.29(4.63)
4.83
5.25
5.61(5.28)

Germanium

3.37(4.02)
3.43
3.50
3.60(4.33)
3.74(4.54)
4.48(4.86)
5.00
5.40
5.74(5.47)

Coulomb-hole radius 8, (a.u. )

—3

0.70(0.53 )

1.06
1.33
1.54( 1.21)

1.50(0.97)
2.18
2.69
3.11(2.06)

1.44(0.93 )

2.11
2.59
3.00(1.98)

7 V(r)=(2 i l3m)Ep (22)

The radius R, of the Coulomb hole is defined by the
equality in Eq. (21). In this case, Eq. (12) is restricted to
the region between R and A„while the Poisson's equa-

tion,

describes the solution inside the hole. Here, the potential
and its derivative are continuous at r =R and r =R, . A
detailed discussion of Eq. (22), in the TF framework, has
been given in Refs. 21 and 3 for metals and semiconduct-
ors, respectively. As a result, the potential inside the
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FIG. 3. TFD spatial dielectric functions for diamond, silicon, and germanium in the nonlinear regime when Z =+1 and +4. The
dotted line denotes the Z-independent linear regime.
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sphere is known to be

V(r)=u(r)+(2'/ l9~)E~ r +P, (23)

where the unknown constant P is determined by the con-
tinuity of the potential at r =R, . It should be noted that
EF appearing in Eqs. (22) and (23) is given by Eq. (6).

The mathematical problems encountered here are essen-
tially the same as those described in Ref. 3 for positive
and negative values of Z. The nonlinear TFD screening
equation with initial conditions is solved in terms of the
numerical strategy outlined there in the TF context. The
actual numerical calculations were carried out with the
use of a Runge-Kutta-Verner fifth- and sixth-order
method. The matching of dependent variables to satisfy
correct behavior at the origin or continuity at r =R, was
rigorously established to within 10 . In order to solve
the nonlinear TF problem, it is only necessary to set y =0
in the input data file of the computer program for the
TFD case. TF results checked in this manner were found
to be in excellent agreement with values of the screening
radii and Coulomb-hole radii presented in Ref. 3, where
use was made of a modified predictor-corrector numerical
method of solution.

VI. NONLINEAR TFD DIELECTRIC FUNCTIONS
FOR DIAMOND, SILICON, AND GERMANIUM

Table IV reports the screening radii R and the
Coulomb-hole radii R, for diamond, Si, and Ge obtained
from the numerical solution of the nonlinear TFD impuri-

ty screening problem defined in the preceding section.
Results are given for monovalent, divalent, trivalent, and
tetravalent donor and acceptor substitutional ions. For
comparison, screening radii and Coulomb-hole radii
relevant to the nonlinear TF problem solved in Ref. 3, for
the monovalent, and tetravalent cases, are also listed in
parentheses. Moreover, linear results from Table I are in-
cluded and denoted as Z=O.

In the spirit of Eq. (2), nonlinear spatial dielectric func-
tions can be found from the numerical impurity potentials
derived in the search for the screening radii and
Coulomb-hole radii. The results are illustrated in Fig. 3,
where the dotted curves represent the linear (Z=O) ap-
proximation. For simplicity of presentation, the spatial
dielectric functions characteristic of the divalent and
trivalent cases are not included in these figures. General
features of these curves are familiar from the TF model.
For each semiconductor, the results for positive and nega-
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FIG. 4. Comparison of the TF and TFD spatial dielectric functions in the nonlinear regime for diamond, silicon, and germanium
when Z= + 1 and + 4.
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tlvc lolls fall above and llclow thc 1111cRI' cllI'vc, rcspcctlvc-
ly. Thus, nonlinear screening tends to reduce attractive
potentials and enhance repulsive potentials. Corrections
to linear-response theory are substantial, especially in the
latter case. Moreover, ion-charge conjugation leads to un-

symmetrical shifts in the curves.
It is of interest to compare nonlinear-response functions

in the two modds. 1n the TF scheme, spatial dielectric
functions are based on the screening radii and Coulomb-
hole radii given in Table IV (the numbers in parentheses).
For monovalent and tetravalent donors, Fig. 4 consistently
shows that effects of nonlinearity and exchange are more
effective at reducing attractive potentials than the former
acting alone. Alternatively„ there are situations in which
nonlinearity alone more capably enhances an attractive
potential, as shown by the monovalent cases in Fig. 5.
Tetravalent acceptor potentials are seen to be consistently
more enhanced by the presence of both effects. It also ap-
pears that donor-acceptor asymmetry is even stronger in
the TFD theory. Judged from these figures, exchange in-
troduces important differences between the TF and TFD
dcscrlptlolls of 110111111cal'dlclcctrlc scl'cclllllg.

In the linear regime, the TFD theory of screening in
semiconductors is deficient as an approximate description
of dielectric functions when compared with the TF theory
and exact band-strllctlll'c CRlclllatlolls fol' Sl Rlld Gc. Tllls
outcome is not cntiI'cly surprising since thc TFD appI'oacIl
has various shortcomings. From the outset, it carries no
form of dynamical correlation between the electrons of
opposite spin. For this reason alone, the TFD model can-
not be expected to yield good results within the
degenerate-electron-gas framework. Thus, as noted ear-
lier, the inclusion of correlation is presumably the next
natural step toward improving the TFD-model dielectric
functions.

More generally, if the TF theory is regarded as the first
approximation of a systematic expansion in powers of
Planck's constant, then the next term allows for the ex-
change energy and for a gradient quantum correction to
the TF form of the kinetic energy. From this viewpoint,
another direction for improving the TFD dielectric func-
tions involves taking account of the quantum correction.

(a) (b)

4.76— %76
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TF

DIAMOND
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0,00 0.47 094

t i i i r I
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FIG. 5. Comparison of the TF and TFD spatial dielectric functions in the nonlinear regime for diamond, silicon, and germanium
when Z = —1 and —4.
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The TF theory itself neglects exchange, correlation, and
the quantum correction, and yet it still provides very
rcspcctablc linear-response fUnctlons foI' 1cal scImcondUct-
ors. This suggests that adding correlation energy and/or
the quantum correction to the TFD theory will be useful
if the result is to reduce the effects of exchange and fur-
ther improve the behavior of the statistical model of
dielectric screening. These extentions of the TFD theory
arc prcscntly UndcI' 1nvcst1gat1on.¹teadded in proof. After completion of this work, it
was learned that the linearized TFD theory has been dis-
cussed by P. Csavinszky [Phys. Rev. B 28, 6076 (1983)].
Although the spirit of his approach is close to that which

leads to Eqs. (13) and (14) of this paper, there is a signifi-
cant difference in the choice of the quantity in terms of
which the hnearixation is implemented.
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