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A chain of atoms, harmonically coupled, subjected to a new type of parametrized substrate poten-
tial is studied in the strong coupling limit. We consider in particular two cases in which the shape
of the potential can be moved in a controlled manner from the simply periodic and symmetrical
sine-Gordon model to doubly periodic potentials: a periodic double-well deformable potential
(DWDP) and an asymmetrical deformable potential (ASDP). Kinks solutions are calculated analyt-
ically in the continuum limit. In the DWDP case two types of symmetric kinks with different
masses are obtained. In this model the numerical studies of kink-kink and kink-antikink collisions
show that kinks properties are very close to those of an integrable system. Consequently, the col-
lisions are well described by treating the excitations as relativistic quasiparticles if conversion be-
tween the two types of particles is taken into account. In the ASDP case, two types of asymmetric
kinks with identical masses are found. Owing to this asymmetry, the interaction between two exci-
tations depends on the side of the kinks which first comes into contact during the collision, and this
“polarization” of the kinks introduces new features when they collide. Moreover, these kinks inter-
polate between two ground states which do not have the same phonon spectrum. In some cases
small-amplitude oscillations can be trapped between a kink and an antikink and induce a new type
of resonant interaction between them. In addition, in the search for breather solutions as the low-
amplitude limit of nonlinear Schrddinger envelope solitons, necessary conditions for the existence of
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breather modes are determined analytically and confirmed numerically.

I. INTRODUCTION

Nonlinear solitonlike excitations in one dimensional
physical systems have recently attracted considerable at-
tention.! A standard model® in condensed matter physics
is the discrete Frenkel-Kontorova (FK) or sine-Gordon?
(SG) chain, which consists of a chain of atoms connected
with harmonic springs, interacting with a sinusoidal sub-
strate potential. In the continuum limit it becomes the SG
model,® an integrable model* of exceptional mathematical
interest with “strict soliton” solutions. However, in real
systems, as for instance Josephson junctions, incommensu-
rate systems, charge-density wave condensates, or crystals
with dislocations, the shape of the potential can deviate
strongly from a sinusoidal one. In that context, introduc-
ing a one-dimensional model® with nonlinear periodic de-
formable potential, we have recently shown® that the
shape of the substrate potential is a factor of particular
importance when modeling physical systems. Discrete-
ness effects and the related soliton pinning increase with
the deformation of the potential. When this parametrized
potential is used in a generalized FK model’ to describe
incommensurate phases, the critical amplitude of the po-
tential above which the incommensurate structure be-
comes pinned to the substrate and the phason mode disap-
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pears (transition by “breaking of analyticity”), is consider-
ably lowered. Moreover, the model>® shows a very rich
phenomenology® for the resonant collisions of nonlinear
excitations in nonintegrable theories. Very recently it has
been shown’ that these collisions can generate chaotic
states in this nonintegrable model with infinite degrees of
freedom.

Encouraging as these results are, they are nevertheless
somewhat limited in their applicability to real physical
systems by the fact that the potential considered above, al-
though deformable, is periodic and possesses only one type
of potential barrier which is symmetrical and therefore
can support only one type of kink solution (a kink being a
solitonlike excitation in which the relevant field evolves
across a barrier from one minimum to an adjacent
minimum). For wider generality it is desirable!* to have a
model that describes a “polykink system” (i.e., one for
which more than one type of solitonic excitation is possi-
ble) with symmetric or asymmetric kink solutions.

In this paper we introduce a new family of nonlinear
periodic deformable potentials which generalizes the
model previously considered™$

1+e cosg

V(g,r)=A(r) 3 ,
[14r°+2rcos(¢/m)P

(1.1
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where r is a shape parameter with range —1 <r <1, A(7)
is a normalizing amplitude function; m,p are integers and
e =*1. The potentials defined by Eq. (1.1) reduce to the
familir SG potential through a continuous deformation
when the parameter r goes to zero. With A (r)=(1—r)?,
m=p=1, e=—1 one recovers the potential recently
studied.® For 4 (r)=(1—r?)}, m =p=2,e=—1,0<r<1,
one obtains an asymmetric deformable potential (ASDP)
with a constant barrier height equal to 2, represented in
Fig. 1(a) for different values of r; the position ¢, of the
potential barrier depends on r and is determined by
cos(¢p /2)=2r/(14r%); two successive wells are in-
equivalent with, respectively, a flat and a sharp bottom.
For A(r)=(1—r)*, m =p=2,e= + 1,0<r<1, one gets a
double-well deformable potential (DWDP), plotted in Fig.
1(b). At ¢=0 the height of the barrier separating two
double wells is equal to 2. Thus in the two particular
cases defined above one can move in a controlled manner
from the simply periodic and symmetric SG model (which
is completely integrable*) to doubly periodic or asym-
metric periodic models which are not completely inte-
grable. With an adequate choice of the parameters one
can also obtain from Eq. (1.1) a very rich variety of many
other deformable potentials (as for instance symmetric or
asymmetric multiple-well potentials) with related soliton
solutions which allow the modeling of many different
specific physical situations without employing perturba-
tion methods.

In this paper we present the important and interesting
new features which emerge from the parallel study of the
DWDP and ASDP systems defined above: both of them
possess two kinds of solitonlike excitations but with com-
pletely different properties. The organization of the paper
is as follows. In Sec. II the kink solutions of the equations
of motions are calculated exactly. The existence of

() ASDP (b) DWDP

00

FIG. 1. Representation of the potentials ¥ (¢,r) (a) for the
ASDP model and (b} DWDP model for different values of the
shape parameter .
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breather solutions is studied approximately in the low am-
plitude limit. Section III is devoted to the numerical stud-
ies of the solitonlike excitations. We investigate particu-
lary their stability and particlelike interactions between
the two types of kinks, including breather formation in
kink-antikink collisions. For the ASDP case resonant in-
teractions are studied. Section IV gives a brief summary
and discussion.

II. EQUATIONS OF MOTION AND ANALYTICAL
SOLUTIONS

A. Kink excitations

We consider an array of atoms of mass m connected
with harmonic springs interacting with the periodic “on-
site” potential V' (¢,r) with period a =4m. The potentials
defined in Sec. I and represented in Figs. 1(a) and 1(b) are
given by

(1—r»*(1—cos¢)

: for ASDP 21
(1472427 cos7¢)?
Vig,r)= 4
U=rtl+cosd) g pwpp . (2.2)
(14-7242rcos3¢)?

For r=0 one recovers in each case the SG potential.
The Hamiltonian is

i lof'
H=73 a4 %¢?+%a—f(¢;+1—¢i)2+w%V(¢i,r) , (2.3)

where ¢; is the scalar dimensionless displacement of the
ith atom. The constant C; is a characteristic velocity, wg
a characteristic frequency, d =Cy/w, defines the discrete-
ness parameter and the factor 4 =ma sets the energy
scale. In the continuum or “displacive” limit (d >>1), the
Hamiltonian (2.3) of the system reduces® to a generalized
Klein-Gordon Hamiltonian
H=A [ dx[+¢}+3Ci¢2 +0iV(4,)], (2.4)
where ¢(x,t) is a one-component field variable and
¢, =0¢/0x replaces (¢; .1 —¢;)/a. Topologically stable
single kink or quasisoliton solutions will then follow>®!!
from the associated equation of motion for ¢
aV(¢,r)
_ C2 2 0.
bu 0Pxx + @0 3¢
We simply look for traveling wave solutions and apply
boundary conditions for a kink, ¢, with velocity v: With
the use of s =x —ut the implicit solution describing a sin-
gle kink is®

1 #(s)
Tr=ss [0 48174017

(2.5)

(2.6)

where ¥ =(1—v2/C3)~'2. The energy associated with a

single kink at rest is given by
ER=MyC}, 2.7)

where M is the kink rest mass given by
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TABLE 1. Various quantities of the ASDP and DWDP systems associated with the kink (+ ) and antikink (—) solution of Eq.
(2.5). The rest masses My . and M, k, are expressed in terms of M, K0=8A /d, the SG soliton rest mass.

Vig,r) ASDP DWDP

1’52_ %{-—:—z—ln —cot ‘Jﬁ— H_ l_z_rrzln —sin J;— (1i:; In | —cot —?:—4—% — (ljr)z (¢—2m)

My, M,(ol—;r’iln 14r MKOQ‘T’)i - ii:z arctan ::

MK2 MKOIE—:Z ii: ]MKO(I—’.r)2 _%+%{.§arctan ii—: H
VI [Sap\nn e o s e 0 e s

where ¢, and @, are two successive degenerate minima of
V(¢,r). The relevant results listed in Table I for the
ASDP and DWDP systems are now easily derived from
Egs. (2.1), (2.2), (2.6), and (2.8); as expected for r=0 they
reduce to the SG results. For the DWDP system two
types of kink solutions are calculated. For the type-I kink
the ground states at = —a and ¢ =1 are connected over
the variable potential barrier [see Fig. 2(a)] at ¢=0; its
rest mass My can vary from My, (r =0) to zero (r—1).
For the type-II kink the ground states at ¢ =7 and ¢ =37

are connected over the constant potential barrier (equal to
two); its rest mass Mk, can range from Mg, (r=0) to

3N
(a)

o} K ¢
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0

FIG. 2. Kink profiles for various values of the shape parame-
ter r for the two models: (a) DWDP, (b) ASDP.

asymmetric kinks (antikinks) are obtained which corre-
spond, respectively, to the ranges (0,27) and (2m,47) for
¢. The waveforms of two successive kinks are represented
in Fig. 2(b) for different values of ». Two successive kinks
are antisymmetric. The masses of the kinks expressed in
terms of the SG soliton rest mass M K0=8A /d, are equal.

The asymmetry of their shapes is controlled by the param-
eter r: The positions s and s, of their centers of mass
correspond to ¢y =2arccos(—r) and ¢y, =47 —dy ,
quantities which are calculated from Eq. (2.8) and from
the values of M, k, and M, (see Table I). For this ASDP

model explicit solutions can be derived in the particular
case r =2—V/3. In this case we have 4 =r?+1 and the
implicit solution given in Table I can be inverted.

If we define T =tan(¢;/4) and

a=~;°exp ___.____2‘/3—3&
2—-V3 d
we obtain
; | a2 L g 1727173
T=§+(a)“3[ st |t it ]
) , 11727173
N
(2.9
and ¢y is given by
¢r=4arctan(T) . (2.10)

The second solution ¢y; is simply ¢yy=47—¢;.
In the linear limit (|¢ | <<1) Eq. (2.5) reduces to the
Klein-Gordon equation

by —Clbr +050=0, m=1,2,3. 2.11)

For the ASDP system (m=1 or 2) two characteristic fre-
quencies w; and w, can be defined (corresponding to the
small phonon oscillations in the bottom of the two kinds
of wells):
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1—r

ld 1+r
147

W1=wWg y W)=y 11—~ (2.12)

Thus this system supports two kinds of phonon excitations
and this is responsible of an interesting property of the
kinks. Indeed, in order to obtain the ground state of the
system we must put =0 or ¢ =27 along the whole sys-
tem. If we choose the first solution (¢=0) all the atoms
(or the continuum chain in the continuum limit) lie in the
wells with a flat bottom and consequently the frequency
of the long-wavelength phonons is ®,. On the contrary
for the second solution (¢ =2) all atoms are in the wells
with a sharp bottom and the frequency of the long-
wavelength phonons is @w,. Thus the model has two ener-
getically equivalent ground states but these two states are
not physically equivalent (in particular, they do not have
the same dynamical properties—phonons frequencies).
These two states may for instance represent two different
phases. A kink in this model separates one ground state
from the other and thus it is a wall between two different
“media.” To our knowledge it is the first time that this
kind of kink has been investigated. This peculiarity is also
of great importance for the thermodynamical properties
of the system. When kinks are moving in such a system
they move the boundaries between regions that do not car-
ry the same types of phonons. The case of the DWDP
system (m=13) is simpler since it carries only one type of
phonon with a characteristic frequency

(1—r)?

—— (2.13)
147

W3=0y

B. Breather modes in the low-amplitude limit

In contrast to Sec. Il A where we exactly calculated the
kink solutions, in this section we rely on the approximate
breather solutions in the small-amplitude limit. It is now
well known'? that in the low-amplitude limit the SG
breather mode is equivalent to a nonlinear Schrodinger
(NLS) envelope soliton. Kaup and Newell have pointed
out'? that this result can be applied to a much wider class
of systems with potential ¥ (¢) different from the SG po-
tential. This result is now used to determine the low am-
plitude breather solutions.

1. ASDP model

For the ASDP model the small nonlinear oscillations
correspond to oscillations in the bottom of one of the two
wells of the potential: ¢—e®; or d—eD,+2m with
€ << 1. For these two cases inserting Eq. (2.1) in Eq. (2.5)
and expanding in terms of ® gives

24, @3
Dy — CoPx +0F <I>1—621—:r1’+—r)fi—6l =0  (2.14a)
for ®—e®,, and

2 o3
bon — Ci®ox + 05 !%—ezl*gl—gf—rf =0  (2.14b)
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for ®—e®,+27.

To derive Eq. (2.14b) we must assume r®3/(1—r)? << 1
for the validity of the expansion of Eq. (2.5). This condi-
tion requires P to be very small when r— 1. Nonetheless
this restriction is quite natural since the potential well is
extremely narrow in this limit.

We now look for solutions of Egs. (2.14a) and (2.14b) of
the form

b6, =W, (X, T)e """ 4c.c., I=10r2 (2.15)

where it is assumed!® that the variations in Y(X,T) occur
on a time scale very slow compared to w;! and a space
scale large compared to a natural length scale in the sys-
tem, i.e., the period of V(¢,r). Accordingly we introduce
T =€, X =ex.

Inserting Eq. (2.15) in Egs. (2.14a) and (2.14b) and keep-
ing terms to order €* we get, respectively, the two NLS
equations,

C

iV + 70 Wixx+k |V, |2¥,=0, (2.16a)
i
o 2
iVyr+ Voxx +k, | W, | “W,=0, (2.16b)
2(1)2
where
_oy(1+r2—4r) wy(1+r244r) o |
T s T g ST

The quantities C3, w;, and w, being positive, it turns out
that the solutions of Egs. (2.16a) and (2.16b) depend,
respectively, on the coefficients k; and k,. Let us first
discuss the case of Eq. (2.16b) which is simpler. Indeed
k, is always positive and the solution is an envelope soli-
ton of the form'4—16

(2w,)'7? v%e—2v29v2c )
VX, T)= to )
5 ) Co 2%, (sechf)e (2.17)
with
_92 2 172
9— 2 (vze——2v2,_,vzc) (X—UzeT) N (2188)
Co
02 |y 22 - (2.18b)
o=— |X——v , .
c? c2

where v,, and v,, are the velocities of the envelope and
carrier waves. The corresponding low-amplitude breather
solution is simply obtained by inserting Eq. (2.17) in Eq.
(2.15).

For Eq. (2.16a) we have two cases. First, for
0<r<0.26 k; is always positive and we have an envelope
solution W (X, T) [similar to that given by Eq. (2.17) with
velocities vy, and v;.] and as in the previous case we can
easily get the corresponding breather solution. Second, for
026 <r<1 k; is negative; in that case the solution of
(2.16a) is a “dark” (or a hole) soliton!” which does not cor-
respond to the small-amplitude limit of a breather mode.
In other words no breather mode solution is possible for
0.26 < r < 1 for the type-II solitons.
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2. DWDP model

To look for the possibility of breather mode solutions
we must consider the small nonlinear collective oscilla-
tions in the identical wells centered at ¢ =+#. Thus in-
troducing ¢—eP3+ 7, Egs. (2.5) and (2.2) yield
e}

()
3 3er <I>§

@3y — CiPayy + 003 | D3 — —0. (2.19)

6 + 1472

In contrast to the two previous cases we notice the pres-
J

@3 3
(D3——-€2—3' -+ _‘G'Z“(bg

2 2
—Cp®
D3y — CoPapx +003 6 1472

Inserting Eq. (2.20) in (2.21) and equating dc, first har-
monic, and second harmonic terms, we get, respectively,

| ¥+~ 92| o =0 @22

& 1_?_,- WP gDy ]\I,(l)lzq,m
—C0W3XX—2ia)3\I/(31T) +0(€3)=0’ (2'23)
3|3 2w |l ro@=0. @2y

With the help of Egs. (2.22) and (2.24), we ﬁnally obtain
from Eq. (2.23) the following NLS equation for wib:

C\y(l)
WD+ ——‘;—3— ks | WY 2050 =0 (2.25)
where
1572 1
ki=ow -
T (42

The coefficient k3 of this NLS equation is always posi-
tive for 0 <r <1 so that the envelope solution of Eq. (2.25)
has a form similar to the solutions explicitly obtamed in
the previous cases [see Eq. (2.17)]. Knowing \1/3 one can
calculate ¥ and ¥{? from Egs. (2.22) and (2.24) in terms
of W{" and then easily deduce the corresponding small-
amplitude breather solution from Eq. (2.20). For the sake
of simplicity this complete solution will not be given here.
The most important result is simply that for the DWDP
model breather solutions exist for any value of the param-
eter r. For the ASDP and DWDP models the above
theoretical results related to the existence of breather
modes are confirmed by the results of our numerical
simulations (see Sec. III).

III. PROPERTIES OF THE KINKS IN THE PERIODIC
DOUBLE-WELL AND ASYMMETRIC
POTENTIAL MODELS

In Sec. II we have shown that soliton solutions can be
derived for the two models. The aim of this section is to
present the properties of these solutions. For physical ap-

— C5€2¢3XX -+ 2€2¢)3tT =+ 2€¢3xX -+ (0] (G
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ence of a ®3 term which is due to the asymmetry of each
potential well [see Fig. 1(b)]. Consequently we must
look!® for asymmetric solutions which must contain at
least a second harmonic term and also a constant term

O4(x,0) =V (X, T)e

—iagt

+ C.C.
+e[ VX, T)+ V2 (X, Te +c.c.]. (2.20)

With the same assumptions (7 =€t and X =ex) as in the
two previous cases Eq. (2.19) then becomes

—2iaw,t

$=0. (2.21)

I
plications the stability of the excitations is especially im-
portant since long-lived excitations are expected (for in-
stance) to play an important role in the thermodynamics
of the system. Since it is well known that topological
kinks are stable with respect to collisions with small
(linear) excitations,® we have focused our attention on
kink-kink interactions. Most of the results are obtained
from numerical simulation and we first discuss briefly the
numerical technique in Sec. III A. Then we examine the
properties of the kinks in the two particular models that
we have considered in Sec. I: the periodic double-well po-
tential (Sec. III B) and the asymmetric periodic potential
(Sec. IIIC). We show that interesting features are present
in the two cases, some of them being useful to sharpen our
understanding of kink interactions in other systems.

A. Numerical method

The numerical method used to simulate kink propaga-
tion in such models has been previously described.® Basi-
cally it consists in solving with a fourth-order Runge-
Kutta method the Newtonian equations of motion of a
discrete chain whose continuum analog is described by Eq.
(2.5). This method has been specially designed to enable
us to study the influence of the discreteness of the lattice
which occurs naturally in many physical applications. In
a previous study® the discreteness effects have been ob-
served to be very sensitive to the exact shape of the poten-
tial. Indeed this is also true for the two models that we
consider here. The case of the periodic double well is par-
ticularly interesting since two different discretization
scales are simultaneously present in the system owing to
the existence of two heights for the potential barriers.
Nevertheless, a study of discreteness effects in the two
models needs further investigations and they have been re-
moved from the results that we present in the following by
an appropriate choice of the kink width (typically 20 unit
cells or more). The total number of unit cells in the sys-
tem is either 400 or 600 with fixed boundaries. The time
step At is chosen so that the total energy of the system is
preserved to an accuracy better than 10~ (typically
At=0.1).

B. Properties of the kinks in the DWDP model

As previously mentioned, we are specially interested in
the properties of the kinks (K) or antikinks (K) when they
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FIG. 3. Summary of the topological constraints governing kink collisions in the double-well potential. (ag),(bg),(c,) are the three
possible initial states and (a;),(a3), . . ., the corresponding final states. The final states which are observed in the computer simula-
tions are denoted by a star. Note that this picture is only schematic. For clarity the shapes of the kinks have been assumed not to
vary in a collision. This is not true if a kink of a definite type (say type I) enters a domain of ¢ in which the other type is stable (for

instance in C;).

collide in order to determine their stability in a physical
system which is expected to bear many of them (so that
collisions necessarily occur). Results of Sec. II show that
two types of kinks exist in the system. Type-I kinks with
¢ varying between —m and 4+ are associated with the
lower barrier in the potential while the higher barrier cor-
responds to type-II kinks for which ¢ varies between 7
“and 37 [Fig. 1(b)]. Kink masses M k, and M, k, are such

that My <My, (they are equal in the limit =0, the SG

case). Allowing for the existence of kinks (K) and an-
tikinks (K) of each type, one can imagine various kinds of
collisions between these nonlinear excitations. Neverthe-
less, some of them are forbidden by the topological con-
straints in the system. Figure 3 shows that only three
types of collisions have to be considered: KLKU (or
KK which is equivalent), K"™-K " and K'-K. For a
given initial state several final states are allowed by the to-
pological constraints. They are plotted in Fig. 3. Similar
properties occur in all systems with a doubly periodic sub-
strate potential'® and in particular in the double SG sys-
tem.!*20 In this last system only the second and third
types of collisions (KK pair collisions) have been investi-
gated for a particular shape of the potential.!” We show
in the following that, for these types of collisions, our re-

sults exhibit qualitative similarities with those obtained in
the double SG model but rather large quantitative differ-
ences. Among these differences is the fact that the ampli-
tude of the kinks [¢(+ oo )-¢(— 0)] remains constant
(equal to 27) in our model while, in the double SG system,
the amplitude of the kinks corresponding to the lower bar-
rier (type-I kinks) goes to zero as this barrier goes to zero,
i.e., type-I kinks vanish.

1. KLKY collisions

In these kink-kink collisions we observed that the final
state is independent of the initial energy of the two excita-
tions. The two kinks experience a repulsive interaction.
Two processes for the collision are allowed by the topolog-
ical constraints (Fig. 3): The two kinks can pass through
each other or be reflected. In the SG case, for two indis-
tinguishable initial excitations (two kinks with the same
initial velocity) such a difference has no physical meaning
(apart from the definition of the phase shift in the col-
lision) but this is not the case here when the parameter r is
different from zero: Even two kinks with the same initial
velocity have different masses and shapes (and particular-
ly different widths). Let us consider what would happen
if the two kinks pass through each other. A type-II kink
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would enter the domain —w<¢ < +m (which is the
domain of stability of a type-I kink) while a type-I kink
would enter the domain 7 < ¢ < 3. Thus the two excita-
tions would have to adjust their shapes to recover the
shape which corresponds to the solution in the region
which they have entered. The deformation energy re-
quired for the adjustment would be subtracted from the
kinetic energy of the kinks. Although such a mechanism
is topologically allowed (and occurs in the case of asym-
metric kinks as we shall see in the next section) a careful
examination of the state of the system during the col-
lisions shows that the two kinks reflect each other when
they collide, each of them staying in the domain where it
is stable (final state a, in Fig. 3). As a consequence the
energy of the kinks is preserved nearly perfectly in the col-
lision. If the kinks are considered as relativistic pseu-
doparticles® with masses My, and Mg, and velocities v;

and vy before the collision and vy,vy; after the collision,
energy and momentum conservation yield

My, My,
(1—of /37 " (T=oh/Ch)”
My, My,
= (1—0;2/C2)172 + (1—viZ/CO)72 ° (3.1a)
M, v1 Mg vy
(1—2/CH7 " (1-01/CP)'7
MKlvi MKZUix
- (3.1b)

+ .
(1—vi2/CHV? * (1—vit /CH)'/?

Relations (3.1a) and (3.1b) have been checked in dif-
ferent cases (r=0.1 and 0.3) with initial velocities between
0.1Cy and 0.5C,. They are verified to an accuracy of
0.3—5 % which lies inside the accuracy of our numerical
experiment (this accuracy is better for the higher velocity
cases). However, a careful examination of the kink shapes
after their collision shows slight modifications which indi-
cate that a small part of the energy of the incident kinks
has been transferred into deformation energy of the kinks.
But this loss of energy is so small that we cannot
“measure” it in the numerical experiment. Thus, as far as
only kink-kink collisions are concerned, the picture of the
kinks as forming an ideal gas made of two types of rela-
tivistic particles appears to give an accurate description of
the properties of the system. Nevertheless, the two fol-
lowing sections show that when antikinks are present the
picture is not so simple since conversions of particles of
type II into type I (or vice versa) can occur.

2. KK oollisions

As in the previous case, in such a collision two states
are allowed by the topological constraints. If the two ex-
citations repel each other the final state is again a K'-K II
pair (final state b, in Fig. 3) but if they pass through each
other they are converted into a K-K ! pair (final state b,
in Fig. 3). The relation Mg, > M, shows that the K"-K I

pair has always sufficient energy (whatever the initial ve-
locities of the excitations) to form a K-K! pair. We ob-
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serve that this conversion into type I always occurs. As a
result in a K™K collision, the two excitations never
form bound state (breather mode). It is interesting to note
that the picture of relativistic quasiparticles for the kinks
is again valid here if one allows for a possible conversion
of the heavy type-II particles into light type-I particles.
The difference between the rest energies is converted into
kinetic energy of the light particles according to the ener-
gy conservation relation:

My, My,
(1—vg/CHYV2 " (1—v}/C3)1/2 "

(3.2)

Computer simulations show that this energy conserva-
tion is verified with a rather good approximation: Let us
illustrate this assertion by a numerical result. In the case
r=0.3 the ratio of the rest masses of the particles is
Mg,/Mg =2.6024. When two heavy (type-II) particles

collide with initial velocities +0.1C, we observe the for-
mation of a pair of light particles (type I) with velocities
+0.90C, while the energy conservation would yield
0.924Cy. In such a collision a slight decrease in the ener-
gy of the quasiparticles was expected because when the
type-II kinks pass through each other they enter the
domain in which the type-I kinks are stable
(—m<¢d<+m) and thus they have an inappropriate
shape. The adjustment of their shape toward that of
type-I kinks is accompanied by the emission of small-
amplitude excitations which carry away a part of the ener-
gy of the quasiparticles. Nevertheless, the numerical re-
sults show that this radiation has a rather weak effect on
the energy of the kinks and this is even more exact if their
initial velocities are higher. In a KU-K collision, the
topological constraints do not exclude a third final state in
which four excitations would be produced, i.e., a KLK!
pair plus a K™K pair moving slowly, as shown in Fig.
4. If the kinetic energy of the initial K™-K ! pair is suffi-
cient, this final state may also be consistent with energy
conservation in the system. However, as in the double SG
model,' numerical simulations never show this double
pair production:*! The number of quasiparticles is always
conserved in a collision.

3N 3T

=3t

FIG. 4. Schematic picture showing that the production of
two pairs of kinks from a K"-K " collision in the DWDP model
is allowed by the topological constraints: (a) initial state, (b)
final state. This double pair production is not observed in the
numerical simulations.
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3. KLK collisions

Simulations of K™K collisions have indicated that
the quasiparticle picture is again rather accurate provided
that the possibility of the conversion between the two
types of particles is introduced in the model. The study of
KLK! collisions confirms this result. This type of col-
lision involves solitons which correspond to the small bar-
rier of the periodic double well and consequently it exhib-
its some similarities with a K-K collision in the ¢* model.
But a major difference exists: In our case the barrier be-
tween two double wells is finite. Whereas in the ¢* case
kink and antikink can never pass through each other, in
the periodic double well this topological constraint is re-
moved. Nevertheless, one must also take into account en-
ergetic constraints. As shown schematically in Fig. 3 (fi-
nal state C,) when K! and K pass through each other
they form a K-K' pair. As a consequence their initial
energy must be at least equal to twice the rest mass M,

of the type-II kinks. Since MK1<MK2 this can be

achieved only if the K'-K ! pair has enough kinetic energy,
i.e., if the initial velocity v; of the two excitation exceeds a
value v given by

2M,
[1-)?/C31'

2My, . (3.3)

For instance, for =0.3 this equation gives v)=0.784C,.

In fact this value is only a lower limit since the K'-K [
pair generated with no kinetic energy is not stable: The
two excitations experience an attractive interaction which
brings them together and this collision again creates a K-
K pair. The conversion of light kinks into heavy ones is
only observed for input velocities greater than 0.92C,.
When v; <v; the two kinks can never pass through each
other and for this velocity range the model becomes
equivalent to a model with infinite double wells. In this
case the final state is still sensitive to the initial velocity of
the two colliding excitations (v; <vjp). There is a critical
velocity v, such that the two kinks can reflect from each
other and escape to infinity only if v; >v.. Two points
have to be discussed: the variation of the critical velocity
as a function of the shape parameter r and the behavior of
the two excitations for v; <v,. Let us consider successive-
ly these two points.

When a kink and an antikink collide they interact
through an attractive potential.”>~2* If the energy of the
excitations is exactly preserved during the collision, K and
K can always escape from this attractive well, even if their
initial kinetic energy is very low or equal to zero. This is

the case in an integrable model like the SG model and the -

critical velocity is zero in such a model. But if the K and
K lose some energy in the collision process they may be
trapped by their attracting potential and form a bound
state.*® This trapping occurs if their initial kinetic ener-
gy is smaller than the energy that they lose in the col-
lision. This condition determines the critical velocity v,.
Consequently the value of the critical velocity gives an in-
direct measure of the loss of energy in a K-K collision and
particularly v,0 means that the kinks are not strict soli-
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FIG. 5. Critical velocity for K*-K! collisions in the DWDP
model as a function of the shape parameter 7.

tons (i.e., that the model is not completely integrable).
The critical velocity in a K-K ! collision is plotted in Fig.
5 as a function of r. In the whole domain 0.03 <r <1 the
variation of v, is confined in the small range 0.06
<V, <0.16. The rather sharp increase of v, for r <0.03 is
not a surprise since this domain corresponds to the transi-
tion from a completely integrable model (SG model) to a
nonintegrable one.*° More remarkable, and up to now
unexplained, is the minimum of v, which is observed for
r=0.3. For this value of r the shape of the potential is far
from a sinusoidal shape (for instance the ratio of the large
and small barrier heights is 0.084) but the K-K collisions
are nearly elastic, i.e., the kinks in this model behave as
“nearly exact solitons.” This is clear in Fig. 6 where the
output velocities of the two excitations are plotted versus
their input velocities for the DWDP model with r=0.3
and other models (SG, ¢4, or double SG models): The
curve for the DWDP model is very close to that of the SG

08

0 02 04 06 08
V input

FIG. 6. K-K outgoing velocities as a function of their incom-
ing velocities for a K-K! collision in the DWDP model for
r=0.3 (solid line) compared with the same results for the SG
model (dashed line), ¢* model (dotted line) (from Ref. 24), and
double SG model (dotted-dashed line) (from Ref. 19).
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model. This result shows that the picture of kinks as
quasiparticles performing nearly elastic collisions ceases to
be valid only in a very small domain of initial velocities
(Ui <V ).

As previously mentioned for v; <v,, the colliding kink
and antikink are trapped in their attracting potential. In
agreement with the theoretical results of Sec. II, we ob-
serve that they form an oscillating bound state (breather
mode) for all values of the shape parameter ». Figure 7
represents the position of the center of the chain
#(x =0,t) as a function of time for a KK ! collision at
low initial velocity. This figure shows clearly the ex-
istence of a rather stable oscillating state. It is important
to notice that ¢(0,2) is not symmetric with respect to the
bottom of the potential well (contrary to the SG breather,
for instance). This is related to the asymmetry of each
well in the DWDP model.

- In the theoretical derivation of the small-amplitude
breather solution (Sec. II) this asymmetry was taken into
account by the introduction of a second harmonic (e*®!
term) which is responsible of the particular shape of the
function ¢(0,¢). In addition, Fig. 7 clearly shows the ex-
istence of the dc term which was introduced in the
theoretical treatment to derive the breather solution. Thus
the theory proposed in Sec. II proves very efficient in spite
of the approximation of small-amplitude breather modes
which is made.

C. Properties of the kinks in the ASDP model

Similarly to the DWDP model, this model also bears
two types of kinks. Type-I kinks (0 < ¢ <2) and type-II
kinks (27 <¢ <4m) have now the same rest masses My,
and Mg,. We can again consider the same kind of col-
lision as for the DWDP model (see Fig. 3): K-k, K.
KU and KK As shown in Sec. II, each kink is asym-
metric, due to the asymmetry of the potential barrier and
this is responsible of an interesting new property of this
model. As previously mentioned an ASDP kink separates
two “media” which are physically inequivalent. Thus the
introduction of a kink in a chain creates a symmetry
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FIG. 7. Position of the center of the chain ¢#(x =0,¢) as a
function of time in a K'-K ! collision in the DWDP model for an
initial  velocity = smaller than the critical velocity
(r =0.3,0;=0.04) showing the formation of a rather stable
breather mode. Note the asymmetry and dc shift of the breather
oscillation with respect to the bottom of the well (¢ = —).
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FIG. 8. The two types of kink-kink collisions in the ASDP
model: (a) hard collision, (b) soft collision.

breaking and introduces an orientation of the medium:
the two directions +x and —x are no longer equivalent.
But the kink itself is orientated. Its shape is different in
the two directions +x and —Xx and so are its interactions
with other kinks in the system. This property dominates
the kink interactions in the ASDP model.

1. KLKY coliisions

Contrary to the previous case we have now to consider
two types of kink-kink collisions in the system as shown
in Fig. 8. In the first case the two kinks move toward
each other with their sharp edge in front of them. They
ignore each other until they are very close to each other
and then collide abruptly. We call such a collision a
“hard collision.” On the contrary, in the second case the
two kinks present each other their smooth edge and thus
experience a repulsive interaction even when they are far
from each other. Such a collision is henceforth called a
“soft collision.” As one would expect the results of the
two collisions are totally different.

Hard collisions are highly inelastic because, except for
very low input velocities, the two kinks pass through each
other. This is checked by the observation of the system
immediately after the collision (Fig. 9 shows an example

| o~
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FIG. 9. KL-K"Y collision (hard collision) in the ASDP model.
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of such a collision). As pointed out previously if such a
situation occurs in a system bearing two different types of
kinks, after their collision, the kinks enter domains in
which their shape does not correspond to the solution of
the equation of motion. Figure 9 shows the remarkable
stability of the kink solutions in such systems carrying
topological kinks: The two excitations quickly adjust
their shape to recover the shape which is stable in the
domain they have just entered. This shape modification is
accompanied by the emission of a small bump (which pro-
pagates at speed C,, almost without deformation along the
chain as shown in Fig. 9). This bump indeed carries some
energy which is subtracted from the kinetic energy of the
kinks after the collision. This is indicated by a drop in the
kink velocities which becomes more and more pronounced
as the incoming velocities of the kinks increase because
the collision gets more and more violent, as shown in Fig.
10 where the output velocities of the kinks are plotted
versus their initial velocities in the case r=0.5.

On the contrary in a soft collision the kink and antikink
experience a repulsive interaction which increases smooth-
ly. They reflect from each other without any modifica-
tion of their shape and their collision is almost perfectly
elastic within the accuracy of the numerical experiment:
Their velocity is conserved to an accuracy of 0.001C, up
to initial velocities equal to 0.8C, and even when their in-
put velocity is 0.9C,, the decrease in output velocity is less
than 0.005C, as shown in Fig. 10.

2. Kink-antikink collisions

The orientated character of the interaction between two
kinks is also present in kink-antikink interactions. Figure
11 shows the two types of K-K collisions which are topo-
logically permitted in the model. The KK ! collision is a
hard collision while the KU-K collision is a soft col-
lision. Consequently the critical velocities vep and veyg
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FIG. 10. Outgoing velocities of the kinks as a function of
their incoming velocities for the two types of KL-K™ collisions in
the ASDP model: soft collision (solid line) and hard collision
(dashed line).
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FIG. 11. Two types of kink-antikink collisions in the ASDP
model: (a) K-K ! (hard collision), (b) K'-K U (soft collision).

under which the two excitations are unable to escape from
their attracting interaction potential are expected to be
significantly different.

This is indeed the case as shown in Fig. 12, where vy
and vy are plotted as a function of r. In both cases, when
their initial velocities v; are such that v; > v, the two exci-
tations pass through each other and escape to infinity. As
explained previously the loss of energy in this process is
important and both vy and vey are high. Nevertheless
Fig. 12 shows that vcp (corresponding to the hard col-
lision) is much greater than v¢y (corresponding to the soft
collision) as expected. When r is greater than 0.5, even ex-
citations with v; =0.95C, cannot escape to infinity. Since
vcr and vcy are very high it is of particular importance
here to study the behavior of the two excitations when
they collide at velocities which are smaller than the criti-
cal velocities. In these cases the K-K interactions exhibit a
rich phenomenology. In Sec. II we have shown that
breather modes exist for all values of 7 in the narrow po-
tential well (¢ ~27) while they only exist in the large po-
tential well (¢ ~0) if r <0.26. This result is exactly con-
firmed by the numerical simulations. The case ¢~2m
corresponds to K™K collisions and we have actually
been able to generate rather stable breather modes in this
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FIG. 12. Critical velocites vcy and veyp in the ASDP model as
a function of the shape parameter r.
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case for various values of r but, as we will discuss later,
these solutions are not obtained for all values of v; <vcyp.
KLK! collisions correspond to the case ¢ ~0. When 7 is
small (r<0.15) we observe large-amplitude, rather stable
breathers but when r increases over 0.15 the amplitude of
the breather mode which stays in the middle of the chain
decreases while more and more energy is transfered into
two bumps which are formed in the hard K-K collision.
This effect is shown in Fig. 13. We have been unable to
generate any stable breather in a KL-K! collision for
r>0.3 Thus the limit r=0.26 does not appear as a sharp
limit in the numerical simulation. It is nonetheless re-
markable that a theory assuming only low-amplitude solu-
tions gives a good estimate of the existence of the breath-
ers produced in a K-K collision which generates large-
amplitude breathers.?’

KUK collisions are not only interesting because they
can create breather modes but also because resonant K-K
interactions exist in this case. As pointed out previously
for most of the initial velocities |v; | <vcy the K™ and
K" form an oscillatory decaying bound state. But in
well-defined “windows” of |v;| below vcy the K1-K T
pass through each other once, escape to finite distance,
and then return to pass through each other once more be-
fore separating to infinity. This particular behavior has
been studied in detail for the case r=0.1 and is only possi-
ble when r is not too high (r <0.4). This type of resonant
interaction was first observed in the ¢* model>*~2 and
very recently an explanation of these “two-bounce win-
dows” in terms of a resonant energy exchange between the
translational motion of the K and K and a localized inter-
nal oscillation has been proposed.’* Similar resonances
were also discovered® in the model derived from Eq. (1.1)
and previously studied.>® In this case the possibility to

—
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change the shape of the potential by varying r (and then to
modify the number of internal modes of the kinks) was
used to test more precisely the role of the internal modes
in resonant interactions. Since the previous study was
rather complete (and involved a tremendous amount of
numerical calculation) it is not our aim here to perform a
similar study on a new type of deformable potential but
only to stress a few points that bring new features to the
theory of these resonant interactions.

The outgoing velocity of the kinks as a function of their
incoming velocity is plotted in Fig. 14. In addition to the
existence of the critical velocity ve;=0.251, Fig. 14 shows
the presence of six narrow windows for v; <vcy in which
the kink outgoing velocities are nonzero. (Note however
that the widths of these windows are not their actual
widths. They are extremely narrow—Av; <0.005 for the
larger one—and we did not attempt to determine their ac-
tual widths. Similarly, to save computation time we did
not perform a systematic research of additional windows
very close to vcyy, although there are strong indications in
our results that at least two additional windows exist.)

A detailed theoretical interpretation of the resonance
windows has been presented earlier'*® and we just outline
here the main ideas of this interpretation. It involves a lo-
calized internal oscillation of the kink K (the “shape
mode”) which corresponds to a discrete eigenvalue wp of
the Schrédinger-type equation that governs the small os-
cillations 8¢(x,t)=f(x)e iot about the kink waveform:

2
(25

ct

2
~frt 7 n(x)f (x)= g—% flx), (3.4)

where 7 ;i(x) is obtained from the second derivative of
the ASDP potential:

T S
¢ (b)

FIG. 13. (a) K-K! and (b) K™-K ! collisions in the ASDP model for r=0.3 for kink incoming velocities smaller than the critical
velocities vcr and vey. Note that in this case (7> 0.26) only the K™-K ! collision gives rise to a breather mode in agreement with the

theoretical predictions.
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FIG. 14. K"K outgoing velocites as a function of their in-
coming velocities for 7=0.1 in the ASDP model. The bars indi-
cating resonances for v; < vcy are only schematic since these res-
onances are very sharp. The dashed line would correspond to an
integrable model (Voutput = Vinput )-

d*v

V]I(X)=7¢_2'[¢KH(X)] . (3.5)

The potential 7 "1(x), obtained numerically, is plotted
in Fig. 15 for various values of . Note that the two limits
of this potential for x— + w0 or x— — o are different.
This is simply related to the fact that the two media on
the two sides of the kink are inequivalent. The resonance
condition is given by

wgT,=2mn +6, (3.6)

d is a constant and T, is the time which separates the two
kink collisions before they escape to infinity for a given
window characterized by the integer index n. T, is the
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FIG. 15. Potential 7 1(x) for the small-amplitude oscillations
about the K" waveform in the ASDP model for different values
of r. Note the different scales when 7 increases. The kink pro-
files at the bottom give the scale in the x direction.
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time during which the kink and antikink are bounded by
their attractive interaction potential. With some simplify-
ing assumptions T, can be shown to be

B
T - 2)1/2 ’

(3.7)
(&1 — V7

B being a constant and v, the initial velocity correspond-
ing to the window of index n. Thus, using Eqgs. (3.6) and
(3.7), v, is given by

2 2
vén—v2=& )
" 2nw+6)?

In spite of its simplifying assumptions, this theory proved
very accurate to describe resonances in the ¢* (Ref. 24)
and deformable periodic potential® models and here again
it gives a good estimate of the position v, of the windows.
The dependence of T, versus an integer index n is
found to be exactly linear within the accuracy of our ex-
periment [i.e., Eq. (3.6) is satisfied] as shown in Fig. 16.
The slope of the line gives wp=0.9235 and 8= —3.077.
This curve also determines n for each resonance. This
value of n can, however, also be derived from the number
of kink “internal” oscillations between the two kink col-
lisions observed in the numerical experiment. The prod-
uct T,(véy—v2)!/? varies between 3.51 and 3.10 with a
mean value 8=3.306. Thus Eq. (3.7) is satisfied to an ac-
curacy of 12%. Table II compares the theoretical values
of v, and the values determined numerically. Table II
shows that the theoretical interpretation of the resonant
interactions is able to describe rather well the observed
phenomena (note that all the parameters 3,wp,6 are deter-
mined “experimentally” and thus no adjustable parameter
is introduced in the model). The best agreement is ob-
tained for the resonances corresponding to indexes 5 to 7
because, as shown previously, the value of B varies slightly
with n and we have used the average value which is accu-
rate for n=6. A theory taking into account this slight
variation of 8 would indeed give even better results.
Contrary to the case of the K'-K ! collision, in spite of
a careful search we never found any resonant interaction

(3.8)

L 5 6 7 8 9

FIG. 16. wgT, /27 as a function of the window index n for
the resonances in K-K U collisions in the ASDP model.
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TABLE II. Two-bounce resonant windows in K'-K " scatter-
ing for the ASDP model (r =—0.1).

Center of the window Theoretical

v, (numerical value

Index n simulation) of v,
4 0.202 0.2094

5 0.224 0.2267

6 0.234 0.2355

7 0.240 0.2396

8 0.2434 0.2425

9 0.2452 0.2444

in a KLK ! collision. This result is not in agreement with
the theory previously proposed to explain the reso-
nances.”*® Owing to the shape of the two types of kinks
[see Fig. 1(a)] we have the following relation between the
two potentials 7 {(x) and 7 (x) of the Schrodinger-type
Eq. 3.4):

Vl(x)=VH(—x) .

Moreover, Eq. (3.4) is invariant in the change of x into
—x. As a result the spectrum of the small oscillations
about the two types of kink is the same. According to the
theory previously proposed®*? the existence of resonances
is directly connected to the existence of discrete eigen-
values in this spectrum and thus the resonances should be
present (or absent) in both cases. So this theory has to be
modified for the new case of kinks separating two media
(henceforth labeled medium 1 and medium 2) which have
not the same phonon sgectrum. The relative positions of
the energy levels w3, w3, and % are indicated in Fig. 15
[showing #"1;(x)] in the case r=0.1; they are, respectively,
0.6694, 0.8529, and 1.4938 (in units of »3). It is clear
from this figure that the oscillatory state with energy w5 is
not a localized state, but a state bounded only in one direc-
tion: Oscillations at frequency wp can propagate in medi-
um 1 which admits »; as lowest phonon frequency (i.e., in
the medium where ¢ ~0 or 477) and they cannot propagate
in medium 2 which has @, as lowest phonon frequency
(¢ ~2m) due to the relation w; <wp <®,. Once this re-
mark has been made, the difference between the K-K!
and K"™-K ! collisions is easily understood by looking at
Fig. 11 which shows the state of the system for these two
collisions. In a K™-K ™ collision medium 1 is situated be-
tween the two kinks while in a K*-K ! collision it is situat-
ed outside the domain limited by the two kinks. Conse-
quently, although it is not localized near one kink, in the
K"K collision, the oscillation at frequency wg is con-
fined between the two excitations; the energy which is tem-
porarily stored in this mode cannot escape to infinity; if
the resonance condition is satisfied, this energy can be re-
stored to the two kinks and a resonance occurs. On the
contrary in a KL-K ! collision the energy stored in the os-
cillatory mode is situated outside the domain separating
the two kinks and escapes to infinity. Thus no resonance
can exist.

The example of K-K collision in the ASDP model
shows clearly the new features which emerge in this model
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where a kink interpolates between two different “media,”
i.e., with different characteristic phonon frequencies.

IV. CONCLUSION

Since each of the preceding sections has contained sub-
stantial discussion and analysis we simply summarize here
the main conclusions. Among a large variety of models
that can be obtained from the generalized potential that
we have introduced we have focused our attention on two
cases of doubly periodic potential since it is a natural way
for generalizing to a lattice with diatomic basis those lat-
tice dynamical models that assume simple singly periodic
potentials.!® These models [with double well deformable
periodic potential (DWDP) or asymmetric deformable po-
tential (ASDP)] bear two types of kinks and are continu-
ously deformable in a controlled manner from the sine-
Gordon model.

The DWDP model has some common features with the
double SG model, which has recently attracted some at-
tention for its statistical mechanics properties,'®? in the
sense that it contains two kinks with different masses.
The main characteristic feature of this model, although it
is not completely integrable, is that kink properties are
very close to those of a completely integrable system and
in particular the initial velocity below which K and K can-
not escape from their attractive potential is very low (and
exhibits a minimum for a particular shape of the poten-
tial). Thus kink properties are well described by treating
the excitations as relativistic quasiparticles of two dif-
ferent types (type I with mass M k, and type II with mass
Mg,) if conversion between the two types of articles is

possible with particle number conservation and their in-
teractions verify nearly exactly the conservation of rela-
tivistic energy and momentum.

We believe that the introduction of the ASDP model
brings may interesting new features for physical applica-
tions. Not only are kinks asymmetric in this model but
they interpolate between two “media” with different phys-
ical properties (especially phonon frequencies). These two
media could be for instance two different crystallographic
phases coexisting at a first-order phase transition (and not
only two domains of the same phase with different polari-
zations as in a double-well model). This property poses
challenging new problems for the statistical mechanics of
the system since the motion of the kinks changes the
properties of the medium in which they move. Among
the new properties of this model is the possibility of con-
finement of phonon oscillations between the two kinks
forming one of the two topologically allowed K-K pairs,
which is responsible of resonant interactions between the
two kinks.’

The asymmetry of the kinks also influences their in-
teraction with other kinks. In a particlelike picture kinks
correspond to particles that interact with a short-range in-
teraction on one side (the side of the sharp edge of the
kink) and with a long-range interaction on the other side
(the side of the smooth edge of the kink).

Another area of interest emerges from the difference be-
tween the DWDP kinks and ASDP kinks which is well il-
lustrated if one considers an array of kinks (as those
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which are used to model incommensurate crystals®®). On
one hand (DWDP model), one would get a diatomic lat-
tice of particles with masses My, and M, alternating reg-

ularly due to the topological constraints and experiencing
identical interactions. On the other hand (ASDP model),
we obtain a lattice of particles carrying an internal orien-
tation (that we could modelize by a pseudospin) with iden-
tical masses; these particles have alternating orientations
which are responsible for two different alternating interac-
tion forces between them. As a result from a mechanical
point of view the two kinds of lattices are dual lattices.
Moreover, looking for breather solutions as the low-
amplitude limit of nonlinear Schrdodinger envelope soli-
tons, we have analytically determined necessary conditions
for the existence of breather modes. The results are re-
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markably confirmed by the numerical experiments even
for the large-amplitude breathers created by kink-antikink
collisions. It suggests that the theoretical approach em-
ployed is quite general.

We hope that these two models together with the large
family of deformable potentials that we have introduced
in this paper will prove useful in modeling a rich variety
of physical systems.
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