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Thermopower and thermal conductivity in two-dimensional systems
in a quantizing magnetic field
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We have calculated the nondissipative electrical and thermal currents carried essentially by the

edge states in a two-dimensional ideal sample in a quantizing magnetic field. Expressions for the
thermopower and thermal conductivity are obtained. The Lorenz number oscillates, as a function
of the chemical potential, about the standard value. Effects of disorder are briefly examined.

I. INTRODUCTION

The remarkable discovery' of quantized Hall resistance
in a two-dimensional electron gas, as realized in inversion
layers on semiconductor surfaces in a strong magnetic
field, has aroused great interest in the theory of transport
in two dimensions. This fascinating transport property of
a truly two-dimensional system has been extensively inves-
tigated both theoretically and experimentally.

It would be very interesting to measure other transport
coefficients, for example, the thermopower, which may
shed light on the curious transport properties of the
inversion-layer electrons. In a recent theoretical study of
the inversion-layer therm op ower, Girvin and Jonson
stressed the importance of thermopower as a means of es-
timating the possible thermal voltage error in high-
accuracy measurements of the quantized Hall resistance.

This paper contains a calculation of the nondiagonal
components of the transport coefficients in the disorder-
free limit. We discuss in particular the thermopower and
the thermal conductivity.

Following the method of Halperin, we calculate the
currents carried by the edge states in a Corbino-type
geometry in the presence of a magnetic field and a tem-
perature gradient (Sec. II).

We stress the analogy between the thermopower, as a
measure of entropy per particle, with the result of
Obraztsov in three dimensions (Sec. III). The significant
effect of spin splitting on the thermopower is also noted.

The last section is devoted to a discussion of the
thermal conductivity. We find that the Lorenz number, in
analogy to the thertnopower, is a universal function of the
ratios Ace, /ktt T and p/fico„where co, is the cyclotron fre-
quency and LM is the chemical potential. This universal
dependency on these ratios, peculiar to two-dimensional
ideal systems, originates from the simple form of the ther-
modynamic potential.

however, the chemical potential at the two edges differs
by an amount 5p, the edge states carry a net current
I=(—e /h)n(5p/e) around the loop, where n is an in-
teger. This current is identical with the total electrical
current due to the thermodynamical force 5p/e, as shown
below.

Let us assume that there is a small temperature differ-
ence 5T between the two edges of the sample. This im-
plies a difference 5p in the chemical potential at the two
edges. The Hamiltonian is given by
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H=, iAV—+—A +V(r), (l)
Pg C

where V(r) is a potential which confines the electrons
within the region r~ & r & rz. This potential is zero every-
where inside the sample except at regions close to the sam-

ple edges. If we employ the gauge A=(A„Ae,A, ) with
A, =A, =O and

Ag ——
2 Br,

the eigenfunctions may be written as

g „(r)=e' f„(r),

II. EDGE CURRENTS

Consider a disorder-free annular sample in the presence
of a magnetic field normal to the surface of the satnple as
illustrated in Fig. 1. As discussed by Halperin, the edge
currents indicated in Fig. l cancel out in this case. If,

FIG. 1. Annular sample of a two-dimensional electron gas,
confined in the region rl & r & r2, in the presence of a magnetic
field B.
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where f,(r) satisfies the equation

$2 B2
+ 2m "co,(r r—) +V(r) f„(r)=e f,(r) .

2m Br

(4)

Iq ———g —f de(e p—)fo(E, T)
V

V

+ f de(e p—)fp(E, T+5T) (13)

Here r is a radius related to the negative integer m by

hc
B77rm I

where —e is the electronic charge. Inside the sample
where V(r)=0, the eigenenergies e~, are identical with
the Landau levels

e„=fico,(v+ —,
'

) .

In this case, r is the center coordinate of the cyclotron
motion. It is here assumed that

(14)

the currents may be written as

2e' ~ f -„Bfo 5p
h „"Be e

We have here made use of the facts that e „=e„for
r~=ri+R or r =r2 —R and that e tends to infinity
for r~ —r &&r, or r —r2&&r, . Since

Bfo(e) Bfo e p Bp
BT BE T BT

r2 —r»&R »r„r&»r, ,

where r, is the cyclotron radius. R is the radial dimension
of the regions, at the boundaries of the sample, where the
confining potential is different from zero.

The total electrical and thermal currents circulating the
sample are given by

and

2egf~ E —P, Bfo
BE'

5T

and

I= —2e g fp(e „)I,
m, v

Iq-2+ (e „p)fp(e „—)I, ,
m, v

(8)
2e Bfpg f dE(E —P)
h Be

2 +f d
(e &) fo 5T.

h ~v T BE
(16)

where fo(e~, ) is the equilibrium Fermi function and

I,=, f drip „(r)i +—Ae

We divide both sides of the above equations with the
breadth r2 —r& of the sample and express the electrical
and thermal current densities in a familiar form:

=co, f dr if,(r)
~

(r r)—(10)
VrPJ=cre„PB„V'„T,—

is the particle current of the state m, v. The factor of 2 in
Eqs. (8) and (9) account for the spin degeneracy. The ef-
fect of spin splitting is not considered at the moment. It
is easy to show that

1 B&mv
mv

The current I vanishes everywhere inside the sample ex-
cept at the boundaries, as readily seen from Eqs. (10) or
(11). For r (r&+R or r ) r2 —R, the radius r may no
longer be interpreted as the center coordinate of the cy-
clotron motion and the degeneracy of the Landau levels
are lifted as discussed in detail by Halperin.

Let the temperature at the inner edge be T and T+5T
at the outer edge. We assume that the radius r& is suffi-
ciently large so r may be considered as a continuous
variable. It is readily shown, with the aid of Eq. (11), that
the currents become

—2e 00f defp(e, T)+ f defo(E, T+5T)
V V V

(12)

Vp —XB,T„T.Jq =Xg.
e

(18)

Here the off-diagonal transport coefficients era„,ps„,ya„,
and A,s„aregiven by Eqs. (15) and (16).

The Hall conductivity era, is given by ( —e Ih )n, where
n is an integer, when the Fermi energy lies between two
Landau levels. The thermopower has only a nonvanishing
diagonal component, given by

Pe. 1 ~f-„e—p Bfo

era„e, 'v T Be g fp(e„). (19)

Br
Kgr —A gr TO gr

Ogr
(20)

%'e note that the above results are also obtained in the
case of the usual strip geometry.

The nonvanishing component of the thermal conductivity
is the off-diagonal component
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III. THERMOPOWER

1 ~' kgT
e 3 p

(21)

This is the usual expression for entropy or heat capacity
(per particle per unit charge) of a two-dimensional ideal
Fermi gas. It is naturally identical with the result ob-
tained from the standard Boltzmann equation in the clas-
sical high-field limit.

It is readily confirmed that oe„and Q can be rewritten
in the form already obtained by Obraztsov as

(22)

where X and S are the number of electrons per unit area
and the entropy per unit area, respectively. These thermo-
dynamic quantities are evaluated from the relationships

Bn
Bp

an
BT

where the thermodynamic potential (per unit area) is given

by

The thermopower, given by Eq. (19), has been discussed
by Girvin and Jonson. They have shown that the ther-
mopower of an ideal two-dimensional electron gas in a
quantizing magnetic field is a novel and universal func-
tion of the temperature measured in units of the magnetic
energy flu, .

We shall only stress the analogy with Obraztsov's re-
sult in three dimensions, and briefly investigate the effects
of sp1n spllttlng, disorder, and a pcriodlc potcntlal. In thc
classical high-field limit where thermal disorder becomes
greater than the Landau-level separation, kz T & Are„ the
Landau 1ndcx v IDay bc assumed cont1nuous and wc f1nd,
from Eq. (19),

l

(dc
kBT~ 0&—

~ 0.2—

I—

g factor =2

I
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FIG. 2. Thermopower as a function of the chemical potential
in units of fuu, . Splitting of the peaks at the Landau levels is
due to the spin of the electrons.

2. At zero temperature, the thermopower or the entropy
vamshes as required by the third law of thermodynamics.

Now consider the effect of disorder. It is interesting to
investigate whether the classical high-field result

P;.=—eLOT (27)

holds in a quantizing magnetic field. Lo (n/3——)(k~./e)
is the standard Lorcnz number. We find that the above
relation does not hold rigorously. Figure 3 (dashed curve)
shows the thermopower Q =Ps„/os„,where Ps„is evaluat-
ed with the aid of Eq. (27) and the exact expression for
0.8„Eq.(22). This approximate result fits fairly well with
the exact expression given by Eq. (19); see Fig. 3 (solid
line). We assume, on the basis of the above observation,
that Eq. (27) holds, approximately, also in the presence of
a moderate amount of disorder. Under this assumption
we estimate that correction, due to disorder, on the diago-
nal component of the thermopower is of order (0~/cr» ) .
We use henceforth the coordinate notations (x,y) instead
of (H, r). The estimation is valid in the limit of weak dis-
order, where the width of the Landau levels is of the order
of the thermal broadening ka T. In that case,

~oxx Oxx

Bp kgT
'

&nd we find, with the aid of Eq. (27), that

(25)
We now consider the structure of the thermopower tak-

ing spin splitting into account. The effect of spin splitting
is included by replacing e„in Eq. (19) with

e„=(v+,
'

)fico, + ,
'

OgpiiB—, — (26)

where o. can take the values +1,g is the effective g factor,
and pii is the Bohr magneton. Figure 2 shows a plot of
the thermopower against the chemical potential (in units
of fan, ). The ratio of Ace, to kJiT is 53, which is
equivalent to a magnetic field strength of 15 T and a tern-

perature of 2 K in the Si(100) inversion layer. An effec-
tive g factor of 2 has been used. In the limit of large

~, /k~ T, the peak associated with the lowest Landau lev-
el tends to ( —kii~, )2(ln2)/3, while each of the higher
Landau levels are associated with two peaks which tend to
the universal values ( —kii/e )(ln2)/(2v+ 1+cr/2), cf. Fig.
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FIG. 3. Thexmopower, obtained with the aid of the Mott
rule, as a function of the chemical potential in units of Ace,

(dashed curve). Effect of spin splitting is neglected. The solid
cuxve represents the exact expression fox' the thermopower.
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2
r»~ p~+ px»&x» px»

2 2
= +0

xx +Oxy +~y 0xy

If we carry further the semiclassical treatment, it can be
shown, with the aid of Eq. (27), that in the presence of a
one-dimensional periodic potential, the thermopower van-
ishes when the chemical potential lies in a mobility gap.

We next focus on the case where the chemical potential
lies in a mobility gap. Streda has shown that the Hall
conductivity in this case is given by a quantum correction

1Q.75— kBT

C

g factor=2

ax0.= —ec
B

Recently, Widom' proposed a formula for the Hall con-
ductivity which happens to give the correct result, Eq.
(28), in the limit under consideration. It is interesting to
note that the application of Widom's method in the case
of a temperature gradient yields a quantum correction on
the thermomagnetic coefficient P„»,given by

as
'aB ' (29)

where S is the entropy (per unit area) of the conduction
electrons. Equations (28) and (29) are analogous. The
thermodynamic derivation is accomplished by considering
the magnetization current in the presence of only nonuni-
formities in the chemical potential and temperature, In
that case, the edge current due to magnetization is
given' '" by

aM—cVXM= —cVpX
ap T 8

aM—cVTX
aT

vp ax
X —ec

aB

as—VTX c
aB

(30)

where the final expression is obtained with the aid of
Maxwell relations. However, it is not obvious from the
above derivation that the total conduction current is sim-

ply given by the magnetization current when the chemical
potential lies in a mobility gap. We are convinced that in
the presence of elastic scattering, a more rigorous deriva-
tion' based on Kubo formalism will confirm that p„„is
given by Eq. (29). Thus the nonvanishing component of
the thermopower is given by

I
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FIG. 4. Thermal conductivity (per unit temperature) as a
function of the chemical potential in units of ~, . The effect of
spin splitting is almost insignificant for the lowest Landau lev-

els.

Figure 5 displays the Lorenz number Kzy/o. AT as a
function of p/ficoc for fun, /ksT =53. The Lorenz num-
ber is a universal function of p, /fico, and fun, /kii T. It is
interesting to observe, in Fig. 5, the weak oscillatory struc-
ture of the Lorenz number about the standard value
I-o ——(7r /3)(kiile) . When the chemical potential lies be-
tween two Landau levels, the Lorenz number is given by
I.o. Deviations from this ideal value become more pro-
nounced at intermediate values of the ratio %co, /ks T, for
example, fun, /kiiT=18. For small values of this ratio,
the oscillatory structure naturally disappears and the
Lorenz number takes the standard value.

Analogous to the thermopower, we expect correction of
order (0 /o„») on the off-diagonal component of the
thermal conductivity when the effect of disorder in pure
samples is taken into account.

In summary, the off-diagonal components of the trans-
port coefficients in a quantizing magnetic field in ideal
two-dimensional systems have been calculated. We have
elucidated the structure of the thermopower and revealed

p 1 as/as
0 e aN/aB

(31)

We stress that Eq. (31) is expected to be valid only when
the chemical potential lies in a mobility gap in a weakly
disordered sample and when %co, &&kz T.

Q3
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O

htdc
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IV. THERMAL CONDUCTIVITY

Figure 4 shows the thermal conductivity, given by Eq.
(20), as a function of the chemical potential in units of
%co, . The effect of spin splitting has been included by re-
placing e, with e„.The stepwise structure (see Fig. 4) in-
dicates that the Weidemann-Franz law is satisfied.

g factor =2
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FIG. 5. Lorenz number as a function of the chemical poten-
tial in units of ~,. As in Fig. 4, spin effect is insignificant for
an effective g factor of 2.
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novel properties of the Lorenz number in two-dimensions.
We have incidentally investigated the validity of the Motts
rule in ideal two-dimensional systems and employed this
in the estimation of the deviation from ideal transport
properties due to the presence of disorder in real samples.
There have been reports of measurements of the thermo-
power in two dimensions in quantizing fields, but as far as
we know no firm conclusions have yet been reached.

Pote added in proof. Recent theoretical and experimen-
tal results for both the diagonal and the off-diagonal com-
ponents of the thermopower agree quite weil [H. Oji,
Proceedings of the International Conference on Electronic
Properties of Two-Dimensional Systems, Oxford, 1983
(unpublished); H. Oji, Solid State Commun. (to be pub-
lished)].
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