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The effect of electronic correlations on the ferromagnetic instabilities, effective local moments,
and fluctuations in spin and charge in a transition metal is discussed with a model Hamiltonian
which includes intraatomic Coulomb and exchange interactions. The one-particle properties of d
electrons are described by bcc and fcc canonical bands. We find that reduction of density fluctua-
tions and formation of local moments change the Stoner criterion and the condition for the ground
state to be completely ferromagnetic. The magnetic states of Fe, Co, and Ni are studied in more de-

tail, where the electrons are found to be considerably correlated for realistic model parameters.
Redistribution of electrons between the eg and t&g states seen there causes deviations from the Stoner
theory and is responsible for different exchange splittings of both types of states. The results are in

qualitative agreement with the experimental data and suggest the use of anisotropic exchange corre-
lation potentials in transition metals.

I. INTRODUCTION

The treatment of d electrons in transition metals faces
serious problems. On the one hand one knows from de
Haas —van Alphen (dHvA), and magnetotransport experi-
ments and from photoemission spectra that those elec-
trons have to be described as delocalized band states. On
the other hand, the Curie-type high-temperature magnetic
susceptibility, existence of spin waves above T„or mag-
netic form factors rather indicate a localized atomlike
behavior. This suggests that the d electrons, even when
delocalized, have to be strongly correlated.

Attempts to treat those transition metals within the
Hartree-Fock approximation (HFA) fail since the unphys-
ically large charge fluctuations of the independent parti-
cles dominate the ground-state properties. The calcula-
tions within the local-spin-density functional (LSD) for-
malism allowed the elimination of that effect, because
consequences of the charge fluctuations are avoided by the
local treatment of the exchange. The success of that
method concerning the calculation of magnetic moments'
suggests that it should be able to treat total-energy differ-
ences between paramagnetic and ferromagnetic states with
an accuracy better than 0.5 eV.

Being aware of the fact that those ab initio calculations
lead to the best results which could be obtained up to now,
we should also realize that there are some serious
shortcomings connected with the approximations involved
in calculations with a local exchange-correlation potential.
Firstly, one cannot get information beyond the one-
particle density such as pair correlation functions.
Secondly, the LSD formalism mixes the effects of the
Hund's-rule correlations, which are responsible for forma-
tion of atomiclike local moments with either the interac-
tion of those local moments on different sites which may
lead to a (anti)ferromagnetic ground state, or with a redis-
tribution of electrons between different spin bands which
leads to band ferromagnetism. All those effects are treat-

ed on an equal footing when going from a paramagnetic
to a spin-split state within that formalism. The conse-
quence is that energy differences between paramagnetic
and ferromagnetic states are much too large as compared
with Curie temperatures measured in transition metals.
In addition, within an I.SD calculation the Stoner cri-
terion, which is supposed to describe the onset of fer-
romagnetic ordering, might instead describe the creation
of local moments on individual atoms only.

Finally, one knows that those calculations for Fe and
Ni, for example, are not able to reproduce Fermi surface
results very well. This implies that the one-particle densi-
ty matrix in the ground state has not been determined
properly. The error might result from the fact that one
uses a local exchange-correlation potential which by its
nature is not able to deal with anisotropic effects.

All those problems can be tackled only by treating the
correlation of the d electrons explicitly. Since an ab initio
calculation would be much too elaborate for the time be-
ing, we will study this problem with a simplified model
Hamiltonian which consists of a tight-binding one-particle
part for the d electrons and additionally some typical local
interactions, described by Coulomb and exchange terms
leading to a generalized Hubbard Hamiltonian.

Model calculations of this kind have been performed
before for the paramagnetic state of transition metals.
Two types of calculations were done. One applied a sim-
plified rectangular density of states for all five subbands
while the other, " more elaborate, used the canonical bands
of Andersen et al. for the one-particle part of the energy.
By comparing their results one obtains an understanding
of how the details of the bands enter into the correlation
calculation. It was shown that the correlation effects lead
to the formation of local moments in accordance with
Hund's rule. Furthermore, they reduce drastically the
density fluctuations at an atomic site and enhance the spin
fluctuations in the paramagnetic state. In particular it
was found that for band fillings of between 2 and 8 elec-
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TABLE I. Exchange constants J;J for d orbitals expressed by
the average exchange interaction J= 2(J, , +J«) and the

2S 2f
anisotropy b J=J« —J,

2S 2E

PZ X 2 2 3z —r2 2

PZ

xy

X 2 2

3z —T

J——AJ

J——AJ

J——AJ

J——AJ

J—2'
J——b,J
J——hJ
J——AJ

J——hJ
J—26J

J——AJ

J——AJ

J——AJ

trons the energy gain due to formation of local moments
is larger than 1000 K per atom when realistic parameters
are used for the screened Coulomb and exchange interac-
tion in 3d metals. Such strong correlations are expected to
change the Stoner criterion and indeed the simplified
model used in Ref. 3 indicates that this is the case.

The aim of the present investigation is to use the canon-
ical d bands together with an extended Hubbard Hamil-
tonian in order to study in detail the correlations in the
ferromagnetic phase and their effect on the Stoner cri-
terion. The simpler Stoner theory (ST) assumes that the
d band splits as a whole into two spin subbands, so the en-

ergy of the ground state depends only on one Stoner pa-
rameter A. It is known, however, that the electronic in-
teractions lead to different exchange potentials for dif-
ferent partial occupations. It has been shown, too, that
the local correlation of electrons on the t2s and es orbitals,
is different depending on the given lattice symmetry. For
instance, the es electrons are by about 50% stronger corre-
lated than t2s electrons in the bcc lattice and for about 7
electrons per atom. Consequently, one also expects dif-
ferent magnetic moments localized on the es and tzs orbi-
tals than those resulting from the ST. Thus the energy of
the ground state has to be minimized with respect to the
magnetic moments in both t2~ and e~ orbitals, and also
with respect to the possible change in their filling. Such a
general formulation is reported and compared with ST in
this paper. We also show how our theory leads to dif-
ferent exchange splittings (ES) for es and t2s electrons, in
qualitative agreement with the experiment, while the ST
always gives the same ES for both types of electrons.

The energy of the ground state consists of the HFA
part and the correlation energy. The latter was found
within the local approach. ' This method can be con-
sidered either as an extension of the Gutzwiller ansatz or
alternatively as an extension of the Jastrow method. It ap-
peared to be very successful in calculations of molecules
where it was able to reproduce 95% of the correlation en-

ergy within a given basis set.
The paper is organized as follows. The Hamiltonian

and the method of calculation (the local approach) as well
as the approximations involved are discussed in Sec. II.
Section III contains a general discussion of the possible
ferromagnetic instabilities of the system. The phase boun-
daries of the paramagnetic, weakly ferromagnetic, and
completely ferromagnetic states are presented there for the

bcc and fcc structures and compared with those resulting
from the Hartree-Fock theory. Ferromagnetic ground
states of 3d transition metals, Fe, Co, and Ni, are dis-
cussed in detail in Sec. IV. It is shown that the ground
states are different to those predicted by the Stoner theory
as the electrons shift between e~ and t2~ states with in-
creasing interactions. The exchange splittings resulting
from our model which show anisotropy between es and t2s
orbitals are also compared with the existing results of
various theories and experiments. Furthermore some esti-
mates for the ferromagnetic transition temperatures T,
are given. Conclusions and final remarks are given in Sec.
V.

II. LOCAL APPROACH TO CORRELATIONS
IN TRANSITION METALS

The Hamiltonian used is similar to that in Ref. 4. Its
one-particle part is the same and written in the tight-
binding approximation. It describes a canonical d
band ' "and contains one free parameter only, namely
the bandwidth W. Furthermore, only interactions of elec-
trons on the same atom are included, which are described
by the Coulomb (U) and exchange (J) terms. The total
Hamiltonian depends henceforth on three parameters and
takes the form

H =Hp+H), (2.1)

Ho ge„( k )n ——( k ), (2.2)
|t,cr, k

~1 2 ~ +rj li&lj o'~jla' 1

l, s,j,
CT, CT

+ —, ~ JJ Iat ~tj~at ~aij~+ai~ai~aij~atJ~I . (2.3)
~i&~J~

e,( k ) are the canonical band energies and n„( k ) the
corresponding number operators for the respective lattice
geometry (i.e., bcc or fcc). The localized states i,j are the
basis orbitals of the canonical bands adapted to cubic
symmetry of es and tqs type. They are represented by at;,
where I is the atomic site index, ij the type of orbital, and
o the spin. (For more details about the one-particle prop-
erties see Ref. 12.) The matrix elements JJ may be ex-
pressed by the exchange constant J and its anisotropy 4J,
as presented in Table I. The Coulomb matrix elements
have the following form:

U,j——U+2J —2J;j . (2.4)

That interaction part H~ is slightly different from the one
in Refs. 3 and 4. It is the most general one allowed by the
atomic symmetric' and has been used for transition met-
als before. '" As in Ref. 14 we have chosen AJ to be
b J=0.15J and are left with two independent parameters,
namely U and J. If EJ=O, then this interaction part
reduces to the one used in Ref. 15.

The s electrons are not included in the Hamiltonian
(2.1) explicitly, so the hybridization effects are neglected.
They are, however, implicitly taken into account by a
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noninteger d-band occupation and a drastic screening of
the otherwise very large Coulomb interaction U. Typical
values for a bandwidth W are found in the LSD calcula-
tions, " while typical values of screened U and J were
given by Friedel and Sayers. ' The large reduction of U
compared with a much smaller screening of J causes a rel-
ative increase in the anisotropy for the Ui.

It is straightforward to calculate the ground state

~
itiHF) of Ho for different band occupancies n where n is

an average electron filling per atom 0(n (10. There are
two kinds of information needed to perform the calcula-
tions presented below:

(1) local-density-matrix elements

Pj ——(O'HF
) al&rruij ) VHF) = g d,*„(k )dj„( k )

k GE(cr),

I +i & = g (1 n.—Oi. ) I +HF &

l, n

Here we choose operators Oi„of the form

(2.12)

&n &&a'&

However, in order to simplify the numerical procedure we
have approximated them by the paramagnetic ones. This
approximation is expected to cause only small quantitative
changes in the results and should be reasonable as long as
the redistribution of electrons within the spin subbands is
small.

The correlations are treated within the local approach
(LA) (Refs. 7 and 8) which describes a correlated ground
state

~
4L ) by the respective modifications of the HF

ground state,

(2.5)

(2) ~ ~

Ollj ~ll +ljr i WJ

(3)
Olij li Sljr WJ

(2.13)

which give the relative occupancies of eg and tzg states,
and

(2) local-energy-matrix elements

Ei'j' —— g d ( k )d,„( k )e„( k )=oijfi, (2.6)
k GK(cr),

1
I 0' (2.8)

Let us point out that the one-particle density matrix of the
actual ground state is generally not the one of Ho. Instead
it is modified due to spin splitting as concerns a magnetic
state, and due to the mean-field part as well as the correla-
tion effects originating from Hi. To include these effects
one would in principle have to repeat those calculations
with pseudo crystal fields g;:

I
Horr =Horr+ +girr lin~lirr r (2.9)

l, i

which give the mean kinetic energy per eg and t2g states in
mean-field approximation. Summations in (2.5) and (2.6)
run over the Bloch states filled with 0-spin electrons;

d;„( k ) determines the eg or t2z content of a Bloch state
( k, v, a) and are given by d;,( k )=(i

~
k, v).

~
k, v)

and ii ) are the eigenvectors of the tight-binding matrix
for a general k and for k =0 classified according to the
cubic point group into eg and t2g states. The procedure to
calculate them is analogous to the one used in Ref. 12.

Additionally one has

(2.7)
i, o'

This ansatz allows the reduction of charge fluctuations on
each atom by Oi;" within one and by Oi',i' between dif-
ferent states. Spin correlations which lead to formation of
local moments are described by O~;~'. For conveniences
the modification of the Hartree-Fock state ~%'HF) is
chosen to be orthogonal to

~
O'HF), so (Oi„)HF——0 and no

contractions within the operators Ioi„j are allowed. It
corresponds to taking only connected diagrams in the ex-
pansion of the ground-state energy. 17 Therefore the fac-
tors (1—il„ol„) are not projection operators as in the
Gutzwiller method, but the meaning of Ioi„j is similar.
This point has also been discussed elsewhere. '

The parameters i)„are determined by minimization of
the ground-state energy, normalized per site

(e, ~H ~+, )
L ~(iIr

~

iIr ) HF 1. (2.14)

The correlation energy AEI is calculated within two
approximations. The first is to expand energies in powers
of rj„and keep terms only up to i)„; the second is to treat
the correlations on different sites as independent of each
other. The latter step corresponds to a local cluster ap-
proximation. In second-order-perturbation expansion cal-
culations for the correlation energy it was also called the
R=0 approximation. ' The result for b,EI is

aE, = 2+q„(O,„H )—+ g q„q„(O,„HO,„)
n n, n'

= —g (Ol„H ) I (oi Hol ) j„„'(Oi„H)
In, n

(2.15)

for which II=H —(H& . (2.16)
3a for i Keg,

gio. = ' —2a for i Et2g,

which would modify the elements f;,
f;. f.(I~;.j) .

(2.10)

(2.11)

Both approximations mentioned above have been checked
in the paramagnetic case. It has been found that the first
one, the variational expansion up to g„gives satisfactory
results (contrary to second-order-perturbation expansion)
for realistic values of the parameters U/W and J/W and
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lllay bc llscd Rs loIlg as U (8. Tllc second approxlIIlatloll
modifies the results for the correlation energies and the
parameters il, by less than 5%.

Owing to both approximations there are only relatively
few matrix elements (Oi„H ) and (Oi„HOi„) which have
to be calculated. The detailed form of these matrix ele-
ments, which are dependent only on n; and fi ~ is given
in Appendix A. They had to be generalized to ferromag-
netic states from Ref. 4 and to different orbital states
from thc Inodcl of cqulvalcIlt baIlds.

The HF energy EHF consists of the kinetic energy Ek;„
and the mean-field part of the interaction energy EMF,

m» =n»t —n (3.4)

Here D, and D, are the t2s and es densities of state,
respectively. Equation (3.6) shows that one always has a
redistribution with the exception of equal filling n, =n, .
The subband with larger occupation adsorbs additional
electrons in order to reduce the mean-field part of the in-
teraction energy. It wiB be shown that those redistribu-
tions are rather small and further reduce in the correlated
case.

The two other kinds of redistributions are directly con-
nected with the ferromagnetic state. They cause the
creation of magnetic moments for es and t2s subbands,

EHF Ekin++MF ~

where

Ek.= gfi

(2.17)
Those magnetic moments can be represented by exchange
splittings (6;, i =es, t2s) which are the differences in the
Fermi levels

(2.18)
~» =P») P»s

EMF g Uiinitnii

+ g I U;in; ni +(U;i J;i)n; —ni. I .
», l,j,
0', »+1

(2.19)

The local interactions of the Hamiltonian (2.1)—(2.3)
lead to changes in the local occupations n;~ of different
orbitals compared with the noninteracting ground state.

One kind of redistribution is present in the paramagnet-
ic state, namely a redistribution of t2s and es occupations.
It is represented by

an, =g(n, , —n, ,
(0) (3.1)

where n, stands for the filling of tie states without in-
2g

teractlon.
In HFA, for example, the difference of the es Fermi

level (p, ) and the t2g level (p, , ),

can be taken as the measure of electron redistribution in-
stead of An, . Differentiating EHF with respect to 6&

2g

and obeying (2.6) one obtains

The total energy is now minimized as a function of the
electron occupations n; with the constraint (2.6). Results
of such calculations for bcc and fcc lattices performed in
both Hartree"Fock and local approxlmatlons are reported
in Sec. III.

The three splittings as given in (3.1) and (3.5) define the
ground state of the Hamiltonian (2.1)—(2.3). They are a
generalization of the single exchange splitting 5 from ST
(Ref. 6) as discussed by Thalmeier and Falicov. '

Knowing the optimal paramagnetic state (and bz) we
can now look at the ferromagnetic instability given by

BE
Bb,,
BE

Ba,Ba,

(3.6)

( U+ 3J+ ,' EJ)D,(p, ) =—1,
( U+4J EJ)D,(p, ) = 1—, (3.8)

which lead to a Stoner instability in one of the subbands
only. In the case J=O, (3.7) is equivalent to (3.8); both
subbands are then decoupled.

The condition for a Stoner instability is

D, (p) D,'(p)
3(U+J+ "

, b J) +2(U—+J+,' bJ)—
D(p) D(p)

This criterion replaces the Stoner criterion for a single ex-
change splitting. In one-particle approximation it can be
received analytically to be

[1—(U+4J —KJ)D, (p, )][1—(U+3J+ , b J)D, (p, )]—
—6(J—,' AJ) D, (p, )D—t(p,) =0 . (3.7)

That instability appears simultaneously in both subbands.
Equation (3.7) is fulfilled for a smaller value of U than
any of the conditions

=[2k~ —(U —3J+ ", b J)(n, n,)]——D(p) =3D&(p)+2D, (p) . (3.9)

X [3D&(p, )+2D, (p, )]=0 .
For the model of five equivalent subbands of Friedel and
Sayers (3.7) and (3.9) reduce to the same condition
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8'= U-+6J. The correlated case can only be treated nu-
merically.

The instability of the completely ferromagnetic (CF)
state with respect to the weakly ferromagnetic (WF) state
may be studied in the same manner. CF means that one
set of spin subbands is either completely filled (n )5) or
empty (n &5). Having found the optimal CF state (i.e.,
the distribution in between eg and t2g bands) one can see
whether

1.0 ',

08-

0.6-

0.4—

02-
bcc

aE &0.
CF

For the one-particle approximation one obtains

b, , ) ( U+4J bJ)m, +—2(J——,
' b J)m, ,

5, & ( U+3J+ —,b J)m, +3(J——,
' b J)m, .

(3.10)

(3.11)

If both conditions (3.10) become fulfilled before (3.6) then
the CF state is either stable or metastable if compared
with the paramagnetic state.

The ferromagnetic instabilities are analyzed in three
successive approximations. Firstly, the generalized Stoner
criterion within the HFA is treated, i.e., without correla-
tion effects. Secondly, only density correlations are in-
cluded in the calculation of the correlation energy EEI..
This approximation simulates qualitatively the LSD
theory working with a local correlation potential. Finally,
spin correlations are also included to test how such modi-
fied Stoner criteria depend on the creation of local mo-
ments.

Figure 1 shows the phase diagram of the bcc lattice ob-
tained with J/U=0. 2. This ratio of the exchange interac-
tion to the Coulomb interaction is realistic for transition
metals' and was accepted by us for most of the presented
calculations. The lower part of the figure shows the cri-
terion for the instability of WF states [Fig. 1(b)], the
upper the instability for CF states [Fig. 1(a)]. The lowest
curves in each part are obtained within the HFA. The
structure seen in this criterion [Fig. 1(b)] is directly con-
nected with the canonical density of states for the bcc lat-
tice. The middle curve in Fig. 1(b) shows that density
correlations shift that criterion rather homogeneously, ex-
cept for small fillings (n=0, or 10), when substantially
stronger interactions are needed to obtain ferromagnetic
states. The spin correlations behave similarly for the WF
transition. They show stronger dependence on the actual
ratio U/ W nevertheless.

Figure 1(a) shows the criterion for complete fer-
romagnetism. Again, the density correlations shift those
transitions rather consistently to larger interactions, while
the spin correlations add a completely new structure, ex-
cluding complete ferromagnetism in the regions
2.5 & n &4.7 and 5.8 &n & 6.5 for realistic values of
model parameters.

Figure 2 shows the ferromagnetic instabilities for the
fcc case with J/U=0. 2. Density correlations again shift
the critical interactions rather consistently towards larger
values while spin correlations depend strongly on the size
of U/8'. Altogether, complete ferromagnetism seems to
be excluded for U/&&0. 8 and n &4.5.
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FICx. 2. The same as in Fig. 1 for the fcc lattice.

FIG. 1. Ferromagnetic instabilities with respect to formation
of (a) CF and (b) WF states for the bcc lattice obtained with

J/U=0. 2. Broken lines, dotted lines, and continuous lines

stand for HF, LA without spin-spin correlations, and LA with

spin-spin correlations.
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TABLE II. Critical values of the ratio U/8' with respect to formation of weak (WF) and complete (CF) ferromagnetism for the
electron fillings n corresponding to 3d transition metals and different ratios J/U.

J/U

Cr
(bcc, n =S.4)

WF CF

Mn
(fcc, n=6. 3)

WF CF

Fe
(bcc, n =7.4)

WF CF

Co
(fcc, n=8. 3)

WF CF

Ni
(fcc, n =9.4)

WF CF

0
0.1

0.2
0.3

1.47
0.66
0.45
0.35

1.02
0.78
0.63
0.52

1.25
0.62
0.43
0.32

)2
1.11
1.02
0.8S

0.48
0.29
0.20
0.15

1.32
0.70
0.48
0.36

1.12
0.85
0.71
0.62

0.95
0.64
0.47
0.39

0.65
0.40
0.25
0.19

0.95
0.69
0.56
0.47

Arrows in both figures indicate band fillings in that
model corresponding to real substances in 3d series. They
are taken from Ref. 19. Firstly it can be seen in Fig. 1

that the criterion of WF for Fe is almost unchanged by
spin correlations and predicts a critical U/W=0. 2. Cr
lies in a region of drastic changes of the ferromagnetic in-

stability, so approximations for the one-particle band
structure might be important. One can expect the
paramagnetic state to be stable up to U/W=0. 45. V lies

in a region without steady transition; its paramagnetic
state remains stable up to U/W-1. 0. In Fig. 2 we see
that spin correlations almost do not influence the fer-

romagnetic transitions of Ni, while for Co the paramag-
netic state becomes metastable in a certain parameter
range. Mn is certainly paramagnetic for U/W(0. 5.

Figures 1 and 2 were obtained for J/U=0. 2, the ratio
considered to be realistic for transition metals. ' Table II
gives some representative values of the critical U/W for
J/U=O up to 0.3. They can be seen to depend stronger
on J than it is suggested by the scaling relation
W= U, +6J„which was found in the degenerate band

case 3, 15

Concluding, it can be said that spin correlations sub-

stantially influence phase transitions to ferromagnetic
states in the region close to the half-filled bands.

IV. FERROMAGNETIC STATES
OF 3d TRANSITION METALS

Having described general trends for the series of transi-

tion metals within the last chapter, we will deal in this

part with three special cases: Fe (bcc), Co and Ni (fcc),
and discuss their ground-state properties.

Fe is described by the Hamiltonian (2.1)—(2.3) with a
total number of 7.4 electrons per atom. Table III lists
some characteristic energy differences for Fe. One can see

that the energy gain due to a ferromagnetic transition is
reduced from -0.56 eV within HFA (hEHFz) to -0.15
eV when the correlated states are compared (EEL&). That
amount increases by a factor of 1.5 to 0.22 eV (DER~)
when local spin correlations are neglected for the
paramagnetic and ferromagnetic case. The difference be-
tween 4EqA and LET A compares rather well with the en-

ergy gained by spin correlations in the paramagnetic
phase (&ELA). This demonstrates that the almost com-
plete band ferromagnetic phase contains all local spin
correlations.

Figure 3 shows how the diagonal one-particle matrix
elements change for the ground state, depending on U/W
(with J/U=0. 2). The upper part gives the results of
HFA, the lower of LA. It can be seen how the occupan-
cies of local states change depending on the spin index.
The spin splitting begins for U/W=0. 20 (0.15 in HFA)
and the ez majority band is filled at 0.38 (0.32 in HFA).
Finally, the system becomes completely ferromagnetic for
U/W=0. 48 (0.34 in HFA). The experimental value of
the magnetic moment 2.2@~ was found with U/W=0. 44
(0.31 in HFA). In that region the moment depends
strongly on U; its change by 5% would lead to a change of
the moment by 15%.

Figure 3 shows also how charge transfers from ez to t2g
states. The dotted lines represent what happens in ST, i.e.,
if the spin bands are shifted against each other. The addi-
tional adjustment allowed by the procedure given above
leads to a transfer presented by the broken lines. One can
see that in the HFA the system tries to reduce the charge
fluctuations by an artificial redistribution of electrons.
This effect is missing in the LA. There is, however, still a
larger charge transfer from minority es states to minority

t2g states than that given by ST. This can be understood
as anisotropic spin splitting —the eg states split more than
the t2z states. The reason might be that the eg states con-

J/U HELM~+LA

TABLE III. Energy differences (in eV) between the paramagnetic and ferromagnetic states of Fe [bcc, n =7.4, &=5.43 eV (Ref.

11)] obtained in HFA (AEHFA), LA (KEL~) and the LA without spin correlations (EEL~) for different values of U and J (in eV).

AF &A stands for the energy gain in the paramagnetic states due to formation of local moments.

U &s) ~+HFA CAELA

0.2

0.3

2.281
2.389
2 AAA

~ T T l

1.738
1.846
1.901

0.4S6
0.478
0.489
0.521
0.554
0.570

1.88
2.12
2.36
2.12
2.36
2.60

0.451
0.564
0.676
0.469
0.607
0.723

0.128
0.150
0.163
0.117
0.147
0.163

0.190
0.221
0.242
0.197
0.246
0.271

0.066
0.074
0.079
0.087
0.101
0.108
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FIG. 3. Electron fillings n; (continuous lines) of e~ and t2~

states for different values of U/8' obtained in (a) HFA and (b)
LA for Fe. Broken lines represent hn, in the present calcula-

2f
tion' dotted lines hn, in the Stoner theory. Values of n; corre-

2g

sponding to the magnetic moment 2.2p& are indicated in (b) by
the vertical broken line. Parameters: bcc lattice, J/U=0. 2,
n =7.4.

FIG. 4. Local moments (a) total ( S f & and (b) on different

orbitals ( 8 2&
& (solid lines for tz~, broken lines for e~) p«si« in

the ground state of Fe. HF, C, and AL stand for the results of
the Hartree-Fock approximation, local approach and atomic
limit, respectively. Parameters are the same as in Fig. 3. Dotted
line in (a) corresponds to the paramagnetic state.

tain more holes. It has been shown before for the
paramagnetic case that the e electrons correlate more
strongly than the t2~ ones, which was suspected to lead to
anisotropic exchange-correlation potentials. The above
mentioned result additionally supports that conjecture.
Such a redistribution has not been found in LSD calcula-
tions.

To get more insight into the properties of ground states
of the respective transition metals, we have calculated also
local moments ( S ~ ) per site, ( S t; ) per site and orbital,

2 2 zas well as charge and spin fluctuations, 0 (nt ) and o (St ),
defined in a standard way,

o'(nl) = &nt' &
—&nt )',

~'(s,') = & (s,')'& —&s,'&' .

(4.1)

(4.2)

Details of the calculation are given in Appendix B.
Figure 4 shows the local spin-correlation functions for

Fe For the . expectation value of the square of the local
moment ( S I ) the following limiting values can be given:
firstly the atomic limit (AL) within the same distribution
of electrons in es and t2s states as for U=O, and secondly
the HFA limit of the CF state which has to be above the
AL due to density fluctuations within single orbitals

2present in the HFA state. The curve C shows ( St ) for

the correlated ground state. It can be seen how the elec-
trons correlate within the paramagnetic state
(U/W(0. 2). The ferromagnetic state drives then the
value of ( S t ) above the AL. Finally that value converges
slowly to the AL. For comparison, the local moment of a
HF state, calculated with the same one-particle density
matrix (that is, not the HF ground state), is given. It con-
verges to the HFA limit.

The lower part of Fig. 4 plots the local moments for es
and t2s subbands ( S~;). Here again the values obtained
in the correlated ground state are compared with the HFA
and the AL. It can be seen that correlations are not very
strong before the system becomes completely ferromagnet-
ic. Crossing of the values corresponding to both orbitals
is due to a shift in electron filling, as displayed in Fig. 3.

Figure 5 shows the reduction of the density fluctuations
in the correlated as well as in the HFA states. It can be
seen that the onset of ferromagnetism almost plays no role
for that value. This result is understandable since charge
fluctuations are connected with energies which are by an
order of magnitude larger than those connected with spin
ordering. The spin fluctuations (Fig. 5) necessarily in-
crease at the beginning for the paramagnetic state which
has no preferred direction of magnetization; then they de-
cline rather sharply and have the same limiting behavior
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FIG. 5. Charge (solid line) and spin (broken line) fluctuations
in the correlated ground state (C) for bcc Fe (J/U=0. 2,
n =7.4). HF stands for the HFA for both quantities.

TABLE IV. The same as in Table III for Co [fcc, n=8. 3,
W=4. 84 eV (Ref. 11)j.

J/U U ~EHFA ~ELA

CAELA

HELM

0.2

0.3

2.904 0.581
3.146 0.629
3.388 0.678
2.420 0.726
2.662 0.799
2.904 0.871

0.356
0.430
0.507
0.400
0.493
0.587

0.067
0.113
0.158
0.075
0.123
0.171

0.108
0.161
0.215
0.144
0.208
0.273

0.041
0.048
0.056
0.069
0.084
0.102

within the completely ferromagnetic case as the density
fluctuations. There they differ only by a prefactor. In the
HFA the spin and charge fluctuations are proportional to
each other, also in the paramagnetic and weakly magnetic
states.

The second ferromagnetic transition metal which we
want to discuss is Co (fcc), described by the Hamiltonian
(2.1)—(2.3) with n =8.3. Table IV gives analogous energy
differences to those already analyzed for Fe, found for dif-
ferent parameter sets'. Based on the results of the recent
LSD calculations, we have assumed the bandwidth
%=4.84 eV." Experiments indicate that the ground
state has to be completely ferromagnetic, so only a lower
limit for the interaction parameters U/W can be given. It
decreases with increasing value of the ratio J/W. We see
in Table III that the energy gain due to ferromagnetic or-
dering is larger by a factor of 3—5 in the HFA (b,EHF&)
than in the correlated ground state (EEzz). The latter is
roughly 0.11 eV and typically equal to or up to two times
larger than the energy pain due to local moments in the
paramagnetic state (b,EL& ). Not allowing for local mo-
ment formation would thus increase the energy difference
for ferromagnetic ordering by up to a factor of 2 (to
~ELA)

Figure 6 shows the diagonal one-particle density matrix
elements for eg and t2~ majority and minority states. It
can be seen that within the HFA [Fig. 6(a)] the transition
to the CF state is rapid and takes place at U/W=O. 37 be-

C
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O --005
I
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FIG. 6. The same as in Fig. 3 but for Co. Parameters: fcc
lattice, J/U=0. 2, n =8.3.

ing simultaneously connected with a large redistribution
of electrons. For the correlated state this transition is also
discontinuous at U/%=0. 55. Owing to correlation ef-
fects there is a charge redistribution taking place already
for the paramagnetic state and proceeding to rather large
values within the ferromagnetic state. As for Fe, we find
in Co more holes within eg ferromagnetic states than in
the ST.

Formation of local moments in Co is presented in Fig.
7. The total moment per site ( S I ) is compared with the
HF and AL values in Fig. 7(a). Already in the paramag-
netic state we can observe its formation; in the ferromag-
netic state (U/W&0. 54) the asymptotic approach to-
wards the AL can be seen. The lower part [Fig. 7(b)]

2shows the diagonal matrix elements ( S 1; ). It can be seen
that the electrons are not too strongly correlated within
single states before the system becomes completely fer-
rornagnetic.

Finally, the results for Ni (fcc) are given. They were
obtained with n =9.4 electrons/atom and W=4. 35 eV."
Table V contains energy differences analogous to those
discussed already for Fe and Co. The energy gain due to
ferromagnetic ordering (bELA) is again reduced by about
three times as compared with the HFA (bEHF~), being
basically rather low, namely smaller than 500 K. The
spin correlations are not of great importance here and
their neglectance would increase the respective energy
difference (GAEL&) only by 10—20%. The absolute value
of the respective energy gain (b,EzA ) is less than 100 K,
so they should have almost no effect in the thermodynam-
ically interesting regions.
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Figure 8 shows the diagonal density-matrix elements
within the HFA [Fig. 8(a)] and for the correlated state
[Fig. 8(b)]. The Stoner criterion is modified by the corre-
lation effects (from U/&=0. 22 to 0.25) and the complete
magnetization is reached in the HFA state at U/W=0. 39
compared with 0.72 in the correlated case. Thus in order
to describe Ni we have to assume U/8'& 0.72 since the d
states in ferromagnetic Ni are completely spin-polarized.
The charge redistribution between eg and t2g states is due
to density fluctuations which tend to be decreased by fil-
ling eg states, which contain more electrons in the
paramagnetic state than the tzg states. Contrary to Fe and
Co, the minority band of eg is here more filled than the t2g
band, so that one can connect the anisotropic effects seen
in the ferromagnetic state with anisotropic populations of
eg and t2g states. This shift is missing in LSD calcula-
tions again.

Interpretation of Fig 9, which. gives the values of local

moments in Ni, is similar to that of Fig. 7. However, due
to a relatively small number of holes, they have little pos-
sibility to correlate according to Hund's rule as well as
within single states.

Above redistributions of one-particle densities have
been discussed as they are received directly from ground-
state calculations. In addition one can match those modi-
fications into effective one-particle exchange potentials

and 5, . They are defined as leading to the exact
g

one-particle density when added to the one-particle Ham-
iltonian (2.2). Those terms can be compared directly with
the exchange splitting found from ST (Ref. 6) or LSD cal-
culations. " The same exchange potentials have been
used on the other hand to flt a similar kinetic Hamiltoni-
an to experimentally known magnetic moments. '

Here the values 5.43 eV, 4.84, and 4.35 eV are taken for
8' of Fe, Co, and Ni from LSD calculations. " Accepting
for the ratio of exchange to Coulomb interaction a value

TABLE &. The same as in Table III for Ni [fcc, n =9.4., II =4.35 e+ (Ref. I I)].

0.2

0.3

3.045
3.263
3.480
3.698
2.828
3.045
3.263
3.480

0.609
0.653
0.696
0.740
0.566
0.609
0.653
0.696

~EHFA

0.097
0.115
0.129
0.142
0.120
0.137
0.152
0.168

~ELA

0.028
0.035
0.042
0.050
0.031
0.038
0.044
0.051

CAELA

0.032
0.039
0.046
0.054
0.037
0.045
0.052
0.060

gE LM

0.003
0.003
0.004
0.004
0.006
0.007
0.007
0.009
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FIG. 9. The same as in Fig. 4 but for Ni. Parameters the
same as I Flg. 8.

of J/U=0. 2, and knowing the magnetic moments of 2.2,
1.6, and 0.6@ii for Fe, Co, and Ni one finds a Coulomb in-

teraction of 2.4, & 2.6, and )3.1 eV, respectively.
Here for Co and Ni the values of 3.1, and 3.3 eV have

been chosen. In addition it has been assumed that the
completely filled energy band ends just at the Fermi ener-

gy.
Those values of U are by a factor of 1.5—2 larger than

the ones found by a recent calculation of Treglia et al. z

who included many-body effects by second-order-
perturbation expansion only. It is well known from the
paramagnetic calculations that for the actual range of in-
teractions a second-order-perturbation expansion leads to
results which are generally by a factor of 3 too large. In
order to get results which might favorably compare with
experiments the authors therefore had to choose unphys-
ically small interactions.

However, our ratio of U/%=0. 44, 0.65, and 0.75 for
Fc, Co, and Ni, agrccs rather well with thc ca'11cI' calcula-
tion of Cox et al. who obtained U/W=0. 48, 0.58, and
0.72, respectively.

In the case of Fe it turns out that 6, =1.74 eV and
=1.30 eV. It compares well with a mean 6 of 1.55

2g

eV (Refs. 1 and 24) or 1.97 eV (Ref. 11) from LSD calcu-
lations and with 6 of 1.45 eV from photoemission. It
should be realized. , though, that there is no direct connec-
tion to quasiparticle properties. Trends should neverthe-
less be given qualitatively correct. The fitting procedure
of Cooke et al. ' on the other hand gave a uniform shift of

=2.2 eV in that case. It cannot be concluded
g

yet whether the failure of LSD calculations for the Fermi
surface, especially around the X point, can be connected
with this anisotropy. It has been found, though, that an
empirical anisotropic potential when added improves LSD
calculations and fits dHvA measurements much better.

In the case of Co, exchange splittings of b,, =1.28 eV,
=1.06 eV have been received. LSD calculations vary

Zg

in between 1.49 (Ref. 11) and 1.72 eV; the experimental
value is 1.10 CV.

For Ni, rather strongly anisotropic splittings have been
obtained, 6, =0.15 CV, 5, =0.57 eV. Contrary to Fe

g
and Co, that strong anisotropy is partially caused by the
differences in UJ and J~J due to the term b J. If b J=O it
decreases somewhat to 6, =0.27 and 5, =0.50 eV.

g
LSD calculations received isotropic splittings of between
0.6 (Ref. 11) and 0.65 eV, which were much larger. The
anisotropy found here corresponds very well to the one of
Ref. 21 where 5, =0.1 and b, , =0.4 eV. Experimental

2g

mean-exchange splittings are given as 0.31, 0.42, and
0.27 eV. Many-body calculations for quasiparticle prop-
erties lead. to 5, =0.21 and 6, =0.37 eV, or to a mean

g 2g

value of 5=0.42 eV in another case. 9

Those comparisons show that the qualitative results
gained from the many-body ground-state calculations
agree very well with experiments and with semiempirical
fits to them. ' The deviations of the LSD calculations
should therefore mainly be caused by the apparent inabili-

ty of the local density functional scheme to deal with an-
isotropic exchange and correlation effects in the ground
state. The estimates done here are clearly not able to in-
clude dynamic many-body effects for quasiparticles which
should lead to a homogeneous shrinking of the kinetic
bands and of the exchange terms as well. Therefore, it is
not so astonishing that our estimates lead to splittings for
Ni which are somewhat larger than the results of many-
body quasiparticle calculations.

The anisotropy for the exchange splittings found for Fe,
Co, and Ni should be seen as an upper limit because an
additional explicit inclusion of s-d hybridizations is ex-

pected to reduce it somewhat.
Although we fully realize all the complications connect-

ed with a correct description of the ferromagnetic-
paramagnetic transition, it seems to us interesting to relate
the values of Curie temperature T, to the energy differ-
ence between the ferromagnetic and paramagnetic states

CAELA. %e use the simplest mean-field approach to a
Heisenberg model which gives

2 5+1
kg Tg — CAELA (4.3)

where kg 1s thc Bolzmann coIlstant aIld S 1s the spin.
Knowing U/W as given above, one finds the energy
difference EELt, of 0.15, 0.11, and 0.035 eV for Fe, Co,
and Ni, respectively (see Tables III—V). Taking S=1.1,
0.8, and 0.3 we obtain the Curie temperature of 2200,
1900, and 1150 K. As calculated from the mean-field
theory, these Curie temperatures should be by about 30%
higher than the exact ones. Taking this into account they
compare reasonably well with the experimental values of
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1393 and 631 K for Co and Ni, : spectively.
The experimental value for I (1043 K) lies still well

below the resulting estimate of 600 K. One reason for
that overestimate might be thai Eq. (4.3) holds true for
completely magnetic systems. F is not completely (80%)
ferromagnetic and should there: re have a considerably
siilallei T iii mean-field theoiy ri elved by (4.3}.

One might argue therefore tha T, can be explained by
a complete breakdown of the ith rant ferromagnetic or-
der, in agreement with theories c,. Hasegawa and Hub-
bard who calculated that phase transition in mean-field
theory. Certainly smaller corrections due to fluctuations
exist. They might be incorporated as done in the work of
Korenman and Prange and Capellmann, but should
not lead to large ferromagnetic domains.

It should be kept in mind, though, that the model Ham-
iltonian as well as the above estimate are limited to quali-
tative and not to really quantitative statements.

V. CONCLUSIQNS AND FINAL REMARKS

We have been able to show how correlation effects con-
tribute to magnetic properties in 3d Inetals. Density
correlations essentially shift the critical interactions by a
constant amount and can be simulated on a one-particle
level by renormalized interactions. On the other hand,
spin correlations, which take care of exchange effects
known as Hund s-rulc coUpl1ng, add ncw structulcs to thc
phase separation in interaction space. Those spin correla-
tions grow steadily with increasing interaction strength if
treated proper'ly within a variational many-body calcula-
tion. This contradicts one-particle schemes' ' which ar-
tificially find a phase transition from no-spin correlations
into randomly ordered local moments at a specific interac-
tion strength.

The interaction parameter U has been chosen in such a
way for the different ferromagnetic 3d metals Fe, Co, and
Ni, that the final correlated ferromagnetic ground states
had the right magnetic moments. Its values seem to be
reasonable (2.4—3.3 eV). The energy differences between
correlated paramagnetic and ferromagnetic phase are
Inuch smaller than in LSD calculation. Transition tem-
peratures could be estimated from the values found and
were roughly in agreement with the experimental ones.
Contrary to similar calculation within a LSD scheme spin
corrclat1ons wcr'c p1cscIlt herc R1I'cRdy 1n thc parRInagnct1c
phase. They lead to energy gains comparable to the fer-
romagnetic transition itself for Fe. Beyond that the aniso-
tI'oplcs 1I1 cxchangc and correlat1on caused by thc s1IQplc
Hamiltonian used here lead to an improved description of
one-particle densities and exchange splittings as compaxed
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APPENDIX A: RESULTS FOR THE MATRIX
ELEMENTS {Oi„H }AND {Oi„HOi„}

Here we present the results obtained for the expressions
{Oi„H} and {Oi„HOi„}. They are calculated in the lo-
cal cluster approxlmat1on.

Let us first introduce for convenience

p;=n;(1 n;), —

q; =n;(1 n; ), —

a; =n;(f;'" —f;)—(1 n; )f;— (A2)

(A3)

The elements {Oi„H} contain no contribution from the
kinetic energy Ho since no contraction within the opera-
tors OI„ is allowed. The x'esults for these elements are

with the original LSD calculations. Those anisotropi. es
mentioned above are missing in LSD schemes due to its
nature, namely the local approximation for the exchange
corrclat1on potcnt1R1.

It should be mentioned finally that the Hund's-rule cou-
pling for Fe and Co causes effective local moments whose
squared expectation values {Si} are halfway between the
noncorrelated paramagnetic and the correlated ferromag-
netic values. It is not astonishing, therefore, that experi-
mentally IocR1 magnetic moments cRn bc seen above T&

(Ref. 36) since in addition the energy gain connected with
those correlations is of the size of T, . In the case of Ni
there are too few holes available for sizable spin correla-
tions. Here the density correlations directly lead to effec-
tive local moments whose squared expectation value is
again halfway between the uncorrelated paramagnetic and
the correlated ferromagnetic one. That correlation energy
gain is again of the size of T, (Ref. 4) and might so ex-
plain local moments above T, (Ref. 37) as well.

Of course, the phase diagrams of bcc and fcc lattices
are by no Ineans complete as we have not discussed any
more complicated magnetic states here. Also, there may
be quantitative changes of the obtained phase diagrams
due to hybridization of d and s states. We hope that these
important problems will be clarified in future work.

(&){Oi; H }=Uip;,p;, , (A4)

{Oiij H } +ij Qpiepj n+(Uij ~ij) Qp—icrpjcr ~

(2)—

~ij~ }=—g,j~~p; p, + ,'(U;, J;,)gp; p,
—.,'J,&—gq, q,

——

Thc remaining clcIncnts may bc written as
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(OlnH Oln'& (Oln[Hor Oln'1&+ (OlnHIOln'& (Aj)

The matrix (OI„HOI„) is symmetric, so we will specify only the elements with n (n . The nonvanishing contributions
from the kinetic energy are

(A8)

(Ol j"[H„OI'IJ ])=(pit+PI&) QIZJ +(p, t+p, i) g &' (A9)

(2) (3)
(Olij [HOrOIIJ ] & 4 g (Pier ja+PJ'&ia) 4 g (Pion —a+Pja i a) —r (Alo)

(3) (3)
(Olij [HO Olij ] & 16 g (Piailja+Pjaliia)+ 16 g (Pia~j —a+Pj alii a)— (Al 1)

The interaction part H1 (2.3) gives the following elements:

(Ol; 'H, o,',") = U;,p, ,p;,(1—2n;, )(1—2n;, ),
(oli Hlolij & (2Uij Jij )PitPii +PJ'a r

(1) (2)

(A12)

(A13)

(1) (3)
(Oli H1O!Ij & 4 Jijpitp! I y (Pja+2qja) r (A14)

(Ol',J'H, OI,J') =(U,J —J;J) gp; pJ (1—2n; )(1—2nJ )

+ Uij QPiapJ a(1 —2nia)(1 —2nj a)+2Utipitpii Qpja+ 2UJJPjtPJ1+Pra r (A15)

(Olij H1Olik & =( Ujk Jjk )(pit+Pit) Qpjapka+ Ujk(Pit+Pit) gpjapk ar—(2) (2) (A16)

(Olij2 Hlol j3 )=—,(Uj —J~j)gp; pJ (1—2n; )(1—2nl )——,UIJ gp; pJ (1—2n; )(1—2nJ )

+ —,JJ g Iprapla[n; a(1 nJ a)+—nj a(1 n; a)] p;—apJ a[n; —anJ +( n; )—(a—Ja)]I,

(2) (3)
(Olij HIOlik & 4 ( Ujk Jjk) g (Pia Pi a)pjapka+—4 Ujk g (Pia Pi a)Pj aP—ka r—

(Al j)
(A18)

(3) (3)
IIJ Hiolj ) = —

8 UIIPItpi& g (Pj a+2qja)+ Ujjpjtpj I g (PIa+2qia)

+ —,', (UJ —JJ) gp; pJ (1—2n; )(1 2nJ )+——,', UJ gp; pJ (1—2n; )(1—2nJ )

4 (Uij Jij ) g qiaqj a[nia(1——nja)+nJ-a( i a)1—

+ , UJ gq;aqJ a[n—; nJ +(1—n; a)(1 —nJ )]

+ —,JIJ g Ip; pJ [(1—n; )nJ +n; (1 nJ )]+p—; pJ [n; nJ +(1—n; )(1—nJ )]],

(3) (3)
lij Hlolik & 16 ( jk Jjk)(pit+Pii) Qpjapka 16 Ujk(Pit+Pii) QPjapk —o 4 Jjk g'qiaqj aqk a——

(A19)

(A20)

APPENDIX B: LOCAL MOMENTS AND
FLUCTUATIONS IN THE CORRELATED

GROUND STATE

local approach. In such a ground state one finds an aver-

age of any operator Ai acting on the site I as follows:

(~l &
= (~I &HFA

Below we present the method of calculation of local
moments and fluctuations in the ground state within the + g rj„rj„(OI„AIOI„),

n, n'
(Bl)
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where A~ contains only the residual part of the two-
particle interactions, i.e., its average in the HF state is
zero and no contraction within AI is allowed. Thus the
average of any one-particle operator (as for instance the
particle number operator nt or spin St') does not change in
the correlated ground state compared with the HF state.

In what follows we make use of the formula (81) to
find out first how local moments change due to correla-
tion of electrons. As we have found, the second-order
terms in g„'s are small and may be neglected, so we will
present only the first-order terms here which were used in
the calculations discussed in detail in Sec. IV. They were
calculated according to the same scheme as those used to
calculate the correlation energy (see Sec. II and Appendix
A).

A local moment in a given I, state and in the HFA is

~ S li ~HpA 4 g micr(1 micr) ~

and obviously depends on U/8' only through the actual
occupations n; The. only nonvanishing first-order ele-

ment (Ot„Si; ) which changes its value in the correlated
state is

(Ott Si; ) = ——,n;,n;, (I —n;, )(I n;, ) .—(I)-2

It describes gradual formation of the local moment with
increasing U/8; as seen in Figs. 4, 7, and 9, and vanishes
in the CF state, where the HFA becomes exact for ( S i; ).

A total moment at a site l is composed in the HFA of
five uncoupled local moments of different states i and, if
the state is ferromagnetic, from the respective contribu-
tion coming from the zth components of the spina Si;,

(Ott St ) = —, n—;,n;, (1 —n;, )( I —n;, ),(1)

(Ojtj St) = —, gn;~(1 nt—o)njo(1 —n~ )

(85)

1

to( n—;~)nj o(1 —nj a—) & (86)

(OtIJ'St ) = —,
' g nt~(1 —n; )nj (1—ni )

+ —, g n;o(1 —nil) g ni~ (1 n—j~.), (87)

2 2
trHpA( rt t ) = rt — n; (Bg)

crHpA(St')= —,
' gn; (1 n; )=

&
—crHpA(rtt) . (89)

The corrections in the correlated state are due to the quan-
tities (nt ) and ((St') ) in Eqs. (4.1) and (4.2). The
respective matrix elements needed to find those correc-
tions are

( Ot; nt ) =2nt, n;, (1—n;, )( 1 nt, ), —(I) 2

(Ot',i'nt ) =2 Q nto(1 n;~) g nj~—(1 nj ), —
a'

(Ot',J'nt ) = —,
' g n; (1 n;~)nj—(1 nj )—

(810)

(811)

which were used to calculate the moment according to Eq.
(81).

Other quantities which were calculated to demonstrate
correlation effects within d electrons were charge and spin
fluctuations (4.1)—(4.2). In the HFA, when the electrons
are treated as independent, we have

(S,)„„,=-,' gn, .(i —n, .)

i,o

+ —' g (n n;, )(n—J, n.J,), — (84)
/, J

l+J
where the second sum runs over different pairs of Ii,jj.
In the correlated state we find the following matrix ele-
ments:

1

;~( no)ni ~(1 —nJ o), —

(,Ot';"(St') ) = ——,n;,n;, ( I n;, )(1——n;„),
(0(2)(g)2) (0( )n2 )

(OtI"'(St') )=—,
' gn; (1 n; )gn (1——

n~ ) .

(812)

(813)

(814)

(815)

'On leave of absence from the Institute of Physics, Jagellonian
University, Cracow, Poland.
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