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Theory of surface phonons in superlattices
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%e report the existence of surface-localized phonons for a superlattice consisting of alternating
slabs (parallel to the surface) of two different crystals. The superlattice has a larger periodicity in
the direction perpendiculax to the slabs and therefore many phonon branches in the folded Brillouin
zone. In the gaps existing between these phonon branches appear the surface loca1ized IIlodes. The
theory is developed on a simple-cubic model. The simplicity of this model allows one to obtain in
c1osed form the bulk and (001) surface Green's functions for this superlattice. The analytic
knowledge of these functions enables us to study easily all the bulk and surface vibrational proper-
ties of a superlattice, which otherwise mould require huge numerical calculations. We give here the
analytic expression we obtained for the folded bulk phonon dispersion curves and also the expres-
sion that gives the surface-localized modes, which may appear within the extra gaps which exist be-
tween the folded bulk bands. A few figures for specific cases illustrate these results.

I. INTRODUCTION

A superlattice consists of alternating thin layers of two
deposited compounds. Such systems have a new periodici-
ty in the direction x3 perpendicular to the layer. This pro-
duces a folding of the phonon dispersion curves in a re-
duced Brillouin zone and the opening of new gaps. The
study of these bulk phonon properties of superlattices
started recently with the help of linear chain models'
treated numerically and also within the framework of the
theory of elasticity. Experimental investigations of
GaAs-A1As superlattices by Raman and infrared spectros-
copy also appeared. '

Auld et al. started the study of the transverse surface
elastic vibrations by a purely numerical method. Analyti-
ca1 results for this problem were obtained recently by two
different approaches: within the framework of elasticity
theory ' and as the elastic limit of a simple atomic
model. A short communication about a few results due
to this model was given at a recent conference. Here we
will describe fully this atomic model and give all results
obtained from it for the surface vibrations of a superlat-
tice. The superlattice under study here is built up from al-
ternately LI and Lq (001) atomic planes of two different
simple cubic lattices having the same lattice parameter ao
and characterized by their atomic force constants (yl and

yl) and their atomic masses (MI and M2). These alter-
nating thin layers are bound together by a force constant

y between the interface atoms. This simple model enables
one to obtain in closed form the bulk and (001) surface
Green's function for this superlattice. The analytic
knowledge of these functions enables us to study easily all
the bulk and surface vibrational properties of a superlat-
tlcc, which othcrw1sc woUld I'cqulIc 11ugc numerical calcu-
lations.

We will give here the analytic expressions we obtained
for the Green's functions, for the folded bulk phonon
dlspcl'sloll curves Rnd Rlso fol thc surface-localized modes,

which may appear within the extra gaps that exist between
tllc folded bulk bRIlds. Tllcsc cxpl'csslolls enable us to dis-
cuss easily the effect of the physical parameters defined
above. These surface phonons depend also on the kind of
layer (1 or 2) being near the (001) surface. One simple
limit of interest is the one where each layer can be treated
as an elastic medium. This 1imit was studied also directly
within the framework of elasticity theory ' and the ex-
pressions found by a transfer-matrix method agree with
thc corrcspond1ng limit of ouI' 1att1cc dynRrnlcal results.
Let us emphasize at this stage that both calculations apply
only to the transverse vibration modes.

In Sec. II we obtain the bulk dynamical Green's func-
tion for the superlattice defined above. In Sec. III we give
the corresponding surface Green's function. And in Secs.
IV and V these results are used for the calculation of the
bulk and surface phonons.

II. SULK DYNAMICAL GREEN'S FUNCTION
FOR A SUPERLATTICE

In this section we obtain the bulk dynamical Green's
function for a simple model ' of a superlattice. We start
from an infinite simple cubic lattice of atoms of mass M ~.
Let u (l) denote the a component of the displacement of
tllC Rtoln Rt latflcC SltC x(l) =ao(l IXI +12Xl +lIXI )& wllCrC

ao is the lattice parameter and x l, x2, and x3 unit vectors.
The potential energy 4 associated with the lattice vibra-
tions has the simple form

4= —,
'

yI g g g [u (l) —u (1+@)]',

where l ranges over all sites of the crystal, and p over the
six nearest sites of the atom l.

This model is not rotationally invariant" and does not
give rise to Rayleigh surface waves on a (001) surface.
Nevertheless, these deficiencies are unimportant for the
qua1itativc study of many physical properties of surfaces
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and interfaces" and in particular for the study of the
transverse polarized surface modes we will consider here.

From the above form of the potential energy and by as-
suming a sinusoidal time dependence for the displace-
ments, we obtain three uncoupled equations of motion,
which we can write in the form

Taking advantage of the periodicity of the film in direc-
tions parallel to the surfaces, we introduce a two-
dimensional position vector

x~~(l) =aQ(l]x]+12X2),

a two-dimensional wave vector parallel to the surfaces
L(B))

where

(2)

and

k(( =k]x]+k2x2

(B]), 2 2 yi yiL p (l l', co )=5 p co —6 5]]+ g5]]+~
1 1 p

U~p' (l, l';co ) = g U](k)~, co
I

&3, 1'3 )

We construct now out of this lattice a film of L ] layers
bounded by a pair of (001) surfaces. Each (001) atomic
plane of this slab is labeled by

1&l3 &L1 .

The equations of motion of this film can be written as

i k
II

[ x /I(1) —x /I(l')]Xe

where E is the number of atoms in a (001) plane.
The explicit expression of U](k~~, a]

I
13,13 ) was worked

out by Mazur and Maradudin' as a function of

(F) )

and a Green's function U can be defined as

~(F )~(F )L '.U ' =I.
and

Mi
g] ——3 —cos(k]ao) —cos(k2ao) — a]

2/1
(10)

t] = g]+i(1—g'])' ', —1&(]&1

g]+(g]—I)'~, g] & —1

I is a unit matrix with elements 5 p5]].
The advantage of this model is that this film Green's~(F )

function U ' can be worked out in closed forin, ' once
the corresponding surface Green's function is known. '3

13 —l3 I+1
M1 t1'

U](k~~, a]
I

t3 l3)=
71

and is
I

l3+ 13 2Li
M1 t 1 M1 t1 t 1

—l3 —13 + 1 13+13 13 13 l3+13
1

+ p + 2 2i (r] +t] +t] +t]
t1 —1 $1 t1 —1

1
t1 —1

2

(12)
In the same manner we construct another film of L2 (001) layers. In order to distinguish these two films one from the

other, we will use an index v=1 or 2. The corresponding Greens function U2(k~~a] I
I3li) can be obtained from the

above equations (10)—(12) by changing all indices 1 to 2. Let us also remark that for this a =2 film, one has

1&l3 &L2 . (13)

Let us now set this ]].=2 film in epitaxy with the a= 1 film, but without any binding between the interface atom. We
characterize this uncoupled double film by another integer n An infin. ite repetition —oo & n & + 00 without coupling of
this double filin gives us our starting point for our model of a superlattice. One easily sees that the corresponding equa-
tions of motion and Green's function are

and

+~ 2 ~(F )
L u= g g L„" u(na),

n = —00 @=1

~In ]] ~3 n & ~3)=5..5, U.(k~~, ~I~3 ~3)

(14)

(15)

such that

L.U= I .

Let us now couple all these alternating ~=1 and ~=2 films by a force interaction y between the interface atoms fac-
ing each other. This creates the infinite superlattice we will study. Its equations of motion can be written as

(L—5L) u=0,
where u stands for the vector whose elements are all the displacements u (n, v, l], lz, l3) and

(17)
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5L (n, a, l3 , n'', z', 13 ) = y g
~nm ~w2~13L2 ~n, m +1~~1~131

(M3)'i (Mi)'

&n m&'2&I L3 2
&n, m+ 1&'1&I,

3

5nm5n15131.
&

5nm5n25l31

(M, )' ' (M, )' '
5„5„|5,,

3 1
5„5„,5, ,nm K

(M, )'" (18)

We can now define a Green's function D for this infinite superlattice by

(L—5L) D=I

and work out in closed form its elements D ( kii, co
~

n, ~, l3, n', a', l3 ) with the help of the Dyson equation

D=U+U 5L D . (20)

In what follows and for simplicity we will no longer write explicitly the dependence on kii and co in the elements of U

and D.
After some algebra (see the Appendix for more details) we obtain the elements of D as functions of the q„defined in

terms of the t„ofEq. (11)by

t, =e ", x=1 or 2

and a new variable t defined by

31 —(31 —1)'i, g) 1

t= 31+i(1—31 )'i, —1&q&1 (22)

with

2/172 9 1 9'2
tanh tanh sinh(q iL i )sinh(qzLz )+ tanh sinh(q iL i )

y' . 2. 2. y . 2.
cosh[q3(L3 ——, )]

cosh( —,
'

q3)

yt sinh[qz(Lz —1)] q&+ . tanh sinh(q&L
& )+

S1Il g 2 2

2T2 q2 cosh[qi(Li ——, )] yz sinh[q&(L& —1)] qz+ tanh sinh(qzLz ) + tanh sinh(qzL 3 )
y . 2. cosh( —,q i ) Y &

sinh 2

cosh[q&(L &

——,
'

)] cosh[qz(Lz ——,
'

)]

cosh( —,
'

q & ) cosh( —,
'

qz )

(23)

t(M, M, )'"
D(n, l, l3 ,n', 2,13)= '[K&z(l l 3)t3i" " i+Ki3(Li —l3+ I,L3 —l3+1)t i" " ' ],t —1

where

cosh[q&(l3 ——,
'

)] cosh[qz(Lz —l3+ —,
'

)] 1 cosh[q&(l3 —
& )] sinh[qz(L3 —l3)]

Ei3(l3, l3 )=- +
'Y cosh(-,' q, ) cosh( —,

'
qz ) cosh(-, q, ) Slnhg 2

cosh[qz(Lz —l3 + —, )] sinh[q, (l3 —1)]+
71 Slnhg 1cosh( —,

'
qz )

and

Let us give the explicit expressions of the elements D (kiico
~

nal3, n'a'l3 )'of the superlattice Green's function D.
The elements of D between different a'= 1 and a =2 films are

(24a)

(24b)

D(n, 2, l3', n', 1,13)=D(n, i, l3,'n', 2,13) .

The elements of D between the same i~ films are

M'
I

— 'I sinh[q&(13 l3 )]
D(n, l, l3,'n', I,l3)= t "

slnhg 1

ICii(13, l3 ),t2 —1Y1

t ~n —n'i+1
sgn[L i(n n')+13 l3—]+

(24c)

(25a)
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where

E»(l&, l3 )=, I cosh[q&(L &+13 13 )]+cosh[q~(L ~
—l3+lz )]+2cosh[q&(L &

—13 13 +1)]j,
4 cosh ( —,

'
q, )

1

2y&yz qz 2y, cosh[qz(Lz —T)1 y& sinh[qz(Lz —1)]
z

tanh sinh(qzLz)+ +y' . 2. y cosh( q ) yz»nhqz

1 yz qz sinh(qzLz )+ . tanh [cosh[q, (L, +l3 —lz —1)]+cosh[q&(L&+13 g3 1)]
2 sinhq

& y, 2 sinhq&

—2 cosh[q, (L
&

—13 I 3 + 1)]

sinh[q&(L ~
——,

'
)]cosh[q&(I3 13 )]

cosh( —,
'

q ~ )cosh(-,' qz )

—sinh cosh[q &
(L

&

—13 13 + 1)]
2

272 . q2 1
sinh sinh(qzLz )+cosh[qz(L z

——, ) ]
. y . 2. (25b)

Thus D(n, 2, 13',n', 2, l & ) can be obtained from D(n, l, lz', n', l, l& ) by interchanging in y„, M„, and L„all the indices fr= 1

and 2. We now proceed to utilize these results for the calculation of the surface Green's functions.

III. SURFACE DYNAMICAL GREEN'S FUNCTION FOR A SUPERLATTICE

We will consider here two different cases, depending on the thickness of the last film near the free surface.

A. Surface film with same width as corresponding bulk films

We create two free surfaces by equating to zero all interactions between atoms in the plane (n =0, ir=2, lz Lz) and-—
atoms in the plane (n = 1, v= 1, 13 ——1). The equation of motion (17) of the infinite superlattice is now changed to

(L—5L—5L") u=0,
where

(26)

5L "(n,~, l&', n', v', 13 ) = —y
0&.2&l,i, 5

(M, )' ' (M, )'

5.06.25l L3 2

(Mz)'

5„]5„)5l,,'3'
(27)

We define a surface Green's function by

(L—5L—5L").G=I . (28)

The Dyson relation between G and D enables us to find easily for n and n' & 1

D(n, a, l '0z, 2, L)zD(n, v, l '1z, 1, 1) (Dl, 1,1; na', l' )3
G(n, x, 13 ,n', a', I'3)=D'(n, a, 13 n K 13)+

(Mz)'i (Mi )'

where

(29)
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D(1,1, 1;0,2,L2) D(1,1, 1;1,1,1)

(M,m, )'"
Using Eqs. (24) and (25), one finds

1
bs1 —— ( —1+tH),(t' —1)

(31a)

cosh[q1(L1 ——,
'

)]

cosh(-,' q1)cosh(-, q2 )

232 . 6'2
cosh[q2(L2 ——,)]+ sinh sinh(q2L2)

2

2Y2 sinh( —,
'

qz) sinh[q1(L1 —1)]+ S111h(q zL 2 )
'Y1 cosh( —,'q2) sinhq&

(31b)

B. Surface film with width smaller as corresponding bulk films

We now create two other free surfaces by equating to zero all interactions between atoms in the plane (n =1, «.=1,
l3 ——IQ &L1) and atoms in the plane (n = 1, « = 1, l3 —IQ+ 1).

The corresponding variation in the equations of motion [Eq. (29)] is now

5L "(n,sc, l3', n', «', I3 ) = — (5„15„151,1,
—5„15„151,1,+1)(5„15,151, 1

—5„15„151,1,) .
1

As above, one obtains the surface Green's function, which for n and n' & 1 and 13 aIld 13 0 IQ 1s

(32)

G(n, «, I3,tt', «', I'3)=D(rt, «, I3 11 « I3)+, [D(11,«, 13 1 1 IQ) —D(11,«, I3', 1,1,IQ+1)]D(l, l, IQ+1;11',«', I3),
M)Ag)

(33)

hj1 ——1 — [D(1,1,l +Q1;1,1,1 ) QD(1, 1,1 —+QI;1, l, lQ+1)] .Vl

M]

With the use of Eqs. (24) and (25), one finds

(34)

2Y, cosh[q&(L2 ——,
'

)] Y, sinh[q, (L, —1)]
tanh sinh(q2L2)+

t —1 cosh (-,'q1) 'Y cosh( —,q3 ) 'Y2»»q2

~ 1

sinh cosh(q1L 1)+sinh[q1(L1 —21Q ——, )]

j.

t —1 sinhq1cosh( —,' q1)cosh( —, q3)
2sinh jsinh[q1(L1 ——, )]—sinh[q1(L1 —2IQ ——,)] j

2
9'&

1 1

2T2 . 02 '[

sinh sinh(q~Lp )+ cosh[q2(L2 ——, )]
. y . 2.
T2 . 9'2 q1+ sinh sinh(q2L2 ) sinh cosh[q1(L1 —1)]
p} 2 2

—sin& [q, (L, —2l, ——,
'

)] (35)

We now proceed to use the results of Secs. II and III for the determination of the bulk and surface modes of a super-

1a.ttice.
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The bulk phonons of our superlattice can be obtained from the knowledge of the bulk Green's function [Eqs. (24) and
(25)]. I.et us first recall that for the infinite simple cubic lattice described by Eqs. (1)—(11), the threefold degenerate bulk
phonon dispersion curves can be obtained from Eqs. (11) and (10), and are given by

g&
——cos(k3ac),

where gl is given by Eq. (10), and k3 is the propagation vector in the direction x3 ( n. (—k3ao (+m ). In the same
manner (see the Appendix), for the infinite superlattice described by Eqs. (17)—(23) we obtain the bulk phonons from
Eqs. (22) and (23):

rl =cos[k3(L &+L2)ao],

where rl is given by Eq. (23) and because the periodicity in the direction x 3 is now given by (L & +L2)ao, one has

—m. (k3(L|+L2)ao(+m .

(37)

(38)

Because of this larger periodicity in the direction x3, one has a folding of the phonon dispersion curves in a reduced
Brillouin zone specified by Eq. (38) and an opening of new gapa between these folded dispersion curves (see Figs. 1 and
2).

In these gaps, new surface phonons may appear; they can be found from the new poles in the surface Green's func-
tions [Eqs. (29) and (33)] due to the creation of the free surface. I.et us illustrate this in the case for which the surface
film has the same width as the corresponding bulk films [Eq. (29)]. We work out explicitly the diagonal element of the
Green's function G on the surface plane. From Eq. (29) we obtain

G(1 1 )
D(1, 1, 1;1,1,1)

~si
(39)

In hsl we have a square root of +(1—rl )' introduced by t [Eq. (22)]. In order to remove it, we multiply the numera-
tor and denominator of Eq. (39) by ( —I+A /r). Then Eq. (39) reads

t2 —1
G(1, 1,1;1,1, 1)= ( —3) (40)

r (2r) —A)A —1

From Eq. (25) one obtains

FIG. 1. Band structure of a superlattice with L~ ——I.q ——2 in function of the parameter S =2—cos(k„ao) —cos(k~ao). The two
crystals differ by their atomic masses (Mi ——2M2 or Mi ——M2/2) while the force constants are identical everywhere (yi ——yz ——y). The
film labeled by the index x = 1 is at the surface. The shaded areas represent the bulk bands (four of each value of k~~ ). Surface modes
are present for eo ——2 (same thickness of the crystal film at the surface as in the bulk) but not for eo ——1. The X&,X&,X&' modes

( ) refer to a surface film of lighter Inass (MI ——M2/2), the X2,X2 modes ( ———) to a surface film of heavier mass

(Mi ——2M2).
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M)(g2 6-

FIG. 2. Same as in Fig. 1 but with crystals of the same atomic mass (M» ——M2) and different force constants (y» ——2y~ or

y» ——y2/2). The force constant at the mterfaces are assumed to be y=(y»+y2)/2. The X»,X»,X» modes ( ) refer to y» ——2y2,
the %2, X2,X2' modes to y»

——y2/2.

t p 2

D(1,1,1;1,1,1)=-
27'& (& —1) sinh( —,

'
q &

)cosh( —,
'

q &
)cosh( —,

'
q2)

(41)

e'2
F(co )= sinh sinh sinh(q2L2)cosh[q&(L& ——,

' )]+ sinh cosh[q&(L& ——')]cosh[q2(L2 ——')]r' . 2 . . 2. y . 2.
272 . V2 y, sinh( —,

'
q & )

+ sinh sinh(q2L2)sinh[q~(L~ —1)]+, cosh[q~(L~ ——,
'

)]sinh[q2(L2 —1)]
y . 2. Y2 S111h( 2 q2)

+cosh[q2(L2 ——, )]sinh[q ~ (L ~
—1)] . (42)

In addition, Eqs. (23) and (31b) provide us with

(2q —~)~ —1=
y~cosh ( —,'q~)cosh ( —,'q2)sinh( —,q~)

V1V2 . 'V] . 92 92 »D(co )= smh stnh — sill h( q~ L~)sl nh( q2L2) +p s2l nh hco[qs](L~ —
& )]slllh(q2L2)

y . 2 . . 2 . 2

»

+y&sinh sinh(q~L~)cosh[q2(L2 ——, )] . (44)

And finally, by combining Eqs. (40)—(44),

g M~ cosh( —,q& )cosh( —,
'
q2)

G(1,1, 1;1,1,1)=
2 D (co')

(45) D(cps)=0. (46a)

I

face (ri=l, jr=1, I3 ——1) and decaying inside the bulk
sj.tnatcd at n 8@el I3 + 1. The/ SI'e glvcIl bp

From the poles of this Green's function, we find the fre-
quencies co~ of the surface modes localized at the free sur-

Let us call As and ts the corresponding values of A and r

[Eq. (31)]. From Eq. (31a), we must have for these sur-
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for g„) 1 and —1&/„+ I, which are the two regions of
interest in the elastic limit. Then

S1Ilcc rs ls tllc cxpoilciltlR1 dccRylilg fac'tor for 'tllcsc slll'-

face Inodes [see Eq. (25)], the frequencies of these modes
are given by Eq. (46a) with the following condition,

Wc call now 'take thc clastic llnllt of Eqs. (46) giving flic
surface modes. Keeping only the terms of first order in q„
and neglecting the term in q~q2, we obtain

fAs f
)1,

which, with the help of Eqs. (46a) and (31b), can be
rewritten as

yz sinh(qzLz)tanh( —,qz)
&1

sinh(q 1L I )tanh( —,q 1 )

F tanh(aIL I )+tanh{azLz) =0

cosh(azL z )

cosh(aiL i )

(51a)

(51b)

V. A FE% APPLICATIONS (51c)

A. The biatomic linear chain

The simplest possible example is the one of a linear bi-

atomic chain, which can be obtained as a limit of our
model with I.

&
——L, 2 ——1, y~

——y2
——y, and k~~

——0. Then one
easily finds from Eqs. (46)

(47R)

B. The elastic limit

The bulk dispersion relation [Eqs. (36) and (10)] of the
simple cubic Montroll-Potts model, reduces in the limit of
long wavelength to

co = aok =e, k +. . -z z z z

Mi

where

k =k)+k2+k3 .

In this limit g„(lr= 1 or 2) given by Eq. (10) reduces to

0.=1+ II'+ ' ' '
K (49a)

which is the well-known result for the surface optical
mode of a biatomic linear chain with a free surface on the
Rtoln of Inass Mi.

and whcrc p) an«I p2 8I'c thc mass dcnsltles. This I'csolt
was simultaneously obtained with the help of the elasticity
theory.

C. A fear examples of the bulk and surface phonons

In Figs. 1 and 2 we present the results for the band
structure and surface modes of a superlattice with two
atomic planes in each film (L I Lz ——2). W——e first assume
(Fig. 1) that the two crystals differ only by their atomic
masses, while the force constants are identical everywhere

(y, =yz ——y). Figure 1 presents the surface modes when
the crystal film at the surface is either the type 1 (mass
M, ) or of type 2 (mass Mz). However, all these modes
refer to a thickness of the crystal at the surface equal to
two atomic layers (co=2). For co= 1 there is no more
surface mode. This sensitivity of the surface modes to the
surface filln thickness was already pointed out in the elas-
tic limit. Let us stress thai care must be taken to obtain
the surface modes, in the case eo &L 1, from the roots of
b,s I [Eq. (35)]. As a matter of fact, some of the roots of
141 appear as well as roots in the numerator of this
Green's function in Eq. {33)and then should be disregard-
ed.

We next assume (Fig. 2) that all the atoms have the
same mass (Mi ——Mz) but the force constants are different
in the two crystals. The force constants at the interface is
taken to be y= —,'(yi+yz). It is worthwhile to note that
the band structure is sensitive to the choice of y, whose ef-
fect becomes more important as the film thicknesses de-
crease. As in Fig. 1, the surface modes are represented for
the crystal film at the surface either of type 1 or of type 2.
Moreover, the surface modes are only present for eo ——2, in
these simple examples.

2

Qg =K[] 2 ~

Recalling that I„=c =1+q + ' ' [Eq (21)] wc scc
with the help of Eq. (11) that

VI. CONCLUSIONS

In this paper we obtained for the first time surface pho-
nons on a simple three-dimensional atomic model of a su-

pcrlattice. The simplicity of this model enables us to
derive in closed form tile bulk»d surface dynamical
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Green's functions for a superlattice. From the poles of
these Green's functions we obtained analytic expressions
for the bulk and surface phonons of a superlattice. We
analyzed also the case for which the width of the last sur-

face slab was smaller than that of the corresponding bulk
slabs. A few specific examples illustrate these general re-

sults.

A mathematical transposition of this theory to electrons
in a bimetallic superlattice is underway, within the tight-
binding approximation. ' Another extension to phonons
in superlattices formed out of two different biatomic slabs
is also under study. Finally let us also mention our in-
terest in liquid superlattices, following the theory of liquid
surfaces done before. '

APPENDIX

In this appendix, we will explain how one can obtain the bulk Green s function D of a superlattice. We start with the

Dyson equation (20) relating D to the Green's function U of the same infinite set of uncoupled films. U was obtained in

closed form [Eqs. (1S) and (12)]. The perturbation 5L which couples all these films together is given by Eq. (18).
For the evaluation of the elements of D, it is helpful to define

f(n,n')=, D(n, l,L&,n', ir', l3)—,D(n, 2, 1;n', 's1' )3,

g(n, n')=
liz D(n —1,2,L&,n', a', l3 ) — I D(n, 1,1;n', x', I3 ), (A2)

and

6=1—y
UI (1,1) Uz(1, 1)

Mz
(A3)

When use is made of the Dyson equation (20), one easily finds two coupled equations for f (n, n') and g (n, n')

I I I

bg (n, n')+ UI(1,LI )f(n, n')+ Uz(l, L&)f(n —l, n') =5„ i „&iUz( q, l3 ) —5„„,UI(l, l3 ) (A4)
MI Mp

' (Mq)'i~ ' (Mi)'iz

and

bf(n, n')+ U&(1,L&)g(n, n')+ Uz(1, Lz)g( n+l, n')= „5„,UI(Li., l3)—,i UI(1,13)V 5I„5p„
MI

' '
Mp (M, )'" '

(M, )'"
By elimination off (n, n'), one obtains from the above two equations

Bg (n, n')+A[g(n + l, n')+g(n —l, n')] =Cz5„„+C&5„

where

(A5)

(A6a)

and

Ui(1,Li) Uz(1,Lq)8=6—
M

2

A = — UI(1,LI)U~(1,L~),
I 2

UI(i, l3) ~ U|(1,LI) Ui(Li, l3) Uq(l, l3)
Cq ———5I„ 5I„ —5p„"

(M, )' ' & MI
"

(M, )' ' (M, )' '

(A6b)

(A6c)

(A6d)

Ug(Lg, l3) ) Up(1, Lp) U, (LI,13) UQ(lyl3)
CI ——5p„ 6I, —5p,

(M )'' & Mz
"

(M )'' (M )'' (A6e)

Then Eq. (A6) can be solved, remembering that the solution of

h (n + l, n')+h (n —l, n') —2qh(n, n') =5„„,
where

8
271= —=

(A7a)

(A7b)

1S
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tin —n I+'
h (n, n')=

t2 1

where

(A8a)

t= ri+i(1 —ri )', —1&ri&1
si+(rl —1)'~, sl & —1.

Returning to Eq. (A6} one obtains

(A8b)

g(n, n')= (A9)

Then Eq. (A5) provides us with f(n, n') and the Dyson equation (20) gives

6
D (n, tc, l3 ,n', t'c', l3 ) =5„„5„„U„(l3,13 )+y [Ui (l3,L i )f (n, n') —Ui(13, 1)g (n, n')]

, q, [Uz(13 L2)g (n + 1,n') —Uz(l3, 1)f(n, n')]
(M2)

And finally after some algebra, we obtain the D (n, tr, 13', n', tc', l s ) in the form given by Eqs. (27} and (28).
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