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Lattice dynamics of face-centered-cubic metals using the ionic Morse potential immersed
in the sea of free-electron gas
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Lattice vibrations in six face-centered-cubic metals (i.e., copper, silver, gold, lead, palladium, and
nickel) are studied by computing phonon dispersion relations along the principal symmetry direc-
tions, and the Debye temperature (Su), the mean-square displacement ((u ~) ), the effective x-ray
characteristic temperature (0 ), and the Debye-%aller factor exponent (8"},as a function of abso-
lute temperature (T). The model used for the present purpose is the ionic Morse potential immersed
in a sea of free-electron gas. This scheme provides a new way to evaluate Morse-function parame-
ters by including the effects of the conduction electrons in the metals. The computed results are
found to be in excellent agreement with the available experimental observations for almost all the
metals studied.

I. INTRODUCTION

The Morse potential (MP) has been extensively used in
the literature for the study of various elastic, mechanical,
and thermal properties of crystalline solids. This potential
function, as well as others, has been used in the study of
defect structures of metals (including stacking faults,
dislocations, and point defects ), inert gases in met-
als, equations of state, ' shock-wave propagation in
crystals, variation of lattice energy with compression or
expansion, ' elastic properties of metals' ' and alloys, '

lattice distortion at surfaces, ' ' interactions between gas
atoms and crystal surfaces, fracture behavior of met-
als, ' and the theoretical strength of ideal crystals.
The MP expresses the potential energy P(r;) between two
atoIDS separated by a distance I;. as

where D and tz are constants with dimensions of energy
and (distance) ', respectively. The potential has its
minimum at r; =ra, and the dissociation energy of the two
atoms is D since (b(ro)= D. There have —been several
earlier determinations of D, a, and ro for cubic met-
als. ' ' To determine the numerical values of these
parameters, authors have used a variety of experimental
data; for example, Girifalco and Weizer' and Lincoln
et al. ' used cohesive energy, compressibility, and lattice
parameter vvhile Milstein used the experimental values
of elastic moduli C», C&z, and the lattice parameter to
evaluate the model parameters. It should be pointed out

here that all of these authors have discussed the inter-
atomic interactions of metals only by interiomc i«erac-
tions and have ignored the effects of conduction electrons
in metals. As a consequence, these authors have either
used invariably Clg =C44, or their theoretical clastic con-
stants predict this equality. In order to overcome this

' drawback, we have described the case of a metallic atom
as being composed of ionic interactions described by MP
with the ionic lattice "immersed" into a sea of free-
electron gas. We have described the electron interaction

by means of a screened Coulomb interaction. There are
thus four parameters involved in the present study of met-

als, namely D, tz, ro, and k„ the bulk modulus of the elec-

tron gas. Since interionic interactions are governed by
purely central forces in metals, we immediately have

k, =C&2 —C44. In order to determine the model parame-
ters of MP, we subtracted the electronic part of the elastic
constants C11 and C12, 81ven by C11 =C12 =C12 —C44, ,
from the experimental values of the elastic constants C»
and C&2. This gives the ionic part of the elastic constants

C11 and C12~ viz. ~

C11=C11—C12+C44 (2)

C12=C44=C44 .
This treatment implicitly assumes that the ionic contribu-
tion to the pressure I' is zero at equilibrium (i.e., where
the total pressure is zero). This simplifying approxima-
tion is made in order to avoi. d including the I' contribu-
tion to the ionic moduli C~J. The tnethod of determining
the Morse parameters [see Eqs. (34)—(36)] ensures that
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I"=0 at equilibrium.
By using Eqs. (2) and (3) together with the lattice pa-

rameters of the metal and following the scheme of Mil-

stein, we were able to obtain the numerical values of D,
a, and ro for metals. We have confined our studies to fcc
metals only. Equations (2) and (3) show that we have used
the ionic part of the elastic constants, which no doubt

predict the Cauchy relation. However, when the electron-
ic part of the elastic constants is added, C&z and C44 are
bound to be different and eventually tend to the experi-
mental values.

Our basic aim in this paper is the study of lattice vibra-

tions by using MP in the case of metals; evidently, such a
study has not been carried out before. MP was utilized

for the study of lattice vibrations in fcc inert-gas solids

only by Gupta and Gupta, but such a study is uncompli-
cated by the presence of conduction electrons either in the
determination of the model parameters or in the deter-

mination of the phonon spectrum. Gupta and Gupta
had arrived at the conclusion that at least 12 nearest-

neighbor interactions are needed to reproduce the phonon
dispersion curves in inert-gas solids using MP. We.were

interested in learning how many nearest-neighbor interac-
tions would be required for the case of metals. The inter-

atomic interactions as well as the way of determining the
MP parameters is different for inert-gas solids and metals.

Thus we found that a study of interionic interactions to
the second-nearest neighbor suffices for the determination

of phonon dispersion relations in metals. We would like

to point out that we tried to study all the fcc metals for
which data on elastic constants and phonons were avail-

able, but we could study only six: copper, silver, gold,

lead, nickel, and palladium, for which the ratio of C'» and

C&2 lies in the limit 1.14(CI&/C~2 (2.0; this limitation

is discussed further in Sec. V. The phonon dispersion re-

lations along the principal symmetry directions, the 8D-T
curve, (u ), 8~, and the Debye-Wailer factor exponent
8' for all these six metals, form the subject matter of the
present study.

II. THEORY

D~~ =2(pl'+p') )[2—C;(CJ +Ck )]+4/I (1 C)Ck)—

+44'2l 1 —C )+$2[2 —(&)~+Ck )],
D'

p
——2(PI' —P& )S;S .

(6)

In the above equations, C; =cos(krak;), S; =sin(mak;), a is
the lattice parameter, and k; is the ith component of the
phonon wave vector. P,' is the first derivative of ith-
neighbor Morse function divided by the ith-neighbor dis-
tance and P;" is the second derivative of the ith-neighbor
Morse function. The electronic part of the dynamical ma-
trix elements is given by

The secular determinant to determine the frequency of
vibrations of a solid is given by

detlD me@ —I
I

=0,
where D is the dynamical matrix, m is the ionic mass, u is
the angular phonon frequency, and I is the unit matrix.
The dynamical matrix D is split into two parts: the ionic
part D' which is based on MP and the electronic part D'
which is based on the model of Krebs,

Dap —Dap+Dap ~

By confining the interionic interactions to the second-
nearest neighbors only, the typical diagonal and nondiago-
nal parts of the ionic dynamical matrix elements are given
by

(q;+h;)'g (u$) "g (u2)
D~~= 4a A, 2 2 2 2

h
I
q+h

I
+(a A, /4~ )f(r&) " +( ~ ~4~ )f

(q;+h;)(q, +h, )g'(u~) h;h, g (u2)

I
q+h 12+(a'~'/4~'»('~) +' ~ "

k, =C]2 —C~,
A, =0.353(r, /ao)' 'kF,

(10)

3g(u)= (sinu —u cosu),
Q

1+tf(r)= —, + ln
4t 1 —t

(12)

(13)

kF = (9~/4)
1

~s

r, =(3/4mn, )'

2m'~s'
I
q+h

Ia

(14)

(15)

(16)
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u, =

m /q+h/
kE

m/h[t2=
akim

In the above equation, ao is the Bohr radius, q; =ak;/2m. , and h; (i =1,2, 3) represent the Cartesian components of the
reciprocal-lattice vector. The phonon dispersion relations in the principal symmetry directions are given by simple
analytical functions of the form

mt(q, p, p) =4(P)'+P) )(1—C;)+4/2'(1 —C; )+ [D'(q, 0,0)]), ,

ma)r(q, o, o) =2(p)'+p) )(1—C~)+4/1(1 —C )+ [D'(q, 0,0)]ll,
ml (, , ) =(4y('+4/2'+y)+2/2)(1 —C; )+[D'(q, q, q)]) l+2[D'{q,q, q)],2,

rr)a)r(qqq)=(44) +4i+44z+241)(1 —C )+[D'(q q, q)])) —[D'(q, q, q)])2,

rr)~~(qqo) =2(0)'+4') )[2—C;(C;+1)]+[4P') +(4/2'+())'1 )(1+C;)](1—C;)

+2(0)'+0) )~ + [D'(q, q, O)]»+ [D'(q, q, O) j)1,

mo)r( o)=2($)'+$'))[2—C (C +I)]+[4(t)')+(4Pp'+(t)2)(l —C )](1—C )

—2({t)'+0) )~ + [D'(q q o)1» —[D'(q, q, »])1,
m~r, (s,qo) =4(ki'+ 0) )(1—«)+2(24+No)(1 —C')+ I D'(q q o) ]31

m~L(), o)=2(4("+4) )(3+C;)+[44')+Pe(1+C;)](1—C )+[D'(1 q o)]))+[D'(1 q o)])2

r)1'r((), qp)=2((()'+P) )(3+C;)+[4/) +Pl(1+C; )](1—C;)+[D'( l, q, O)])) —[D'(l, q, O)])1,

rnr, () ((o)=2((()'+K)(1—C )+[44+((1(1—C )](1+C )+[D'(1 q 0)]31 .

(21)

(24)

(25)

(26)

The usual thermal properties of crystals, i.e., lattice heat
capacity Cy, Debye temperature eD, the effective x-ray
characteristic temperature 8~, Debye-Wailer factor ex-

ponent W, and mean-square displacement (u ), are calcu-
lated through the following expressions:

& .. (hv/ksT) exp(hv/ksT)
Cp ——kg g (v)dv, (30)

[exp(h v/ks T) 1]— C') )
——C) )

—C)1+C44 —— [PG (2aa) —QG (aa)], (34)
32a

C')1 ——C44 ——
1 [PH (2aa) QH (aa )], —

32Q
W= (sin8/A, ) g coth

4m A . , l ~q»
3m% . ~q» 2kgT

(31)
PF(2aa) =QF(aa), (36)

metals, and evaluation of phonon spectra and thermal
properties of metals. In order to evaluate the model pa-
rameters, we have used three different equations following
the scheme of Milstein,

8))r —— [(t (x)+ (x /4) ](sin8/A, )
mkg 8

(u 1 ) = -(X/sin8)1 8' .
Sm

(32)

III. NUMERICAI. COMPUTATIONS

The Illllllerlcal conlputatlolls collslst of two parts: tile
determination of the model parameters of the MP for the

In the above expressions, P(x) is the usual Debye integral
function and x=S~/T, X is the total number of unit
cells in the crystal, q» is the jth component of the phonon
wave vector, ~+ is the angular frequency for the q» mode,
A, is the wavelength of the incident radiation, and 8 is the
glancing angle of incidence.

where the symbols P, Q, G(aa), H(a), and F(aa) are
functions of the parameters D, a, and ro (see Ref. 25 for
more details). The input data, i.e., the elastic constants
and the lattice parameters to determine D, a, and ro, are
given in Table I, along with the numerical values of these
parameters. With a knowledge of a, D, ro, and k, we cal-
culated the phonon dispersion relations for all of the six
metals listed in Table I along the principal symmetry
directions: [q00], [qqO], [qqq], and [lq0].

The dispersion curves for copper, silver, gold, nickel,
lead, and palladium are given in Figs. 1—6, together with
the corresponding experimental points for comparison. In
order to determine the phonon density of states for all six
metals, we have solved the secular determinant for a
discrete subdivision of the wave-vector space. The first
Brillouin zone was thus divided into an evenly spaced



TABLE I. Values of elastic constants C~~ and C~2, lattice parameter a, and Morse-function parame-
ters D, o,, and ro for fcc crystal lattice.

Ni
Cu
Ag
Pd
Pb
Au

C])
{10" dyn/cm')

19.660
12.140
7.670

12.270
2.750
7.19

(10"dyn/cm )

12.200
7.540
4.610
7.170
1.819
4.27

3.52
3.61
4.08
3.89
4.95
4.07

(10 ' erg}

3.6927
2.4047
1.9514
2.3604
1.8294
1.7163

2.0198
2.0102
1.9067
2.1719
1.2022
1.9788

2.5736
2.6328
2.9536
2.7970
3.7292
2.9372

sample of 8000 wave vectors. Crystal symmetry permit-
ted us to solve for only 262 nonequivalent wave vectors in-
cluding the origin. The width of frequency was taken to
be hv=0. 05X10' sec ' to plot g(v)-vs-v curves. The
specific heat at constant volume was calculated from a
knowledge of the g (v)-vs-v curve and using Eq. (30). The
corresponding 8D Tcurves -for all the six metals are
shown in Figs. 7—12, together with the experimental
points for comparison. The entire phonon spectra were
ut111zcd to compute x-ray character"1stlc temperature O~,
mean-square displacement of atoms ( u ), and the
Debye-Wailer factor exponent 8".

IV. COMPARISON WITH EXPERIMENTAL RESULTS

reproduced the experimental frequencies. A small diver-
gence of about 2—4% between the computed and experi-
mental phonons is noted in [q00]L, [qq0]T, and [qqq]T
for ccrtR1Q wave vectors in thc high-frequency 1cglon.
From Fig. 7 we see the calculated 8D Tcurve-for copper
has reproduced the entire shape of the experimental curve
but it lies about 2% lower than the experimental points.
The reason behind this is very simple: In order to calcu-
late the 8D Tcurve -we have used the g (v)-vs-v curve for
room temperature instead of that for T=0 K. The exper-
imental values of 8D have been taken from Martin. '0 The
comparison of calculated and experimental values of
Debye-Wailer factors is made in terms of the Debye-
Waller —temperature parameter only, defined by

I'= (1/sin8) (2 WT —2 WT )log&ze, (37)

The experimental phonon dispersion curves of copper
have been determined by various workers. The most reli-
able results are those of Svensson et al. We have com-
pared our theoretical results with their data. Figure 1

shows that the calculated dispersion curves have almost

X K ~Z r

where 2' and 28'T are the values of Debye-Wailer fac-

tors at temperatures T and To. This quantity is indepen-
dent of A, and 8. Figurc 13 shows that there is an excel-
lent agreement between the calculated and experimental
values of I; (u }, and 8M of copper below 300 K.
Above that, theoretical results show some disagreement
with the experiment. The experimental values of W, 8M„
and (u ) for copper have been taken from the works of
Owen and Williams, ' Flinn et ah. , and Chipman and
Pasklnl.

[qoo] i /
I j

[Iqc] ~

Ag

x K +-Z I' A~

!
[qqc] [qqq] I!

ltl

0
0 0.6

(Goo) q~
0 0.6 ].0 0.6 0 0.5

(]oo) q~ (]]0) ~q (000) q~ (
&

&-)

FIG. 1. Dispersion curves for copper along the [q 00], [ lq 0],
[qq0], and [qqq] directions. Experimental data of Svensson
et a1. (Ref. 29) are shown by circles, squares, and dots. Solid
lines show the theoretical fits by the present study. Dashed and
dotted-dashed lines indicate the computed fits using D, a, and ro
determined by Milstein (Ref. 25) and Girifalco and %'eizer (Rd'.
13).

0
o 0.6 o 0.6 I.o 0.6 0 0.5

(]]0) q (ooo) q~ ( ~/ ~/ p)(ooo) q~ (]oo) q~

FIG. 2. Dispersion curves for silver. Experimental data are
from Kamitakahara and Brockhouse (Ref. 35). Other details
given in caption of Fig. 1.
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FIG. 3. Disperson curves for gold. Experimental data are
from Lynn et al. (Ref. 42). Other details given in caption of
Fig. 1. MP's were not available from Girifalco and Weizer.

Q
0 0.6

(000) q~
0 0.6 I.O 0.6 0 0.5
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B. Silver

]. h~ x w

, 2 [qoo] ~ [Iqo]
l

X K~X]
[qqq] [qqq] /

/i

Drexel et al. and Kamitakahara and Brockhouse
have measured the phonon dispersion relations in silver.
We have compared our theoretical calculations with the
results of Kamitakahara and Brockhouse; these results
are more detailed than those of Drexel et al. From Fig. 2

we note that the theoretical dispersion curves have almost
reproduced the experimental results for the directions

[q 00] and [qq0]. A small divergence is noted between the
calculated and experimental phonons in the [qqq] direc-
tion. If we take account of the experimental uncertainties
in the measured phonons, the maximum deviation between
the calculated and observed frequency in [qqq] does not
exceed 5%. Figure 9 shows that the calculated 8D T-
curve of silver has the correct shape of the experimental
curve and lies about 2%%uo below the experimental curve.
The experimental values of 8D were taken from the mea-
surements of Meads et al. In order to estimate the ob-
served specific heat we have taken y =0.65
mJ mol 'deg from the work of Hoare and Yates.
Figure 14 reveals that the calculated Y, 8', and (u ) of
silver are in excellent agreement with the experimental re-
sults below 200 K. The experimental values of Y, 8M,
and (u ) have been taken from the measurements of

FIG. 5. Dispersion curves for palladium. Experimental data
are from Miller and Brockhouse (Ref. 51). Other details given
in caption of Fig. 1. MP's were not available from Girifalco and
Weizer (Ref. 13}.

Boskovits et a/. , Andriessen, Spreadborough and
Christian, and Simareka. '

C. Gold

The experimental phonon frequencies in gold were mea-
sured by Lynn et al. A study of Fig. 3 shows that the
computed phonon dispersion relations in gold have almost
reproduced the experimental curves along all the symme-
try directions. The computed phonons show a maximum
departure of about 5% from the experimental phonons in
the high-frequency region, and that along [qqq]L, [q00]L,
and [qqO]r only. Figure 9 shows that the experimental
8D-T curve of gold has almost been reproduced by the
theoretical curve. The calculated and experimental 8D
differ at the most by only 2%%uo. In order to estimate the
experimental 8D from CP, we have subtracted the elec-
tronic part of the specific heat y, given by
y=177.6X10 caldeg g-at ', taken from the experi-
mental measurements of Corek et al. The experimental
values of CP below 30 K were taken from the work of
Martin, and above 30 K from those of Geballe and
Giauque. From Fig. IL5 we see that the computed Y and
(u2) give an excellent account of the experimental curves.

N

o 8

LIJ

Cr

Q
0 0.6

(ooo) q~
0 0.6 l.o 0.6 0 0.5

(loo) q (Ilo) q (000) q (222)I I I

r X W

[qoo] [Iqo] I Pb
I

/

/

&. 2 — / // +()
z //&
5 /

'
x„„,

T

~p i i i 1 i l I i

0 0.6
(ooo) q ~

X K ~X

I

I

I

2
I

[qqq] /
/

/ /

0 0.6 I.O 0.6 0 0.5
(IOO) q ~ (IIO) ~ q (000) q ~ (2 22)

FIG. 4. Dispersion curves for nickel. Experimental data are
from Birgeneau et al. (Ref. 48). Other details given in caption
of Fig. 1.

FIG. 6. Dispersion curves for lead. Experimental data are
from Brockhouse et al. (Ref. 54}. Other details given in caption
of Fig. 1.
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340-
80—
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~ 320-
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CI
0*

160—

300—
I

20 40
T(K)

I

60
I

80 100
140

0
I

20
I

40
I

60 80 100

FIG. 7. 8D-T curves for copper. Experimental data from
Ref. 30 are marked by open circles. Solid lines are calculated
fits.

FIG. 9. 8D-T curves for gold. Experimental data are taken
from Ref. 44 for values measured below 30 K and from Ref. 45
for values above that. Other details given in caption of Fig. 7.

However, the computed 8M does not give as good a
description of the experimental curve. While (u ) still
gives satisfactory results for experiments below 900 K, Y
departs significantly' above 700 K. The experimental
values of Y, 8M, and (u ) were taken from the work of
Owen and Williams. '

D. Nickel

Phonon dispersion relations in nickel have been mea-
sured by Tuberfield, Stringfellow and Torrie, and most
extensively by Birgeneau et al. whose data are compared
here with our calculations. A study of Fig. 4 shows that
the calculated phonon dispersion relations have almost
reproduced the experimental ones in all symmetry direc-
tions. Some departure is noted between the calculated and
experimental phonons, of the order of 5% in the high-
frequency region, and again in the [q00]L, [qq0]L, and

[qqq] L directions.

Figure 10 shows that the computed 8D Tcurve -for
nickel gives a good description of the experimental curve,
but lies about 2% below it. We have used the experimen-
tal SD from the work of Busey and Giauque. Since
nickel is ferromagnetic below 631 K, there is also a spin-
wave contribution to the lattice specific heat in addition to
the usual electronic contribution. In order to calculate the
lattice specific heat, these two contributions have to be
subtracted from the heat-capacity data. The electronic
heat-capacity coefficient y was taken to be y=7.05
&( 10 J mol ' deg, and the spin-wave contribution
coefficient C was taken to be C =8.8&(10 T
mol ' deg . From Fig. 16 we see that the calculated
F is in reasonable agreement with experimental results up
to 600 K. The calculated 8M and (u ) show reasonable
agreement with the experimental data only up to 400 K.
The experimental values of Y, 8M, and (u ) are from the
measurements of Simareka ' and Wilson et al.

230

450-

~ 210-
a

0*

0 0
o c

410—

0 o 0 0

190
0

I

20
I I

40 60
T(K)

I

80 100
370

0
I I

40 80
T(K)

I I

120

FIG. 8. 8D-T curves for silver. Experimental data from Ref.
36. Other details given in caption of Fig. 7.

FIG. 10. 8D-T curves for nickel. Experimental data are
Ref. 51. Other details given in caption of Fig. 7.
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330 — Pd
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ocf0.04

CV

290—
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-0.4

40 80
T(K)

I I

I 20 I60

N
0+
0-

—0.8

FIG. 11. 8D-T curves for palladium. Experimental data
below 80 K are from Ref. 52 and data above that are from Ref.
53. Other details given in caption of Fig. 7.
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I I

400
T(K)

I I

600 800

E. Palladium

The phonons in palladium were measured by Miller and
Brockhouse. ' They have provided such measurements at
four different temperatures but for the present study we
utilized the room-temperature data. A study of Fig. 5

shows that the theoretical phonon dispersion curves have
almost reproduced the experimental curves in almost all
the symmetry directions and at low and middle q values.
There are slight differences between the calculated and ex-
perimental phonon in [qqq]T and [qq0]L but in no case,
however, is the theoretical phonon frequency found to be
more than 5% higher or lower than the experimental one.
Figure 11 shows that the theoretical 8D Tcurve of pa-lla-

dium gives a fair description of the experimental curve.
While the theoretical curve predicts almost a constant
value of 8D at higher temperatures, experimental 8D still
rises further. The experimental value of C, for palladium
was taken from the work of Pickard and Simon below

I IO

80 K and that of Clusius and Schachinger above 80 K.
The observed values of lattice heat capacities were taken
after subtracting the electronic heat-capacity part; for this
purpose the coefficient y was taken to be
13.0 Jmol ' deg . For palladium we have not calculat-
ed the theoretical results for Y, (u ), and 8M since there
are no experimental results available.

O. I 6

IOO

C40+
0.08 ~

V'

FIG. 13. Temperature variation of y, 8M, and (u') for
copper. Solid lines show the present result. Experimental
points: solid circles from Ref. 32, open circles from Ref. 31, and
triangles from Ref. 33.

~ 90—
O

Qi

0
ooo

0

—0.8

'~ -I.6

70
0

I

30 60
T(K)

I

90 I 20

FIG. 12. 8D-T curves for lead. Experimental data for C&
below 15 K are from Ref. 57 and data above that are from Ref.
58. Other details given in caption of Fig. 7.

—24—
I

0
l I I

400 800 I 200

FIG. 14. Temperature variation of y, 8M, and (u ) for
silver. Solid lines are for the present result. Experimental
points: open circles from Ref. 38, closed squares from Ref. 39,
crosses from Ref. 40, and triangles from Ref. 41.
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FIG. 15. Temperature variation of y, 8M, and (u ) for gold.
Solid lines show the present result. Experimental points (open
circles) are from Ref. 31.

FIG. 16. Temperature variation of y, SM, and (u ) for nick-
el. Solid lines show the present calculations. Experimental
points: open circles are from Ref. 41 and triangles from Ref. 50.

It is evident from Fig. 6 that theoretical calculations
reproduce experimental data reasonably well along all the
principal symmetry directions. The experimental disper-
sion curves, obtained by Brockhouse et al. , exhibit
Kohn anomalies which are not reproduced by the theoreti-
cal curves. Except in the region of Kohn anomalies,
where the departure between the two curves amounts to
13%, the maximum departure between the calculated and
experimental frequencies is not more than 10%. It is also
clear from Fig. 12 that the computed 8D-T curve is able
to predict the correct shape of the experimental curve.
The theoretiml curve lies approximately 5% below the ex-
perimental curves. The deviations of the calculated values
of 8D from the experimental ones increase with the in-
crease of temperature; at about 70 K, this amounts to
about 8%. While the theoretical curve attains saturation
above 90 K, the experimental curve shows a trend to rise
up further. This kind of result is a bit peculiar and would
probably be due to anharmonic effects, strong electron-
phonon interactions, or spin-orbit coupling in lead. The
experimental values of C„below 15 K were taken from the
work of Van der Hoeven and Keesom, and that above 15
K from the work of Meads et a/. We have not carried
out the calculations of Y, 8M, and (u ) for lead as no ex-
perimental data are available for comparison purposes.

V. DISCUSSION AND CQNCI. USION

We have studied the lattice vibrations and other thermal
properties of six fcc metals by means of a simple scheme
in which the interionic interactions of the metal ions are
determined by the Morse potential, and the electron-ion
interactions are determined by a screened Coulomb in-
teraction. The ion-ion interaction (Morse potential) is a
short-range interaction whereas the electron-ion interac-

tion is long ranged. There are only four parameters in our
model, yet the model gives an excellent agreement between
the calculated and the experimental results for phonon
dispersion relations, as well as the thermal properties of
all the metals studied. The success of a lattice-dynamical
model is judged by its ability to reproduce the experimen-
tal phonon dispersion relations. In that sense, the present
model is a good one. The calculation of the thermal prop-
erties are the statistiml properties which require a
knowledge of a great many phonons in nonsymmetry
directions. Thus agreement with these properties tests the
validity of our model for the reproduction of phonons in
the nonsymmetry directions. We are aware that very few
measurements are available for phonon energies in the
nonsymmetry directions, and until the time when such
measurements are available, we can only compare our
theoretical results with statistiml properties.

We investigated the application of the Morse function
in the lattice-dynamical studies of metals. We have
adopted a new method here to derive D, a, and ro by con-
sidering the influence of conduction electrons. To the best
of our knowledge, this is the first time such a study has
been carried out. An interesting feature was observed,
namely that the phonon dispersion relations were almost
the same whether the interionic interactions were con-
sidered to the second-nearest neighbor or to twelfth-
nearest neighbor. However, we found a marked difference
between the first- and the second-nearest-neighbor interac-
tions. This study is consistent with some of the earlier
studies on lattice dynamics of fcc metals by Shukla and
Closs, Krebs, and Bhatia. While these authors utilize
only the first and second derivatives of the interionic in-
teractions as parameters (irrespective of the form of the
interionic potential), we know that our interionic interac-
tions are given by means of a Morse function.

Although the Morse function without electronic in-
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teractions has been successfully applied to the study of
numerous "static" lattice properties, including large-strain
crystal deformations (see, e.g. , the review article cited in
Ref. 26) and crystal anharmonicity, ' evidently it is im-
portant to include the electron gas in the description of
lattice dynamics. To illustrate this importance, we have
also computed phonon dispcrsioIl Iclations along thc prin-
cipal symmetry directions using the parameters D, a, and
ro determined by Milstein ' and Girifalco and Weizer. '

%C find that these parameters do not give a good descrip-
tion of tllc computed plloiiolls, cspcclally 111 tllc hlgh-

frequency region (see Figs. 1—6). Furthermore, a large
departure is observed in the longitudinal frequencies along
[q00] and [qq0] directions.

Recently, there has been great theoretical interest to
guess a form of an interatomic potential which reproduces
the experimental phonons. Some important work in this
field has been done by, for example, Schneider and Stoll,
Moriarty, ' Dagens et al. , Brosens et ttl. , Van Heught-
en, and Esterling and Swaroop. It is interesting to note
that some of the workers utilize a least-squares fit by us-

ing as many as 5—10 parameters to obtain the form of
their potential. However, this approach has limited physi-
cal justification. The model that we present in this paper
is based on the Morse function, which has been successful-
ly used in the study of a wide variety of properties in
solid-state physics. The present study further enhances
the field of study as well as the capabilities of the Morse
function to successfully explain the lattice vibrations and

the related properties in cubic metals, fcc being the specif-
ic case. There is, however, a limitation on the application
of this approach. As shown by Milstcin, the ratio

[PG (2aa ) —QG(aa )]/[PH (2aa) —QH (aa) ],
and hence O'll/O'I2 [see Eqs. (34) and (35)], does not
exceed approximately 1.36 for bcc crystals and is approxi-
mately bounded by 1.14& C'll/C'I2 &2.0 for fcc crystals.
This is a property of the Morse function and is indepen-
dent of the particular form of electron-gas interaction.
Thus the present method could not bc applied to metals
for which

Cll /C12 (Cll C12+C44)/C44

is outside of the indicated ranges (i.e., the experimental
values of clastic moduh Cg~ dctcITMnc whcthcl thc pfcscnt
method can be employed). In practice, we could study
only six of the dozen or so fcc metals for which the exper-
imental Cz were available. In the case of bcc metals, only
potassium fulfills this requirement. We are presently cal-
culating the vibrational properties of potassium by the
scheme described in this paper. These results will be re-
phrtcd clscwherc.
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