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Quantized Hall effect in a hexagonal periodic potential
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The Hall conductivity of a two-dimensional electron gas in a strong magnetic field and a hexago-
nal periodic potential is discussed. The hexagonal potential is treated by separating it into a term

which depends on only one coordinate and a second term, treated perturbatively, which depends on
both coordinates. Emphasis is placed on the origin of the differences between the hexagonal poten-
tial case and the square-lattice potential case discussed earlier by Thouless et al. [Phys. Rev. Lett.
49, 405 (1982)]. The calculations are based on a simple physical criterion for determining the Hall

conductivity which has been justified starting from the Kubo formula.

I. INTRODUCTION

Much recent interest in the Hall conductance of a two-
dimensional electron gas 0& has been sparked by the ex-
perimental observation that it can be quantized in units of
e /h. ' It is now generally believed that this quantization
must occur whenever the Fermi level eF lies in a gap be-
tween bulk states of the system or in a region of localized
electronic states (e.g. , Refs. 2 —6). The case of electrons
in a high magnetic field and a weak periodic potential is
particularly interesting because of its unusual electronic
structure. In this case each Landau level is split into p
nonoverlapping subbands where p/q is the number of flux
quanta piercing one unit cell of the periodic potential, i.e.,

H~o

4p q'
where Ao is the unit cell area and 4o ——hc/e is the flux
quantum. ' When the Fermi level lies in the gap between
tth and (t + 1)st subband, the Hall conductivity

e CTg

&a=

where 0., is an integer. Thouless et al. "have given an ex-
pression for o, for the case of a square-lattice potential.
More recently, Yoshioka' has determined cr, numerically
for several values of p/q for a hexagonal periodic poten-
tial. In this article we expand on the analytic treatment
given by Thouless et al., and generalize it to the case of a
hexagonal potential. Emphasis is placed on explaining the
physical origin of the substantial differences which exist
between the two cases.

In the next section we rederive the expression for the
Hall conductivity in terms of the wave-vector dependence
of the eigenfunctions originally proposed in Ref. 11.
From this formula, we derive a criterion for determining

crt, which is made the basis of subsequent work. In Sec.
III we consider a potential with one terxn, proportional to
the parameter Vl, dependent on only one coordinate and a
second term, proportional to the parameter V2, dependent

on both coordinates. This potential is such that it equals
the hexagonal lattice potential when V2

——Vi, but, follow-
ing Thouless et a/. ," we begin by considering the case

/
Vz

f
(&

/
Vi

f

. Unlike the case of the square-lattice po-
tential, in the hexagonal case the Hall conductivities in
some gaps change as a function of

I
V2

I
/

I
Vi

I

These
changes in o, are always associated with the closing of a
gap between subbands (band crossings). In Sec. IV we
show that most of these band crossings can be understood
by means of simple arguments. In so doing we provide a
partial explanation for the absence of any such crossings
in the square-lattice case. Finally in Sec. V we summarize
our findings and present some concluding remarks.

II. HALL CONDUCTIVITY AND WAVE-VECTOR
DEPENDENCE OF THE EIGENFUNCTIONS

A=(0, Hx —5A, 0), (4)

where 6A is arbitrary, the eigenstates of the Hamiltonian
in the absence of the periodic potential are given by

Our aim in this section is to justify a simple criterion
for selecting a value of cr, which will be made the basis of
subsequent work. For an finite system with quasi-
periodic-boundary conditions the most fundamental avail-
able starting point is the Kubo formula. For noninteract-
ing electrons with the Fermi energy in a gap, this may be
expressed quite generally in the form

~H =, y, lm((tz
i V.

~
P & & P ~ Vy

~

tz & ), (3)
2e'A' 8'8p
L ti (ea —ep)

where V„and V„are the components of the velocity
operator, I ea,

~

a & I denotes the eigenvalues and eigenfunc-
tions of the Hamiltonian, and L is the area within which
the periodic boundary conditions are applied. In Eq. (3),

8 —=8(e~ —e ), 8) =8(e eF) . —
If we choose a Landau gauge so that the vector poten-

tial A is given by
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(r
~
k„,n ) = exp(ik»y)P„(x a—L k» —5A/H), (Sa)»'

Ek „=fico,(n+ —,), (Sb)

where co, =eH—/mc, ar @——p/2rrH, and P„(x) is the nth
eigenfunction of the one-dimensional harmonic oscillator.
It is sometimes more useful to label these states by the x
coordinates about which they are centered, X
—:at k»+53/H. The allowed values of X are fixed by re-
quiring k»L to be a multiple of 2m. . For a general two-
dimensional periodic potential it is always possible to
choose the coordinate axes so that one of the primitive
reciprocal-lattice vectors lies along the x axis, i.e.,

G[=(Qp 0»

62=(Q[ Q2)

Then the potential can be expanded,

V(xy) =g V„exp[i (ngp+mg[)x +mg~] . (7)
n, m

If we now restrict our attention to the lowest Landau
level (n =0) and take fico, /2 as the zero of energy, then
the matrix elements of the Hamiltonian are

(X' [H
i
X)=y V„expI ——,

'
[(ngp+mgi ) +m Q2]ac I

n, m

X exp[ —,
' i (nQp+ mgi )(X+X')]

X5(X'—X —maLQ2) .

These functions obey k-independent boundary conditions
[u (x,y+2m. /Q2)=u (x,y) and u (x+2rrjq/Qpp, y)
=exp(ijQ2y) u ~(x,y) ] and are eigenfunctions of a k-
dependent effective Hamiltonian,

1
H, rr( k ) = i—A +A'k„

2m
(

Bx

2

i' —+ fik—
c)y

+ V(x,y) .

BHerf
X uP k ga k

(13)
To proceed further, we follow Ref. 11 in replacing the
derivatives on the Hamiltonian by derivatives on the
eigenfunctions. Since the eigenvalue equation determines
these functions only to within a position-independent
phase factor there is a great deal of freedom in choosing
them. For the moment, we require only that they be ana-

lytic functions of k. Then, noting that

(12)
(We have set 5A to zero. ) In terms of the u eigenfunc-

tions,

8~ ( k )8ti ( k )
C»H = dk

~h p[e (k) e (k)]

OH' f
XIm ua k upk

Noting that at Q2gp/27I=Pp/HAp'=q/p, restricting k»
to the interval [0, Q2], assuming that Q[/Qp=s/t, and
defining

X, ,(k, ):a~k, +i — +I2irq 2rtj q 5A

pr! pP

(«, (r( ««(kl)=[«, (k) —««(k)[
Bk

c)u (k)
X —

ut[( k ), cc&P
Bk

it follows that (X„ i(k„') ~H ~X„i(k»)) is zero unless

k~ =k~, and that this matrix element is unchanged when I
and l' are simultaneously shifted. [In Eq. (9), j equals pt
divided by the largest common factor of t and q.] This
periodicity motivates the introduction of another wave
vector, making the unitary transformation to a basis set

~

k„,k„i ) = gexp[ik X;,i(k»)]
~
Xi, i(k») & (10)

1

!

we have

&u (k) Bu~(k)
[Idk 8 (k)Im

~h Bk„()k

QB, (m(«, (k)
) dk,

a

(1S)

where S =LgpP/(2rrjq) and k„E[0, QpP/J'q]. Then both
k and kz are good quantum numbers, and all eigenfunc-
tions and eigenvalues required for evaluating the Kubo
formula [Eq. (3)] may be determined by diagonalizing a
small matrix. '

In discussing o.H, it is more convenient to deal with the
auxiliary functions u~(k), related to the eigenfunction

rtj (k) by

u ( k ) = exp( i k r )Q ( k —) .

d8 (k„)
(17)

where u~(k„, k» =Q2) =exp[ i8 (k„)]u (k„—, k» =0).
Thus in the intra-Landau-level gaps, o.~ is an integral

where the last integral is around the perimeter of our rec-
tangular Brillouin zone. We can always choose one com-

ponent of
~

Bu /c)k), for example,
~

c)u (k)/c)k»), to be
orthogonal to

~

u (k ) ). Wtih this choice it follows that



multiple of e2/h. In what follows, we discuss how that
integer is determined.

We define

exp( —ik r)(r Ik„,k», i }=—(I
I
u;(k)} .

If all terms in the potential [Eq. (7)] with m&0 are set to
zero and we stay within the Hilbert space of the lowest

Landau level,
I
u;(k) } is an eigenfunction of H, ff( k) ~ At

some values of k„, the eigenvalues will cross, but as the
m+0 terms in the potential are turned on, anticrossings
centered about these k» values occur and open up the
intra-Landau-level gaps. For simplicity we shaH assume
1n th1s palagfaph that J =p, so that Rt a given ky Rnd a
given energy only one crossing occurs. ' We consider the
evolution of the wave function as a function of k» near k»
the value where bands i and i' cross when the m&0 terms
in the potential are turned off. For the sake of definite-
ness we assume that i' & i, and define

c;-(k)=

c;-(k)=

V

I
V

I
+(E e. )2] ~2

(E+ —e;)

I
V

I
2+(E e )2]1/2

{20b)

{20c)

E =—,'(e;+e;)+[(e;—e;) +
I
vI2]'~,

V= V (k )exp( ik—„X )+ V (k„)exp( ik—„X ) . (20C)

However, to use Eq. (17) we must look at states

I
u+(k) }=exp[ i8—+(k»)] I

u+(k) }, (21)

such that (u' (k)
I

Bu' /Bk» }=0. Since, within the
lowest Landau level,

(u; (k)
I
Bu;(k)/Bk» }=ai k„5;;,

(x; i(k») IH IX;i(k»)—= v (k»),

(Xg I i(k») IH IX;f(k»)}—:V+{k») .

(18a)

(18b)
d8+(k» )

=aL, k„+
I
c;-+(k) I' arg(V) . (22)

As discussed in more detail in Sec. IV, other indirect
couplings between i and i' can be treated as effective con-
tributions to V+ ( k» ) and V (k» ). Near k» we need only
consider the 2 && 2 Hamiltonian matrix

e;(k» ) V
H(k)= ~ (k

where X+ ——X;I+1—X;I, X =X;I—X; ~, and- V is de-
f1ned below. The two eigenstates may be chosen to be

I
u+(k) }=c;+-(k)

I
u;(k) }+c;-(k)

I u; (k) },

To proceed further, we assume for the sake of definiteness
that e;(k»)&e;(k») for k»&k» with the inequality re-
versed for k»&k». Then as k» passes from k»" &k»
to k,"'&ky*,

I
E (k' ') —e;

I
«

I
V(k„' ') I,

IE (k»"' —e;
I
»

I
V(k»") I,

and
I

u' (k»)} evolves from

Iu;(k'")} toe '~Iu;(k„' ')},

k(2)

y= —arg(V(k'2'))+ j „, I
c; (k)

I

2 arg(V)+a~2k„(k„'2' —k"')

k(2)=.,'k„{k,"' k,"') —f,'„—d„kar(gV) „-I.,-(k) I'.L x p p k(~)
»

Thc first tcIII1 ill Eq. (23), whcil sllbstltlltcd illto Eq. (17),
yields the contribution to the classical Hall current, which
is e /hp for each of the p subbands of the Landau level.
The second term in Eq. (23) gives, as a contribution to crff,

Qo~eJ dk„arg( V(k» ))
2mh

&oX+« I
v+«»*)

I
&

I
V-«»')

I

.Qox —/v' I
v—(k ) I &

I v+ (k» )
I

~

In order to obtain the left-hand side of Eq. (24) we have
assumed that

I V+(k»)/V (k») I
changes slowly in the

anticrossing region near k»*. Actually, it is clear that for
the final result all that is required is that
(

I V+ (k» )/V (k») I

—1}not cross zero too near to k„'.
Equation (24) is the basic result which we shall employ

in the subsequent sections, and it is useful to assign it a

I

physical interpretation. When, as a function of k„,

(X; f(k») I
H IX;f(k»)}

CIosses

(X;)+i(k») I
H IX~ I+1(k») },

(x, ,(k, ) IH Ix, ,(k, )} .

The two possible phase shifts in Eq. (24) correspond to
translations in position of the wave function of X+ when

I v+I& I
V-

I
and X- when

I
v-

I
&

I v+ I
~ » the

process of the anticrossing the electrons must, in effect,
hop from Ixi l } to IX; 1 } for some value of I'. The
preceding analysis establishes the physically reasonable
statement that the value of I' selected is the one to which
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I X; t ) is most strongly coupled near the crossing point. '

Using this notion, we can dispense with the Kubo formula
and use very simple considerations to attempt evaluation
of the Hall conductivity in the intra-Landau-level gaps for
any periodic potential.

III. ANISOTROPIC POTENTIAL
ON A HEXAGONAL LATTICE

For a hexagonal lattice, when only the first shell of
reciprocal-lattice vectors is included, the periodic potential
may be written as

V(x,y)= Vicos(QOX)+ V& cos (x+~3y )
0

2

+cos (x —i/3y )
0

2

Qo is related to the crystal lattice constant by
Qo =4m. /(v 3a). (For a hexagonal crystal V2 ——V„but in
this section we consider the case

I
Vz/Vi

I
«1.) The di-

agonal matrix eleinents of the Hamiltonian in the lowest
Landau level are

for some integer n. The values of X at which this is satis-
fied are given, modulo 2m. /Qo, by

QOX= ——,k=1, . . . , 2p .mk
(30)

I; —s,q
(31)

(This holds independent of q; recall that q and p have no
coinmon factors. ) At each of these values of X an an-
ticrossing is created in the energy bands as a function of X
when V2 is "turned-out. " As is illustrated schematically
in Fig. 1(a) for the case p/q =3 and in Fig. 1(b) for the
case p/q = —,', the states at IX) and IX —s5X) exchange
places as 5A changes so that Xmoves through one of these
values. (Actually, these statements are somewhat simplis-
tic and are to be understood in the sense discussed in Sec.
II.) We are now in a position to determine the integer s.

Consider X, = (++at/p)/Qo. This value of X is associ-
ated with the top of the tth subband of the Landau level
for V»0 and the bottom of the (p-t)th subband for
Vi &0, (For example, see Figs. 1.) All the following dis-
cussions will take V& ~0; the results for the hall conduc-
tivity carried by the Landau-level subbands are identical
in the two cases except that the subbands appear in the
opposite order in energy. It follows from Eq. (29) that

(X
I
H

I
X)= V, exp( —Qoa /4)cos(Q X.) —=e (X), (26)

and the off-diagonal matrix elements are

(X+5X
I
H

I
X)= V, exp( —QoaL /4)cos[go(2X+5X)/4],

QOX Sg=Pl—

where 5X=v 3goaL/2=2mq/(pgo). (Here p/q is the
number of flux quanta per unit cell of the hexagonal lat-
tice; (X'IH IX) =0, unless IX' —XI =5X.)

oH may be evaluated either by considering an infinite
system and using the Kubo formula as discussed in Sec.
II, or by examining the changes in the eigenvalues spec-
truin of a finite system with changing magnetic field H or
equivalently with changes in the undetermined constant
6A in the vector potential. Because we consider it more
physically appealing, we give an argument of the latter
type. As discussed below, however, this argument can ul-

timately be justified only by Eq. (24), derived from the
Kubo formula in the preceding section.

A given state
I
X) is coupled, directly or indirectly to

I
X—s5X) for all integral values of s. As the constant 5A

is changed all these values of X shift rigidly. For
I

Vz I
«

I
Vi

I
we may ta«

I
» to be an eigensta« of H

unless
I
eo(X —s5X) —eo(X)

I
goes to zero for some value

of s. This can only occur for certain discrete values of
I
X). To see this, consider the equation

cos(goX) =cos[go(X —s5X)]=cos(QOX —2msq/p) .

(28)

This equation can be solved for some value of X only if

where o, is an integer. (As we see later, oH ——e o, /h
when the Fermi level lies in the gap above the tth subband
of the Landau level. ) Equation (31) determines s, only to
within a multiple of p, i.e., when

I
X, ) is coupled to the

"degenerate" state
I
X,—s,5X) it is also coupled to

IX, —(s, +kp)5X) for any integer k. The effective cou-
pling between IX, ) and IX, —s,5X) occurs first in

I
s, th order of perturbation theory. (These effective cou-

plings are discussed in more detail in the next section. )

We would therefore be tempted to conclude that the s,
corresponding to maximum couupling strength is the one
with minimum magnitude, consistent with the require-
ment that o, in Eq. (31) be an integer, i.e.,

I
s,

I
&p/2.

(This is just the prescription found by Thouless et al." for

(o) P=5, q =I

p=s, q=z

FICx. 1. Schematic illustration of the adiabatic evolution of
the wave function as y=goX (or equivalently k» or the y com-

ponent of the vector potential) is changed. The arrow directions
correspond to increasing y.
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the square-lattice case. ) In our case, however, the matrix
elements of H connecting

~

X, ) with
~
X, —2rrs, q/pgo)

contain the factor

cos —+ [t —q(2k —sgn(s, ) ) ]
k =sgn(s&)

(32)

This product is always nonzero when t +q is odd, and in
that case we choose s, by the requirement that

~
s,

~
&p/2

as in the square-lattice case. However when t +q is even,
the product is zero unless

%+1—p &s, &P', (33a)

where P' is the smallest non-negative integer given by

+e-t —q p
2g . g

for some integer N. There is a unique integer s, in the in-
terval defined by Eq. (33a) which yields an integral value
for o,

In Table I we list values of o, for a range of values of p,
q, and t, valid for

~
V2/V~

~

&&1. Values are listed only
for q&p/2. It is readily demonstrated from the above
prescription that when q is increased by pp, p q+p

sp p p q
which tmpltes that of p q+p 1 op f p q

+sp p p q Similarly when q ~P —q, sp p p q sp t p q

V(x,y) = V~ cos(Qox)+ V2cos(goy),

Eq. (27) becomes

(X+5X
~

H
~

X ) = V2/2 .

(34)

(35)

The consequences of this difference may be divided into
three categories.

0'tpp q: 1 sp pp q
0'p tp q Thus for a given t and p

the quantum numbers at all values of q can be generated
from those listed in Table I. (The expression given above
Just increase o.

pp q by one when t increases by p, corre-
sponding to going from one Landau level to the next.
This is not always correct for the hexagonal lattice, how-
ever, and the results given are for the lowest Landau level.
Results for higher Landau levels are simply related but we
do not discuss that relationship here. ) All listings follow
from the prescriptions given above except those for p even,
t =p/2, q =1, and t even. In that case s, =+p/2 both
yield integral values of t, and we must go back to Eq. (32)
in order to decide which value to select. It is easily veri-
fied that in all cases the magnitude of the product in Eq.
(32) is larger for s, = —p/2 and thus rr, =l in all cases.
Also listed in Eq. (1) are the Hall conductivity values for
the square-lattice potential. The essential difference be-
tween the two potentials is that for

TABLE I. Hall conductivity quantum numbers for a hexagonal crystal potential with
~

V2/V~
~

&& l.
Ba V 3/(2@0) =p/q is the number of the flux quanta per unit cell, and t is the number of subbands of
the Landau level occupied below the Fermi level. Thus e (o., —o., 1)/h is the contribution to OH from
the tth subband. All these results are for V»0. For V& g0, the contributions from the various sub-

bands are unchanged but they appear in opposite order in energy. Values are given for both square (S)
and hexagonal (0) lattices. In cases where no entry is made there is no gap and the Hall conductivity is
not quantized. Cases in which the values are different are underlined. Cases in which band crossings
occur are indicated by asterisks.

q

I

I

I
I
1

I
I
1

I
I
2
2
2
2
1

I
1

I
I

I
0 I
I
I I

I

I 1

0 1

0 0g

I 1

1 I
1 I
0 2
I I
0 0
0 1

0 0Q

1

1 1

I I

0']

p t S
2 1

3 1

3 2
4 1

4 2
4 3
5 I
5 2
5 3
5 4
5 1

5 2
5 3
5 4
6 1

6 2
6 3
6 4
6 5

q p t S
I 7 I 0
1 7 2 0
1 7 3 Q

I 7
1 7 5 1

I 7 6 1

2 7 1 1

2 7 2 0
2 7 3 1

2 7 4 0
2 7 5 1

2 7 6 Q

3 7 1 1

3 7 2 —1

7 3 0
3 7 4 1

3 7 5

3 7 6 0
8 I 0

I
0
1

I

1

I
I

2
1

0
1

2
I

3
I

—1

0

p
1 8

1 8

1 8

1 8

1 8

1 8
3 8
3 8

3 8

3 8

3 8

3 8

3 8

1 9
1 9
1 9
I 9
1 9
1 9

2 0 0
3 0 1

4 I
5 I
6 1

7 I 1

I —1

2 1 ].

3 Q 3
4 —I —I
5 1 I
6 0 0
7 2 —I
I 0
2 0 0
3 0 I
4 0 0*
5 1 1

6
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where N(eF ) is the number of states below the Fermi lev-

el, with a calculation of the magnetic field dependence of
the electronic structure. ' ' Such a calculation is available
for V2 ——V1 for a square-lattice potential and leads to the
same results for crH as those obtained in Ref. 11 (and here)

While this does not prove that
bands cannot cross and "cross back" between the two lim-

its, no examples of such behavior have been discovered
and, as see from the arguments in the next section, none
are likely. On the other hand, for the hexagonal lattice,
comparison via Eq. (36) with the electronic structure cal-
culations of Claro and Wannier shows several differences
between the Vi

~
&&

~
V1

~

and Vz ——Vi situations. In
the next section we show that this difference may also be
directly traced to the appearance of the cosine factor in

Eq. (27).
In closing this section we show that OH (e /h )cr,——with

o., defined in Eq. (31). Note that Eq. (31) implies that the
Hall conductivity carried by the tth subband of the Lan-
dau level is (e /h)m„where

~f ~t 1=1/P (st ~t 1)q/P, —1»-
01——1/P —s1q/P, t =1 . (37)m, =

The validity of this can be established from the Kubo for-
mula by noting that in the tth band there are q band cross-
ings near the band maximum, each of which, according to
Eq. (24), gives a contribution to oiL of —(e /h)(2ms, q/p).

(i) For q = 1, p even, and t =p/2 the effective couplings
for s=+p/2 are identical in the square-lattice potential.
As a result o., is indeterminate and the corresponding gap
within the Landau level closes. On the other hand, for the
hexagonal potential the effective coupling for s =+p/2 in
this case is always smaller (it is zero for p/2 odd) than
that for s = —p/2, making 0 =1 for all values of p. This
is the reason for the appearance of a gap at half-filling in
the energy spectrum of the charge-density-wave state of
electrons in a partially occupied Landau level in the hex-
agonal case. The gap remains closed in the square case as
has been emphasized by Kuramoto. ' '

(ii) In the square-lattice potential all other values of 0,
are fixed by the requirement that

~

s,
~

&p/2. The value
of the Hall conductivity integer for the same p and q in
the hexagonal potential o., is identical unless o.

&
is even

and s, is odd. In this case o., =o., +q if 0., &0 and
o., =cr, —q if o, &0. (These statements can readily be
proven from the prescription given above. ) Physically
these changes occur because the strongest effective cou-
pling for the square-lattice potential, i.e., that appearing in
the lowest order of perturbation theory, vanishes [a zero
occurs in one of the cosine factors in Eq. (32)] for the cor-
responding hexagonal lattice potential.

(iii) All the discussion in this section has been for the
case

~

Vi/V1
~

&&1. For the square-lattice potential no

gaps close and no values of o., change as a function of
Vz/V1. This statement is not a trivial one, but is justified
by the following observations. The Hall conductivity may
also be determined by combining Streda's formula, ' ' '

e'eo dN(eF)
CT (36)

hl. 2 B~

AN, = 2+pm,

Qo

2m.al2

1.
(39)

e eo2 2

h12 ~ h

as required.

(40)

IV. BAND CROSSINGS

We consider the set of states [ ~X —s5X) I, where s
ranges over all integers. In the hexagonal lattice potential
these states are coupled together by the matrix elements

(X—(k + 1)5X
~

H
~

X—k 5X)

= Vk ~1k = V2cos( —Qo L /4)2 2

&&cos[Qp(X —(k + & )5X)/2] . (41)

We want to consider the behavior of the Greenian

6 (e) = (e H)— —

where X is near X, and e is near eo(X, )—:eo. We define
eo(X, k5X):ek Sin—ce 5X=—21rq. /(PQO), Ek repeats as a
function of k with period p. From Sec. III, however, there
is also a degeneracy within this period p, eo ——e, =e,
where s+ (s ) is the smallest inagnitude positive (nega-
tive) integer which gives an integral value for 0 in Eq.
(31). (Recall that s+ —s =p.)

If we write

tk', k =~k', k~k ~

Vk', k =~k', k+1 Vk+ 1,k +~k', k —1Vk, k —1 ~

(43a)

(43b)

then the matrix V is proportional to Vz. It is straightfor-

At each gap, the development leading to Eq. (24) shows
that the upper band suffers the opposite phase shift.
[(e /h(2~s, iq/p) for the tth subband]. The first term
in Eq. (37) represents the classical Hall conductivity corre-
sponding to the phase shift suffered in the absence of band
crossing. Another way of obtaining the same result,
which we look at as representing a physical interpretation
of Eq. (24), appeals to Eq. (36). If we take the origin of
coordinates at one edge (in x) of the system, the change in
vector potential Az at the right edge of the system when H
changes by ~ is L~~. This corresponds to a shift of

L~—/H in the center in X of a basis-set orbital with a
given value of kz. Consider ~ such that

L~ 2m
(38)

H p

(Note that as L~ co this becomes an infinitesimal change
in magnetic field. ) When the jumps corresponding to
band crossings are taken into account a state in the
tth subband of the Landau level shifts as

~

X)~ ~X—2m.m, /Qo) under this change in magnetic field.
Thus the change in the number of states in the tth sub-

band is
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One subsum of the terms in this expansion produces con-
tributions to G(e) identical to those which would be pro-
duced by the effective interaction V+ between

f
X, ) and

fX, —s, 5X). V+ is defined to be (e—eo)(e —e, ) times

the sum of all the contributions to Go, (e) in which the

reciprocal of these factors appears only once, i.e.,

VI,OV2, i
'' Vs, ,. -i

V+ ——

(e,—e, )(e,—e&) . (eo —e, i)'+
2

X &+ + ~ 4 1

(~0—ei)(e'o —~2)

V.,-~.,-2 V2+ +0
(eo—e', i )(~o—~, 2) Vi

{45)

The terms contributing to this effective interaction corre-
spond to hopping from Xo to X, , taking an arbitrary

number of single steps but hitting on XD only at the start
I

ward to generate a perturbative expansion for G in terms
of Vas

G(e) =(eI —i) '+(el —r) ' V(e3. —r)

+(el —t)-'V(eI —r)-'V(eI —r)-'+

of the path and on X, only at the end. The effective in-

teraction for hopping in the opposite direction, V, is de-
fined similarly. Another subsum of terms in the expan-
sion of Eq. (44) produces terms identical to those which
would be produced by a shift in eo by 5'. 5eo is (e—eo)
tlnles tile contribution to Gou(E)froi'n paths beginning at
Xo and ending at Xo without ever crossing X, or X,
Thus(for fs+ f », fs

f
»)

2 2 4
V~2 V ~o V2

5eo —— ' + '

~
+0— (46)

eo —ei (eo—~ i)'

All matrix eleinents of the Greenian connecting Xo with
X, , X, , or Xo (and similar matrix elements with Xo,
X, , or X, translated by multiples of 2m/Qo) are includ-

ed in the terms discussed above. To determine whether
s =s+ or s we need only determine whether

f V+
f

&
f

V f. ' Including leading-order corrections we can
wite

V)s+ I

2 2
V I'

I
' I+c + (47)

where from Eq. (45), a+ is given by the product of cosines
in Eq. (32). The correction factor C~ comes partly from
the correction terms in Eq. {45) and partly from the effect
of the energy shifts in Eq. (46) on the leading term in Eq.
(45). Hence,

sgn(s+ )(s+ —2)
1

2 k =sgn(s)

Vk+) k

(&O —&k )(&0—&k+ i)

2 2
Vo~ Vo,+

Eo—6 ) Eo—6 k =sgn(s+ )

(48)

TABLE II. Band crossings predicted by Eqs. (49) with
f
V„/Vi

f
~ 1,

f
C+ V„/Vi)

f
&0.5, and

f
C (V«/Vi)

f
&0.5. V« is the value of Vz at which the crossing actually occurs; if no crossing

occurs V*„ is listed as NC. o., is the Hall conductivity in the gap for V2& V,*, and 0.,
'

is the value for
y yQ

V,, /Vi

1

1

3
1

1

3
1

3

5
1

3
4
4

1

3
1

4
4
7

5
6
7
9
9

10
10
11
11
11
11
13
13
13
13
13
14
14

15
15
15

2
2

4
3

2
4

5
8
6
2
3

11

6

6
5

13
4

0.2639
0.6563
0.1918
0.0282
0.6201
0.2171
0.5168
0.4300
0.1278
0.5203
0.4067
0.0028
0.7103
0.8053
0.0721
0.1084
0.0683
0.4474
0.1991
0.7324
0.0557
0.0180

0.2758
0.7220
0.1958
0.0282
0.6971
0.2220
0.5296
0.4526
0.1289
0.6025
0.3089
0.0028
0.7260
0.8296
0.0731
0.1092
0.0685
0.4616
0.2027
0.7659
0.0564
0.0180

0.2789
1.0000
0.1962
0.0282
0.7579
0.2225
0,5438
0.4590
0.1290
0.6187
0.3522
0.0028
0.7263

0,0732
0.1092
0.0685
0.4691
0.2040
0.8600
0.0565
0.0180

0(1)
0{1)

—1(2)
0(1)

—1(3)
0(1)

—1(2)
0(1)

—1(2)
—1(3)
3(—2)

0(1)
—1(2)
—(1)

—1{3)
—2(3)

0(1)
—1(2)

0(1)
—1(3)
—1(3)
—3(4)
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As mentioned in Sec. III, if t+q is even either a+ or
a is zero and the ratio

I
V+/V

I
cannot cross one as a

function of V2/Vi. For these cases no band crossings
should be expected as a function of V2/V„and the previ-
ous prescription for determining o, should remain correct.
On the other hand, for t+q odd, neither a+ nor a is
zero. In this case s =s

& [where s& (s & ) is the integer of C —C
V„=V'„1+

lesser (greater) magniutde between s+ and s ] when
V2 «Vi Howeve~ if

I
~

I
&

I a& I
th«e is a possibi»-

ty of a band crossing and associated conductivity change
as a function of Vi/Vi. By setting

I
V+ I

=
I

V
I

this
crossing should occur at Vz ——V„,where

V,',
'

(49a)
1

(a)

(49b)

-0.6 —0.4

log, (V /V )

0.0

-4—

—1.0
log (V jV, )

-O. Z 0.0

FIG. 2. (a) Band gaps as a function of V2/VI for the hexago-
nal lattice potential. E~ is the gap divided by exp( —Qoiii, /4).
(Solid line t =1, q/p = 3; short-dashed line t =1, q/p = 4,
short-dashed —long-dashed curve t =3, q /p = ~; medium-

dashed line t =2, q/p= —, ; long-dashed line t =2, q/p = 4).
Note that the gaps approximately follow' power-law behavior as
a function of ( V2/V~) with the exponent in agreement with the
value given for s, in Table I. (b) This figure illustrates some
cases in which the gaps close as a function of Vi/Vi. [Some
curves show a finite minimum value for logio( Vi/Vi ) which re-
Aects only the finite set of ( V2/V~) values used to generate the
curves for this illustration. ] [Solid lines t =4, q/p = », for

which log~Q( V„/VI) =—0.338 and t =8, q/p =—„ for which

log lQ( V„/Vl )=—0.555; short-dashed —long-dashed cur've t =2,
q/p = 6, for whIch log~Q( V«/V» )=0; medium dashed line t =2,
q/p= —,', for which logjQ(Vqy/V/) — 0 707 long

t =5, q/p= —„,for which log~Q(V,*,/V~)= —0.209; dotted line

t =2, q/p = —,~, for which logio(V,",/Vi)= —0. 118.] Several

curves show' additional band crossings which occul for'

V2/V) & l.

The problem with applying this analysis is that it is dif-
ficult to know a priori whether or not the perturbative
treatment is still valid at the value of V2 at which the
crossing is predicted to occur. We have been unable to
devise a criterion which both predicts aH crossings which
occur and which predicts no crossings which do not occur.
Nevertheless, we find that the bulk of the crossings are
quite well described in the preceding analysis. For exam-

ple, we can fairly arbitrarily decide to accept all predicted
crossing values with

I
V„/Vi

I
&1,

I
C+(V„)/Vi)

«0.5, and IC (V'„/V, )'I &O.5. This leads to a predic-
tion of crossings for p & 15 at the values of q &p/2, listed
in Table II. In all, out of about 300 cases band crossings
are predicted to occur 22 times. When checked by an
explicit calculation of the energy gap as a function of
V2/Vi, 21 of these predicted crossings are found to occur,
usually at values of V2 very close to those predicted in Eq.
(49). A more restrictive criterion for the validity of the
perturbative analysis would eliminate incorrect predictions
of crossings, but would miss some of the crossings listed
in Table II. We do not believe that any crossings occur
for p &15 and

I
V„/Vi

I
&1, other than those listed in

Table II. In all the cases listed when V2 crosses V„, s,
changes from the minimum magmtude possible value to
the minimum magnitude among possible values of the op-
posite sign. As a result o, suddenly changes by q. Most
often the change is such that o, increases; this may be
traced to the fact that cos[Qo(X, +s5X)/2] is generally
larger in magnitude for positive values of s [see Eq. (27)].
For the square-lattice potential, this cosine factor does not
appear [see Eq. (35)] and we have checked that no cross-
ings are predicted by Eqs. (49), using the criteria of Table
II, at least up to p =50.

In Figs. 2(a) and 2(b), we have plotted some band gaps
as a function of V2/Vi. For the cases plotted in Fig. 2(a)
no crosses occur. One can easily verify that the gaps fol-
low the expected power-law behavior,

l&, l

E —lv) I-vi— (50)
1

over wide ranges of V2/V]. For the cases plotted in Pig.
2(b), band crossings occur. These curves still follow
power-law behavior for V2/V, «1, but deviate as the
band crossing approaches. SQIIlc curves show renewed
power-law behavior after the crossing, but with a new
power corresponding to the changed value of the quantum
nuIIlbcI 5& ln thc gap. Scvcral of thc curves also show ad-



ditional band crossings at
~

V2/Vi
~

&1, which are not
PledIcted bg the PertUrbRtlve RQRIpsIs.

We have derived, starting from the Kubo formula, a
very simple and physically transparent criterion for deter-
rnining the Hall conductivity in intra-jLRndRu-level IRps
for electrons in a strong magnetic field and a weak period-
ic potential. This criterion has been applied here to the
case of hexagonal periodic potential and has been shown
to provide a clear account of the physical origin of the
substantial differences between this case and that of the

sqURre-1Rttlce potentlR1. In contrRst to n'UIIleAORl ORjcU1R-

tions starting directly from the Kubo formula, ' the result
for cJH is almost apparent by inspection. The same cri-
terion can be used with equal simplicity for other periodic
potentials and also to study the dependence of crH in a gap
on magnetic field.
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