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Cluster generalization of the dynamical coherent-potential approximation:
Application to exciton-phonon interactions in molecular crystals
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A cluster generalization of Sumi s dynamical coherent-potential approximation (DCPA} for the
thermally averaged Green s function of interacting exciton-phonon systems is presented. Numerical
solutions are obtained for a simple model Hamiltonian at 0 K and compared to the single-site
DCPA and perturbative results. The Green s function is used to compute optical spectra, and it is
shown that the bandwidth renormalization imposed by the two-site DCPA has significant effects in
the intermediate-coupling regime.

I. INTRODUCTION

The dynaniical coherent-potential approximation
(DCPA) was introduced by Sumi' to study exciton-
phonon interactions in molecular crystals in a self-
consistent manner. He was able to calculate ground-state
energies, effective masses, and zero-temperature optical
spectra over the entire range of parameter (exciton band-
width 8, exciton-phonon coupling S) values for a simple
(polaron) model containing one vibration at each molecu-
lar site and nearest-neighbor exciton interactions; as in the
static CPA, the scattering of a single site embedded in
the effective medium is forced to vanish, leading to self-
consistent equations which have to be solved numerically.

Recently, it was pointed out that this single-site DCPA
(hereafter called the 1-DCPA), has, on physical grounds, a
serious defect; it fails to renormalize the exciton band-
width (because the self-energy is constrained to be diago-
nal). While for certain values of 8 and S (or for certain
properties of the systein) this may be a reasonable approx-
imation, there are others for which it will not be. For ex-

arnple, one would expect that a calculation of exciton
transport in the small-polaron limit (S»8) would be in
error by orders of magnitude if the effective nearest-

neighbor exchange interaction is not suitably reduced by
Franck-Condon overlaps.

A natural solution to the above problem, if self-
consistent (rather than perturbative) solutions are still

desired, is to utilize a cluster formulation of the CPA.
This approach was suggested in Ref. 5, where equations
for a two-site DCPA (2-DCPA) were developed. There
are difficulties implementing cluster CPA methods in-

volving nonanalyticities in the averaged Green's func-
tion and agreement with perturbation theory in various
asymptotic limits. ' Nevertheless, several static cluster
CPA equations have been solved and yield quite reason-
able results, in some cases despite nonanalytic behavior in
extreme regions of parameter space.

In this paper, a 2-DCPA is constructed which has the
correct behavior in the relevant perturbative limits

( 8/S~O, 8/S~ 00). The self-consistent equations are
solved by a matrix continued fraction technique, which al-

lows straightforward generalization to larger clusters and

more complex models (e.g., several molecules per unit
cell). Extensive numerical calculations have thus far re-
vealed no nonanalytic behavior of the Greeen's functions
(although care is required in iterative algorithms to obtain
the correct branch of the solution).

Results are presented here for the zero-temperature
properties of the simplified model studied in Ref. 1. The
ground-state energy and effective mass are studied sys-
tematically as functions of 8 and S, and comparisons are
made with the 1-DCPA and perturbation theory. Several
optical spectra are also displayed, which reveal significant
differences between the 1- and 2-DPCA in the intermedi-
ate coupling regime. A method for calculation of finite-
temperature Green's functions is outlined (numerical im-
plementation of which is currently in progress) which will
allow analysis of the transition from the self-trapped to
nearly free exciton regime as a function of temperature.
The formalism for application to two molecules per unit
cell is given in an appendix.

II. MODEL HAMILTONIAN AND 2-DCPA

We consider a simple model Hamiltonian' '" for a
molecular crystal with one molecule per unit cell and one
harmonic vibrational mode per molecule and restrict our
study to the case of intraband transitions for the exciton.
We include linear and quadratic exciton-phonon "on site"
interactions and consider only the diagonal (with respect
to phonon population) part of the latter.

In the site representation the Hamiltonain reads (A'= 1)

H =gE„A„A„+g J„~A„A +togb„b„
N ll, RN n

5+lN

+(toS)'~ QA„A„(b„+b„)+htogb„b„A„A„, (2.1)

where A„(A„}is the annihilation (creation) operator of an
exciton at site n (we consider only one-exciton states).
Similarly for phonons we define b„(b„}.For the crystal
we have e„=eo (site energy) for all n and we consider only
nearest-neighbor (NN) interactions, i.e., the exchange in-

tegral J„=J=const for n.,m NN and zero otherwise. S
is the energy gain due to localization; (toS)'~ and hto
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A =X '~z+A„exp(ik R„.) (2.2)

with R„ the nth site lattice vector and X the total number

of sites; A- annihilates an exciton with momentum k and
k

energy e(k) with

e(k) =eo+BQ(k),
(2.3)

represent the linear and quadratic exciton-phonon cou-
pling constants, respectively. ~ is the Einstein phonon
frequency corresponding to the totally symmetric in-
tramolecular vibration of each molecule. If Z is the num-

ber of NN, we define the half-bandwidth associated to the
the unperturbed exciton as 8 =Z J.

We can write (2.1) in the k representation by transform-
ing the site operators A„via the usual expression

both one- and two-site (diagonal) scattering. This variant
of the cluster CPA has not found to be subject to
nonanalyticities of the sort uncovered by Nickel and
Butler (see also Refs. 8 and 9), and it allows us to guaran-
tee the correct behavior of the 2-DCPA in both relevant
perturbative hmits (this is shown in Sec. III).

In a series of extensive numerical calculations, we have
not uncovered any anoinalous mathematical behavior (e.g.,
negative densities of states or exponentially growing wave
functions) and, hence have concluded that the approxima-
tion is weil behaved. A detailed investigation of the for-
mal properties of our method (which may be quite dif-
ferent from the static CPA, as the coherent potentials are
nonloca/ in energy) would require lengthy diagrammatic
analysis ' and will not be presented here.

The appropriate two-site scattering Hamiltonian H &2 in
the effective medium is

0( k ) =—g ex'p(i k R.„),
n+0

where the prime means summation over NN.
We decompose the Hamiltonian into an effective Ham-

iltonian H, ~~ and the remainder Hamiltonian
H'=H H, rr. In —the 2-DCPA the effective Hamiltonian
consists of the zeroth-order exciton and phonon Hamil-
tonians, with the former containing a renormalized
(energy-dependent) site energy XD (E) and bandwidth

Xz(E); thus

H,rr(E) =XD(E)QA„A„+Z 'X~(E) g'A„A

Hi2(E) =H,rr(E)+Hg(E)+H~

Hg(E)=[@0—XD(E)] g AtA„
n =1,2

+[&—XN(E)] g A„A

Hs= g A,A„[(&)' '(b, +b„)+&a){b„+b„)].

(2.6)

(2.7)

(2.8)

+gb„b„, (2.4)

where we have taken ~ as our encl'gy ilillt (co= 1).
The remainder of the Hamiltonian is

H =[E,—X,(E)]+A„'A„+Z-'[a—X (E)]g'A„A

The conventional CPA method is to make the T matrix,
associated witth Hi2(E), vanish (and, hence by transla-
tional invariance with every perturbation H,J, where ij are
NN).

We define the thermally averaged (retarded) exciton
Green's function matrix elements as

iG„~(t)=8(t)((exp(iHt)A„exp( iHt)A~ )),— (2.9)

+(S)'"yA tA. (b„+b„')+~~+A

tA„blab„.

(2.5)

An exact form for H, rr (which would, of course, include
effective interactions between all sites) leads to the vanish-

ing of the thermally averaged T matrix associated with
H'. In practice it is not possible to force the entire 1 ma-

trix to vanish. It was suggested in Ref. 6 that an
homomorphic partition of H' [Eq. (2.5)] be utilized to de-

fine a two-site scattering perturbation, thus guaranteeing
the analyticity of the resultant averaged Green's function.
However, we have found that this prescription leads to in-
correct results in perturbative limits (either as S~O or as
8 +0), a behavior an—alogous to that discovered by Van
der Rest et al. ' when the homomorphic CPA is applied to
static disorder.

We have therefore chosen to use a type of cluster CPA
previously employed by Antoniou and Economou, ' in
which the two-site T matrix vanishes. This T matrix con-
tains the diagonal (XD) and off-diagonal (Xz) self-

energies, where the former includes contributions from

where n, m are site indices, 8{t) is the unit step function
and (( )) represents the canonical average over the pho-
non population (at temperature P '). The Fourier
transform of G„(t) is

G„~(E)=I dt exp(iEt)G„~ (t) (2.10)

with the imaginary part of E a positive infinitesimal. For
a 2-DCPA only two componetns of G„(E)must be com-
puted, the n =m component and the n, m component with
n, m NN (e.g. , G i i and 6 i2 if H„„=H iq', translational in-
variance guarantees Gii ——G22 and Gi2 ——62i).

For convenience of notation, in what follows, any quan-
tity with no subscripts is to be considered a 2)&2 matrix,
By translational invariance (when applicable) the diagonal
(off-diagonal) elements are equivalent and labeled with a
subscript D (E) (for example, we already have defined the
components of the self-energy matrix X as X» ——Xzz ——XD
and Xiz ——X2i ——X~). We now proceed to define several
Green s functions using definitions (2.9) and (2.10). G(E)
is the Green's function associated with the Hamiltonian
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H, 2(E) [Eq. (2.6)]. Similarly G(E) and Ii(E) are the
Green's functions associated with H,rr{E) [Eq. (2.4)] and
H,rr(E)+H~(E) [Eq. (2.7)], respectively. We also define
the auxiliary Green's function D(E), prior to thermal
averaging such that G(E)= ((D(E)}}.

For the noninteracting case (S =hco=O} we have the
Green's function Gc(E) defined as

G~(E)=N 'g[E —eo —BQ(k)]

G~(E)=N 'QA( k )[E—eo—BQ( k )]

=B '[(E —eo)Gg)(E) —1] .

Similarly for the effective Hamiltonian we have

GD(E) =N 'g[E —Xg)(E)—X~(E)Q(k)]

L{E)=G(E) G—(E)V(E)+(E)=G(E}[I+G(E)V(E)]
(2.14)

The equation for G(E) is

{ }=Q ' g exp[ —P(n&+n, )](n,n, ~D(E) ~n, n, ),
nl, n2 ——0

(2.15)

with Q the harmonic-oscillator partition function

Q = g exp[ —P(ni+ni)]
5)„Pfp=o

and
~

n& n2) a complete basis set with n& (n2) phonons in
site 1 (2) which contains the exciton vacuum.

In Appendix A we derive a recursion relation for the
matrix elements (ni, n2 ~D (E)

~
mi, m2}, a,u'= l, 2

that can be solved via continued fractions expansions. As
shown in Appendix A we have

(ni, n2 ~D(E)
~
ni, n2) =H(E) deox(—nin2)

Gn(E)=X~'(E)I[E —&g)(E)]GD(E)—1 j .
(2.12)

—I'i(E, ni, n2)

—1 z{E,ni, n2), (2.17)

V (DE) =Xn(E) e,o—
V~(E)=X~(E) B. —

Then from {2.6}and (2.7)

(2.13)

Define the matrix V(E) (V~ ——V~~
——Vq2, V~ ——Vi2 ——V2~

as prevlollsly stated) as

where

H(E) =F '(E) =G--'(E)+ V(E),

X(n i,n2) is a 2 X 2 matrix with elements

[X(n&,n2)];J =5;~n;8(n; ), ij =1,2,

(2.18)

(2.19)

6(n) is the usual unit step function, and 1
&

and I 2 is
glveI1 by

SX(n i
—l, n2 —1)

H(E+2)—H(E+1) hroX(n i ——l, n2 —1)—: (2.20)

a finite continued fraction since X(m imz) =0 for m i and m2 less or equal to zero; and

I i(E,ni, np) = SX(nj+ 1,nq+1)
SX{n~+2,n2+2)

H(E —1) bco X(n i + l, n2+ —1)—
(2.21)

an infinite continued fraction.
We can also write G(E) as

G(E)=G(E)+G(E)(( T"(E)))G(E) (2.22)

G(E)=G(E) (2.23)

which is more convenient for numerical implementation.
The set of Eqs. (2.15) and (2.23) yields two independent
self-consistent equations for the two unknown functions
Xn(E) and X~(E).

We recover Sumi's 1-DCPA (Ref. 1) by taking b,co=0
and Xz(E):B. The off-diagonal —equation reduces to an

where T'~(E} is the T matrix associated with
Hi2(E) —H, (Err). As stated above, the customary CPA
condition is to require (( T'~(E) ))=0. Froin Eq. (2.22)
we can equivalently require

V(E) =coS INph(co)G(E+a))

+ [Nph(ro)+ 1]G(E—ro) I (2.24)

with N~h(co) =[exp( —Pco) —1] ' the phonon occupation
number (we have reincorporated the phonons frequency co,
taken throughout the calculation as our energy unit). For
Eq. (2.24) to be a consistent first-order (in S) expression,
G(E) must be replaced by the noninteracting Green's

identity and the diagonal equation to the scalar one-site
result. . Since Suxni's results correctly approach the well-
known limiting cases (B~O or S—+0) we expect the same
behavior from our calculations, and we defer to Sec. III
the comparison of both limiting cases for 1- and 2-DCPA.

If we expand I i(E), I 2(E), and D(E) [Eqs.
(2.17)—(2.21)] to first order in S, we obtain
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Nph(co) e( k )
X~(E)=8+

N
i, E —e(k)+co

(2.25)

[N~h (co) + 1]e(k )+
E —e(k) —co

The right-hand side of Eq. (2.25) consists of two terms,
which represent the one-phonon absorption and emission
process, respectively. The expression for XD(E) is identi-
cal to the one obtained by Davydov' using second-order
perturbation theory.

Finally, to conclude this section, we note that the struc-
ture of Eqs. (2.17)—(2.21) suggests a generalization to an
M-site DCPA. Let G~(E), m =1,2, . . . , M, represent the
relevant matrix elements of G(E) [Eq. (2.10)], with
G~(E}=6&(E), with ij mth NN (for M =2, Gi ——GD,
Gz ——G~) and X (E) the renormalized transfer integrals,
i.e., X (E)-JJ(E)with i,j mth NN. If

I ni, n2, . . . , n )
denotes the basis set with n; phonons in site i
(i = 1,2, . . . , M) and the exciton vacuum, Eqs.
(2.17}—(2.21) can be constructed for an M-site DCPA in
an isomorphic fashion, with D(E), H(E), G(E),
X(ni, . . . , nl) MXM matrices For e.xample, 6(E) and
X(n i, . . . , nl ) will have components

Gij(E)=Gm«» m= Ii —J I

function Go(E) [Eqs. (2.3) and (2.11)]. If we redefine the
energy scale such that the noninteracting exciton site ener-

gy eo ——0, we obtain, for the self-energies to lowest order in
S,

AS Nph(~) N~h(~)+1
XD(E)=

E e(k—)+ci) E —e'(k }—co

and

X(ni, . . . , nM)=5jn;e(n;), ij =1,2, . . . , M, (2.26)

6(E)= (0,0
I
D(E)

I
0,0) . (3.1)

We restrict the present calculation to linear coupling only,
i.e., b,co =0; finite hen does not change qualitatively our re-
sults provided both 5 and 8 are not much less than 1.'
From Eqs. (2.17)—(2.21) and Eq. (2.23) we have

respectively, so that there will be M independent equations
and M unknowns. As the size of the cluster increases so
does the degree of difficulty for both obtaining analytic
expressions for 6~(E) and the numerical solution of the
self-consistent Equation (2.23). In an analogous fashion,
our results can be generalized to crystals with more than
one molecule per unit cell. As this formulation is of sig-
nificant practical interest, we have carried out the calcula-
tion in detail in Appendix B. Subsequent publications will
contain numerical results for this model.

III. ZERO- TEMPERATURE CALCULATIONS

In this section we solve the self-consistent equations
[Eqs. (2.15)—(2.23)] for the zero-temperature case P ' =0.
This particular case, besides being the easiest one to imple-
ment numerically, provides us with the ground-state prop-
erties and allows us to compare with relative simplicity
both the 1- and 2-DCPA with the limiting cases S/8 +0-
and S/B~ao. Also some insight is gained concerning
the behavior of both DCPA calculations for the various
regimes in parameter space, insight needed to proceed, and
at a later stage, to the finite-temperature case.

We begin by redefining the energy scale such that the
noninteracting exciton energy E'p is set equal to zero, and
as before we take the phonon frequency to be our energy
unit (co= 1). From Eq. (2.15) with P '=0 we have

V(E)=
G '(E —1)+V(E —1)—

6 '(E 3)+ V(E——3)——
6 'E —2+VE —2—

(3.2)

with the components of V(E), given as in Eq. (2.13),

VD(E) =XD(E),

VN(E) =XN(E) 8, —
(3.3)

GD(E)-I/E as IE I
~oo,

G~E()-1/E asIE
I
~(g) .

(3.4)

In analogy to Sumi's method, ' properly generahzed to our
matrix formation, we assume Xz(E)=X&(E)—8 =0 for

6 '(E —p), p =1,2, 3, . . . , is a function of Xz(E —p)
and X~(E —p) [Eq. (2.12), thus Eq. (3.3) is an equation
for V(E) in terms of V(E —p)]. It follows for Eq. (3.3),
that for a sufficiently large negative energy

I
E

I
»SXD(E) and Xz(E) Bapproaches zero. —We

have used in this argument the asymptotic behavior of
6(E) [Eq. (2.12],

I

E &E . We also truncate the infinite continued fraction
Eq. (3.3) at E —po. Then from Eq. (3.3) we are able to
calculate V(E +p ), p = 1,2, 3, . . . , by simple iteration.
We now proceed to adjust E (function of 8 and S) and
po [in principle not only a function of 8 and S, but also on
the value E for which Eq. (3.3) is evaluated]. We start
with a sufficiently large

I
E

I
and po and search for the

smallest pair IE I,po such that V(E) lies within a
prescribed error from the initial V(E). Finally, we calcu-
late V(E) for E=E +@+5, @=1,2, 3, . . . , 0&5&1,
and obtain V(E) for any desired range and density of
points in the energy axis.

For real three-dimensional lattices there is no closed an-
alytic forms for the Green's function G(E) [Eq. (2.12)].
This introduces numerical difficulties in the practical
evaluation of 6(E}and V(E). Since we are interested in
the dynamical aspect of the exciton-phonon system and
not on the details of the band structure, we approximate
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G(E) via the Hubbard density of states model, ' that cor-
responds, for the noninteracting exciton, to an hemiellipti-
cally shaped density of states. This model reproduces
most of the qualitative features of the Green's function
for any cubic three-dimensional lattice, and has been used
by many authors to overcome the numerical difficulties
mentioned above. In the present situation this model pro-
vides us with a relatively fast algorithm for V(E). In the
Hubbard approximation G(E) is given by

GD(E)=-
~

—(E —XD(E)
2

X~(E)

I(E)= —Im
—1 1

vr E —Xi)(E)+X~(E) ' (3.10)

where we have normalized I(E) such that total absorption
is unity. Equation (3.10) corresponds to the direct edge
case; for the case of indirect edge Xz(E} in Eq. (3.10)
must be replaced by —X~(E). For E-Ep it is easy to
show

with m" the corresponding effective mass at S =0.
The absorption spectrum I(E) is proportional to the

imaginary part of the zero momentum component of
Gg)(E) [Eq. (2.12)]. Thus

—
I [E—XD«)]'—Xx«) I

'"»
(3.5)

I (E}=Io5(E —Eo) (3.11}

G~(E) — ———
t [E—XD(E)]Gi)(E)—1I .

1

X~(E)

The square root must be taken with positive imaginary
past (same sign as IniE, a positive infinitesimal) to secure
the correct asymptotic behavior of G(E) as E~+ ao.

Before we proceed further, two comments of the nu-
merical method are pertinent. First, we find that

~

E
and pp increase as S/8 increases. Second, the iterative
method developed above is not applicable to the finite-
temperature case. From Eqs. (2.15)—(2.23) we see that
G(E) is a function of V(E+p), @=1,2, 3, . . . . For the
particular case P '=0, G(E) will depend on V(E —p),
p =1,2, 3, . . . . Only for the latter can we start an itera-
tion procedure, given the asymptotic behavior of V(E) for
large negative energies. For the general case (P '&0) a
trial V(E) must be assumed throughout a whole range of
energies. Furthermore, once an acceptable trial V(E) is
assigned, upon one iteration we get G(E), from which by
inversion via Eq. (3.5) we obtain a new V(E) in order to
proceed to the next iteration step. This method and re-
sults will bc analyzed ln a planned subscqucnt papcI'.

Once V(E) is evaluated in a desired energy range we
compute several quantities amenable to easy physical in-
terpretation, comparison with other theoretical methods
or experimental data. The energy spectrum Ek for the ex-
citon phonon is given by the poles of GD(E) [Eq. (2.12)],
1.C.,

X~(Eo) m~
0 (3.12)

«o)p ~= —8 —S&i

(Io)i ~=1—S+2,
(3.13)

with both Fi and I'2 positive functions of 8 only.
For S &p8, the small polaron transformation is applic-

able;" then Ep and Ip (with superscript sp) are given by
(to first order in the approximation)

Eo ———S —8 exp( —S),

If=exp —(S) .
(3.14)

For a fixed value of 8 it is convenient to work with the
quantity

We compute the ground-state energy Ep and the 0-0 pho-
non line strength Ip as functions of 8 and S, in the range
0.2(8 (4.0, S(5.5 using both the 1- and 2-DCPA.

For S«8, perturbation theory is applicable and from
Eq. (2.25) we obtain

EI, =Re[XD(Ek)+X~(Ek)Q(k)] .

The density of states n (E) is given by

n (E)=( —I/m. )lmGD(E) .

(3.6)

(3.7)

C3
I

The ground-state energy E0 is given by the smallest
root of Eq. (3.6} with Q(k)= —1 (bottom of the band).
For E near Eo both X~(E) and Xz(E) are real numbers
(provided, of course, IniE~O). Then, the equation for Ep
is the smallest root of

C3
lA

Ul m

Eo=XD«o) —X~«o) .

The effective mass associated with this ground state is
denoted by m& and given by

Q. QQ 1. QQ 3. QQ 4. QQ 5. QQ

mq X~(Ep) BXD(Ep) BX~(Ep)
1 +m* BE

5
FIG. 1. X(S) vs S for 8=1. 2-DCPA (solid line), 1-DCPA

(short-dashed line), and small polaron (long-dashed line).
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l/l

~ ~
C3

tl. QQ 1.00 2. 00 3. 00 4. 00

Eo(S)+B
X(S)=

5
FIG. 2. Io(S) (0-0 phonon line g =1. 2-n line strength) vs S for 8 =1. 2-

DCPA (solid line),, 1-DCPA (short-dashed line), and sma po a-

ron (long-dashed line).

C3
C3

3. 00

LA

l

l

I

C3
l

LLt
l

Iif)
ll

I

CV

C3

(l

C3 -3. 00 -1.00 1. 00-5. 00

trum I(E), in arbitrary units, vs en-FIG. 3. Absorption spectrum (
= 1.0 and S =0.5. 2-DCPA (solid line) and

(. The heights of the peaks of sca e e(d h dl )

line, almost identical for both DC s av
DCPA)/(1-DCPA) =0.91.

X(S) is bounded between 0.0 andrather than Eo(S), since

a, (S) d I (S), respectively,
X S}=const.
. 1 and 2, weplotX an o

1-DCPA and small-polaronfor 8 =1.0. T]he 2-DCPA,
'

h 1'd short-dashed, and long-esultsarere lotted with a so i, s

n as a re resentative case, since or
1 1 tions remain unchanged,

fh 1 h dbo d
f tures of the ca cu a ion

with the exception,
'

n of course, o t e eng
of the several coupling regimes: wea or
mediate for S-B, and gnd stron for S»B.

orth . First, the1 features of Fig. 1 are notewort y.
h 2-DCPA i 1 1o h

h h ~ t. fl a ht
G en's functions allows

'
nal calculations, in w ic grea

the true ground state [although, hererelaxation towards I
E) are a ]us e

~ ~

1 all- olaron method of Re .the variationa sma -p
f X(S) as S~O are dif-Second, the asymp totic values o

These quanti-he 1- and 2-DCPA calculations.ferent for t e - an
ties are the limiting slope wit w

ergy hnear y apprl a roaches —8, the S =0 va ue.
tl a proach this value. )both DC cPA calculations correct y appro

The small correctioion of the 2- is
in a erturbation calculation

which includes such terms.

g limit (S»B s
—1.0 the isolated molecule value. i e

o 1 d
' Fi 1 calculations with ot ergence is no plot corn lete in ig.

hich the limiting value is(smaller) vr) values of B (for w ic e
h t this does indeed occur.

he 0-0 honon line strength. As
more rapidly) show t at is

In Fig. 2weplotIo, t e - p

ll
I

ll

ll
l

l

ll
Il

1

l

l

l

l

l

ll

ll

ll

ll

ll

ll ]l
Jl

ll

,
I ], l

l'

t

I

t

l

)

ll

ll

ll

ll

f -1.00 3. 00-5. 00
ENERGY

trum I(E) in arbitrary units vs ener-FIG. 4. Absorption spectrum (

1-DCPA=1.0 and S= . .S=1.0. 2-DCPA (solid line) and
a

' . i hts of the peaks off scale have ratios (2-
DCPA/1-DCPA), from left to right, equal to . an
respectively.

1.00-3. 00 5. 00

oth DCPA's reproduce the correct im'imits as S~Obefore bot
1' '

effects are manifestedu S &8. Band renorrnalization e ecan && . ec

h

'
n of the me s ren

creas eed th small-polaron regime is approac e
res ect to the in-

o uivalent in the - a
re ime (to lowest order inI* '=IoB/X~(Eo). Since B/X~(Eo) (1

h ffzation is to increase t e e ec iv-



CLUSTER GENERALIZATION OF THE DYNAMICAL CPA:. . .

'I

I I

I

I I

I

I I

II II

II

II

I

II

II

II

II

II

II

II

II

II

II

II

II

C3
C3

-5. 00 3. 00 5. 00
I I-3. 00 -1.00 l. GQ

ENERGY'

FIG. 5. Absorption spectrum I(E) is arbitrary units, vs ener-

gy for 8 =1.0 and S =2.0. 2-CDPA (solid line) and 1-DCPA
(dashed line). The heights of the peaks off scale have ratios (2-

DCPA)/(1-DCPA) from left to right, equal to 0.81, 1.04, and
1.14, respectively.
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FIG. 7. Absorption spectrum I(E) vs energy for 8 =0.2 and

S=4.0 2-DCPA (solid line) and 1-DCPA (dashed line). Both
DCPA's in this case of strong coupling are almost identical and
approaching the isolated molecule case. For this case we have
used ImE =0.05. X(S) for S =4 is equal to —0.95 for both the
small-polaron case and the 1-DCPA. For the 2-DCPA,
X(4)= —.0.97.
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effective-mass ratio versus S, since it will look exactly like
Io vs S).

The integrated absorption spectrum fdEI(E) must

equal 1 (in normalizmi units) for both DCPA's. Since Io
is reduced in the 2-DCPA with respect to the 1-DCPA it
is interesting to see the consequences of this reduction on
the whole spectrum. In Figs. 3—7 we plot I(E) vs E for
several values of 8 and S. As before the 2-DCPA (1-
DCPA) spectrum is given by the solid (dashed) line. We
use for the spectra calculation a finite ImE =0.007 to

broaden the 5 functions and smear out small unimportant
structures. The effects of band renormalization are evi-

dent. Besides a shift of the absorption peaks to lower en-

ergies, the width of such peaks are systematically reduced.
Also the height of low-energy peaks is reduced (as sug-
gested by the values of Io) at the expense [since the sum
rule f dE I(E)=1 must be satisifed] of increasing the os-
cillator strength of high-energy peaks. In Fig. 3, 8 =1.0
and S =0.5, we see that we are approaching the weak cou-
pling limit, a similar result is obtained from perturbation
theory, from Eq. (2.25) displaying the 0-0 phonon line and
the first vibronic level broadening in the crystal corre-
sponding to the emission of one phonon [Eq. (2.25)]. Of
coul'sc, oil a full DCPA, lllgllcl-cllcrgy V1bronic llrlcs will
appear, but are not visible in the scale used in Fig. 3. Fig-
ures 3 and 4—6 are characteristic of the intermediate cou-
pling regime S-8, where the effects of band renormaliza-
tion mentioned above are the most evident. Finally, in
Fig. 7, with 8 =0.2 and S =4.0, a strong coupling case,
the spectra begin to resemble that of an isolated molecule
without molecular relaxation, '" given by

eo g5
I(E)=exp( —S)g, 5(E —Eo —n) ..=0 &t

(3.16)

C3
C3

-5. 00 -3. 00
I-1.00
ENERGY

1.00 5. 00

FIG. 6. Absorption spectrum I (E) in arbitrary units, vs ener-

gy for 8 =2.0 and S =1.0. 2-DCPA (solid line) and 1-DCPA
(dashed line). The heights of the peaks off scale have ratios (2-

DCPA)/(1-DCPA), from left to right, equal to 0.92 and 2.18,
respectively.

The aim of the present work is to develop a two-site
DCPA and establish this self-consistent calculation as the
natural generalization of the single-site DCPA (Ref. 1)
that will include both site energy and band Ienormaliza-
tion, valid in a wide range of parameter space (8,S). The
numerical calculations display no unphysical behavior and
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agree with perturbation theory in the limits S/B~O,
S/B~ co. The effects of renormalizing the off-diagonal
part of the exciton Hamiltonian are what one would ex-
pect, e.g., reduction of the linewidth of vibronic peaks in
the optical spectrum.

A systematic study of the absorption regions and spec-
tra, the finite-tetnperature case, and two moelcules per
unit cell (and the isomorphic problem of several excited
states per molecule) will be presented in planned subse-
quent papers. Future theoretical developments will in-
clude simultaneous treatment of static disorder, calcula-
tions of transport properties, and incorporation of a finite
phonon bandwidth in the calculation.

Several direct applications of the 1-DCPA to experi-
mental data have been attempted; analysis of optical data
from mixed crystals, ' anthracene crystals, ' and surface
excitons. ' ' Our method will allow a more quantitative
treatment of these (and other} systems; the present theory
can already include several potentially important effects
(bandwidth renormalization, several molecules per unit
cell) which are completely absent from 1-DCPA. A study
of the temperature dependence of the full vibronic line
shapes would provide for the best comparison of theory
and experiment.
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APPENDIX A

We plan to obtain and solve an equation for the matrix
elements (n1,nz ID(E) I

n1,nz), Eq. (2.15), and derive
Eqs. (2.17), (2.20), and (2.21).

We start from Eqs. (2.4) and (2.6)—(2.8) for H,tt(E},
H12(E), H„(E), and Ha. If

Ho(E) =H, tt(E) +Ha (E),
then

(Al)

H12(E)=HO(E)+Htt .

If we Fourier transform the trivial identity

(E —H12) '=(E —HP)

+(E Hp)—'Hs(E —H12)

we obtain another identity

exp( —tH1zt ) =exp( tHot—)

i —dy exp[ —iHO(t —y)]Ht1
0

Xexp( —iH 12y)

(A2)

(A3)

(A4)

(note that the Fourier transforms of H1z(E) and Ho(E)
depends on the real time t, so exp —[iH(t)t] shpuld be un-

derstood as a shorthand notation for exp[ i —dyH(y)]).
0

We define the auxiliary Green's function D(E) with
matrix elements

D (E)= i —dt exp(iEt) exp(iH 1z t)A
0

Xexp( iH1zt)A— , a,a'= l, 2 . (AS)

As in the main text we denote by
I
n1, nz) the complete

basis set with n1 (nz) phonons in site 1 (2) which contains
the exciton vacuum.

If we use Eqs. (Al), (A2), the identity Eq. (A4) in Eq.
(A5), and use the fact that Ho(E) is diagonal on the pho-
nons states, we obtain, for (n1,nz

I
D (E)

I m1, mz), the
following equation:

(n I n2 I D&g '(E)
I m1, mz) =F (E)5„5„

oo

dt dy exp[iEt +iy(n1+ nz —m1 —m 2 )]
0 0

XPy(n1, nz, m1, mz)(n„nz
I
exP[iHp(t —y)]A exP[ iHO(t y)]—Ay I

n1nz )—

(A6)X (m 1m 2 I
exp(iH12v')Ayexp( tH12y)A ~'

I
m—1,mz ~ a a', F=1,2,

where we have inserted a complete set of intermediate states (and use the summation convention for repeated indices).
P& is given by

Py(n1 nz m1»mz)=&n'1 n'z IAyHaAy m1 m2~ (A7)

where y= 1,2 with no summation over y. From Eq. (2.8), using some harmonic-oscillator algebra, we find that, with
X=(S)'"

Py(n1nz, m1, mz }=A5y 15, , [5,(m', +1)'~2+5,(m', )'~2]

+b,a)5, , 5, , [5y 1m1+5y zmz] . (A8)

By using the definition of F(E), D(E), and the convolution theorem, we obtain

(nt, nz I D~ (E)
I m1, mz) =F (E)5„, ,5„+Fy(E)(p1,pz I Dy (E+n1+nz p1 —pz) I

m—1,mz)Py(n1, nz p1,pz) .

(A9)
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We define the operator B,

bi 0
8= (Alo)

and the associated matrices
l lN +)-, W(N),

In, +1,n, ) O

0
l
ni, nz+1)

bi (bi ) annihilates a phonon in site 1 (2). Similarly we de-

fine B . Equation (A9) can be regarded, after using Eq.
(A8), as the matrix elements of the operator equation

D(E)=R(E)[1+AS tD(E+1)+M D(E —1)]
(A11)

with

R(E}=F(E)[3Qco.B—BF(E)] (A12)

We condense in one index the pair (ni, nz) =N and de-

fine the following matrices:

lni, nz) 0

n, ,n, &

W(N) = [X(N)]'~

It follows that

BllN) = W(N}llN ), -

B tllN &
= W(N+»I IN+ &,

B'BllN &=x(»llN &

(A14)

(A15)

X(N) =
n, e(n, ) o

0 n28(n2)

(A13)

By calculating &NllD(E)llM) from Eq. (All) we obtain

&NIID«) IIM & =R x«)5NM+~R ~«) W(N}&N IID«+1}IIM&+~R x«) W(N+1}&N+ IID« —1}IIM&

with

(A16)

~5M ——&NllM) = ~num &~n2mi

n] pn ] npm2

(A17)

R ~(E)= & N
l lR (E)

l lN ) =F(E)[1—b co X(N)F(E) ]

We define H(E) =F '(E), K ~(E)=R ~'(E},and D N(E}= &Nl lD(E)
l lN ).

From Eqs. (A16) and (A18) it follows that

(A18}

K x«) =br&MD x'«)+~W(N}&N IID«+1}lIM &[&NIID«}IIM & 1
'

+~W(N+i)&N'llD(E —1)IIM&l:&NIID«}IIM&] ' (A19}

K~(E)=H(E) bcoX(N) . — (A20)

D ~ '(E}=K N(E) I,W(N + 1)I ~~(E)—
—A, W(N)l'„„(E+1) . (A23)

Define I'~M(E) as

I ~~(E)=&N+llD(E —1)llM)[&NllD(E)llM)]

(A21)

Then Eq. (A19) reads

For N&M from Eq. (A22) we have either

I „(E+1)=A,W(N)[K„(E)—A, W(N+1)I „(E)]
(A24)

or

KN(E} 8NMDN (E)+~W(N+1)rNM(E)

+A, W(N)I „' (E+1) .

If N =M from Eq. (A22) we obtain

(A22)

I ' (E)=A,W(N+1)[K (E)—A, W(N}I ' (E+1}]

(A25)

By iterating both Eqs. (A24) and (A25) we obtain
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and

L~+ )(E —1)—

SW(N+1)
SX(N +2)

SX(N +3)
L ~+2(E —2)—

L ~+3(E —3)—

(A26)

I „'„(E+1)=

Finally we define

E~ )(E+1)—

SW(N)
SX(N —1)

SX(N —2)

L ~ 3(E+3)—

(A27)

I ~(E,n~, n2)=ALL(N)I z'&(E+ I),

I p(E, n), n2)=A, W(N+1)l »(E) .
(A28)

From Eqs. (A14), (A20), (A23), and (A26)—(A28) we obtain

(n&, n2 ~D(E)
~

n&, n2) '=H(E) —hcoX(n~, n2) —I &(E,n&, nz) —I 2(E,n&, n2), (A29)

where

I,(E,n &, n2) =

and

I p(E, ]n, n)=2

SX(n „n2)
SX(n

&

—l, n2 —1)
H(E+1) bcoX(n ~

——l, n2 —1)—:
H(E+2) —~

SX(n
& + l, n&+ 1)

SX(n 1 +2,n2+2)
H(E —1) hcoX(n &+—l, n2+1)—

H(E —2)—

(A30)

(A31)

are the desired continued fractions expansions for the ma-
trix elements of D(E).

APPENDIX B

&naP=&aP ~

Jap if n, m a NN cell
Jna, mp= '

0 otherwise,
(B2)

We generalize results of Sec. II for the case of more
than one molecule per unit cell. We consider explicitly
two molecules per unit cell; extension to a large number is
straightforward and can be accomplished by replacing the
2)& 2 submatrices in what follows by M )&M submatrices.

Let n label the position of the nth cell (n = 1, . . . , N)
and a(P)=1,2 label each molecule within the unit cell.
We write the unperturbed exciton Hamiltonian H as (see,
for example, Ref. 14)

H = g e„~pA„A„p+ g J„~pA„A~p, (Bl)

where as usual A„(A„)annihilates (creates) an exciton at
site (n, a)

The lattice is regarded as the superposition of two sub-
lattices. Sublattice i (i =1,2) is composed of N molecules
(n, a), n =1, . . . , N, a=i Let us cons.ider only nearest-
neighbor (NN) interactions, but noticing that a molecule
(n, a) has two sets of NN's, namely Z~ NN's of type a
and Z~~ NN's of type p&a. Translational invariance im-
plies

a,P=1,2.
We define

Ji Ji2J J J (B3)

H =+A„eA„+g'A„JA~, (B4)

where the prime stands for summation over NN cells. We

where we have supressed the double index for the diagonal
terms and incorporated the symmetric character of the
off-diagonal terms.

Then Eq. (Bl) reads
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1

A„=
k2

=(N)'~ QA„exp(ik R„),

where R„ is the vector position of the nth cell
(n =1, . . . , N).

Define the matrix B as
P

also define Ai, (Ai, ) as the annihilation (creation) of an
exciton with momentum k at site a, given by

k

Translational invariance again imposes the equivalence of
the diagonal (off-diagonal) labeled now with superscript
D(N). For two molecules per site GD(E) and D+(E) are
themselves 2&2 matrices and given by

GD(E) = &n
~

G(E)
~

n & =N 'yG(k, E),

G~(E)=(n iG(E) ini}=N 'QG(k, E)Q(k),

where n, m are NN cells.
Let us define the function g (E) as

H in Eq. (84) can be written as

g(E)=N 'g[E —Q(k)] (815)

H =+A H(k)A„,
k

H(k)=e+BQ(k),

BQ(k)=g'Jexp(ik 8~) .
(88)

g(E) is the diagonal Green's function (scalar) for the case
of unperturbed bands (e» ——B»—0) for bands centers at
ei ——ez ——0 with unit half-bandwidth, Bi ——B2 ——1. For a
one-dimensional crystal there is an exact analytic expres-
sion for g (E), and for dimension three we can use the
Hubbard density of states model as pointed out in Sec. III.

After some lengthy but straightforward algebra, we ob-
tain, for GD +(E), in terms of g (E),

We have assumed identical sublattices, so Q(k) is a sca-
lar. Notice that for a fixed wave vector k we have two
single-exciton states, associated with the bands a=1,2,
respectively. Band a (a=1,2) is centered at e, has a
bandwidth 28~, and is described by the dispersion relation
E (k)=e +B Q(k). The eigenvectors for H(k) are two
single-exciton states given by a linear combination of exci-
ton states of type 1 and 2. The mixture occurs via the
off-diagonal elements of e and B. Let us define

g(k)=eiz+Bi2Q(k). The eigenvalues of H in Eq. (87)
are

E+(k)=—,
' (Ei(k)+Ep(k)+ [[Ei(k)—Ei(k)]

GD(E) =A (E)+ yA. (E)g(X,(E)),

G "(E)= g~ (E)[X,(E)g(X,(E))—1] .

A (E)=(—1)'+'[2bpb, (E)] 'A i(E),
E ep B2X (E—) e—i2+BiiX (E)

A (E)= ei2+Bi2X;(E) E —ei —BiX;(E)

(817)

Here we distinguish two cases: (i) detB=bp&0 and (ii)
detB=O. For case (i),

Ap(E}=0,

+4g'(k)]'") .

We define the Green's function operator G(E) as

G(E)=g ik)(k
i
G(k, E),

G( k,E)=[E H( k )j—
~

k ) =(N) '~ +exp(ik R„)
~

n }

(89)

(810)
&(E)=[b (E)—C(E)]'

b (E)=(2bp) '[Bi(E e2)+B2(E —e—i)

+2e12B12] ~

C(E)=bp '[(E—ei)(E —ep) —ei2],

Xi(E)=b (E)—&(E),

X2(E)=b(E)+&(E) .

(818)

with
~

k ) and
~

n } single-exciton states with momentum

k and at site
~
n ), respectively.

Recalling that there is one unit cell per site and two
rnolecules per site, in the two-site calculation, relevant
functions are going to be 4X4 matrices, decomposed into
2&2 blocks according to site labeling, each block being a
2&&2 matrix. For example, the Green's function G(E) is
(as in Sec. II)

For case (ii),

A p(E) =E(E)
12 1

A (E)=0, (819)

E —ep —B2Xi(E} eig+Bi2Xi(E)
A i(E)=E(E) ei2+BiiXi(E) E ei BiXi(E)——

G (E) G"(E)
G'E'= G"(E) GD(E) . (813) E '(E)=Bi(E e2)+B2(E —ei)—+2ei2Bi2
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and

X](E)=E(E)[(E—e])(E—ez) —e]z] . (820)

For the case of unperturbed bands, we obtain the expected
result

GD~(E) =S.~.-]g (X.),
GNI](E)=5 pB '[X g(X ) —1],

with

X =8 '(E —e ).

(821)

Results from Sec. II can be readily applied for the case
of a two-site two molecules per unit cell DCPA with the
following provisions: n, (n2), [Eq. (2.15)] should be un-

I

derstood as the pair n», n]2 (n2], nzz). G(E) [Eq. (2.12)]
should be replaced by Eq. (816), provided we substitute in
Eq. (816) e and 8 [Eq. (83)] by X (E) and X (E), respec-
tively, where

yD, ]v(E) yD, ]v(E)
yD, N E yD, tv(E) yD, ]v(E) (823)

(824)

e 8, and X++(E) are given by Eqs. (83) and (823), respec-
tively. X(n],nz) [Eq. (2.19)] should be replaced by

F(E) is given by Eq. (2.14) provided we replace G(E) as
stated above and V(E) by

XD(E) eX—~(E) B—
r"(E)—S XD(E) e—

X(n ]'],n ]2 n2] n2/ ) =

n]] e(n]] )

n]28(n]p)

0 n2]e(n21 )

0 nz28(n22)

(825)

I

Similarly if the linear and quadratic exciton-phonon cou- and
pling constants are different for each molecule in the unit
cell, then S and b,co should be replaced by

AQ)) 0 0 0

0 Aco2 0 0

Si 0 0 0

0 S2 0 0

0 0 0 S2

0 he@) 0 (826)

0 0 0 hco2

We have assumed throughout, that there is only one vibra-
tional mode per moelcule with identical frequency for
both molecules in the unit cell.
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