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New approach to the mixed-valence problem
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A new formulation of the mixed-valence problem is presented in which the singlet valence state of
a rare-earth ion is represented by a zero-energy boson and the spinning state by a spin-j fermion.
This representation avoids the need to use Hubbard operators with awkward algebras and avails it-
self of standard techniques for dealing with interacting quantum systems. In particular, a
Feynman-diagram expansion for the thermodynamic variables and spectral functions can be
developed. The advantages of the approach are illustrated for the mixed-valence impurity problem.
Vertex corrections are found to be 0(1/X ), where X is the degeneracy of the rare-earth ion, allow-

lllg R self-coilslstcllt CRlclllatloll of tllc f-clcct1011 spectral fllilctioll to ordcl' 0 (1/N ) that ls valid 111

both the mixed-valence and Kondo regimes. The extension to the lattice is outlined and some pre-
liminary results reported.

I. INTRODUCTION

In recent years the mixed-valence problem has aroused
considerable interest among theoretical condensed-matter
physicists. ' The great allure of the inixed-valence prob-
lem lies in the deceptive simplicity of the standard
mixed-valence model. In a mixed-valence crystal there is
a lattice of rare-earth ions which can exist in two valence

states, one of which is typically a singlet, the other a
Zj+ I (=Ã) -fold-degenerate state of spin j. There is an
extended band of free electrons which hybridizes weakly
with the rare-earth f states causing the valence to fluctu-
ate by changes in the f-level occupation

fll ~fII —I +e

The weakness of the hybridization Inakes it very attractive
to try to consider it as a perturbation. The crux of the
mixed-valence problem 1s that this 1s not a triv1al task.

The simplest mixed-valence system, where n =1, illus-
trates the difficulties. Here the valence fluctuations are
between an

~
f;j=O) and a

~

f',j,m } state. The stan-
dard model Hamiltonian describing the system is the
infinite-U Anderson model. ' which can be written

H=Hb, „d+ QHf+ gH~;„,

Hb, „d= g E(k)c c
k, fJ

describes the free-electron band, while

Nl =J
IIf' QEff' f'——

lat =—J

describes the f state at each lattice site i, and

Nl=J lf[V(k)c'- Pof' +H.c.]
k, ?Pf =—J

is the term which mixes the two valence states at site i.

The operator Po projects out states with no f electrons at
site i so that charge fluctuations only occur between two
valence states. The operator ck creates a band electron
of energy E (k) in the angular momentum scattering chan-
nel

~
jm ) at site i The .full Hamiltonian I is taken impli-

citly to act in the subspace of states S with either zero or
one f electrons at each site.

The great difficulty in treating H;„as a perturbation
arises because the Hubbard operators, XII Pof' and——
X'

o——f' Po, do not obey standard fermion commutation
rules. ' This is of course a consequence of the strong in-
teraction between f electrons at one site. It means that
there is no Wicks theorem for the Hubbard operators and
precludes the application of conventional quantum-field-
theory techniques.

Keiter and Kimball recognized that the awkward com-
mutation rules of the Hubbard operators restricted one to
a time-ordered perturbation theory, which they developed
for the case of the mixed-valence impurity. Subsequent
treatments of the mixed-valence problem, both for the im-

purity and the lattice have been based on their ap-
proach. The great disadvantage of a time-ordered pertur-
bation theory is that it is awkward to evaluate the dia-
grams and very difficult to carry out the resumrnations of
the diagrams. Recently, serious doubts have been raised
collccrillllg 'thc valldl'ty of rcsu111111a'tloils tllat llavc bccli
used to extend the Keitcr-Kimball technique to the lat-
tice, ' further emphasizing the problems inherent in this
approach.

In this paper an alternative approach is presented which
avoids these difficulties by using operators that obey stan-
dard fermion or boson algebras. The basic idea is to re-

place the awkward Hubbard operators by a product of a
boson and fermion operator,

Xo +b'tf'— (5)

X' o~f' b'.
The mathematical motivation behind this replacement is
that these operators can be treated using standard field

Qc1984 The American Physical Society



3036 PIERS COLEMAN

theory. The physical interpretation of this replacement is
that the spinless valence state f is now represented by a
boson that is created when an f electron hops out of the
rare-earth ion and destroyed when a band electron hops
into the rare-earth ion.

The essence of this approach was invented by Barnes, "
who employed two bosons to represent the singlet states of
the spin- —, Anderson model. In this new application to
the mixed-valence problem only one boson is required per
rare-earth ion which proves to be a useful simplification.

To illustrate the approach the mixed-valence impurity
will be considered first, and the generalization to the lat-
tice is made later by introducing appropriate indices. The
new Hamiltonian corresponding to the above approach is

H'=H»„d+Hf+H~;„+eb b (7)

Here H»„d and Hf are the same as before (there is no site
index in the impurity problem) while the transformations
(5) and (6) have been made to produce the new mixing
Hamiltonian

H;„= g jV(k)ck (btf )+[V(k)]*(f b)ck j .

%'ith this new Hamiltonia, the number operator

Q =btb+nf

commutes with H ' so the total number of f electrons plus
bosons is conserved. H;„converts bosons into f electrons
and vice versa, conserving the charge Q. This means that
each of the subspaces F~ with definite Q are disjoint. The
interesting subspace is F] where H;, induces transitions
between the singly occupied boson state b ' and the 2j + 1

(=N) -fold-degenerate fermion state f~:

that in which Q;=1 at each site. The great advantage of
this new technique is that a broad range of powerful
quantum-field-theory techniques can now be brought to
bear on the mixed-valence problem because the operators
all obey standard algebras.

II. APPLICATION OP THE BOSON TECHNIQUE

The application of this new approach is illustrated us-

ing the mixed-valence impurity, and full extension to the
lattice will only be outlined, awaiting completion of fur-
ther work. In this illustration the emphasis will be placed
on the development of a diagrammatic expansion, in keep-
ing with the original motivation. However, it should be
borne in mind that path-integral techniques can be applied
to this reformulation, which provides the interesting new
possibility of integrating out the fermionic degrees of free-
dom, and then carrying out a saddle-point approximation
for the integration over the bosonic degrees of freedom.

The development of a diagrammatic expansion for the
partition function of H ' closely parallels that used for the
Kondo lattice problem. ' In order to project out the sub-

space E„a chemical potential —A, is associated with the
charge Q and the grand-canonical partition function
ZG(1) calculated for H'+A, Q. Because Q is conserved,
ZG(A, ) can be expressed as a sum of the canonical parti-
tion functions Z, (Q) for each subspace F&,

Z, (z)=Tr(e-~' '+'~')= g Z, (Q)e-~'~.
Q=O

The mixed-valence partition function is Z, (1), and it may
be projected out by differentiating ZG with respect to the
fugacity g=e

f1~b 1+ ZMv=Z, (1)= lim [ZG(A, )] .
m Bg

(16)

Clearly, within this subspace the boson state can be identi-
fied with the singlet state of the rare-earth ion:

~
f )=bt ~0),

~

f'—;j,n1)=ft ~{)) . —(11)

With this identification, the matrix elements of Hm;„
within F& are identical to those of Hm;„ in 5,

[H,„: qeS] = [H;„: yeF, ) .

Finally, since H]„„d and Hf are identical in both sub-

spaces, setting the boson energy e to zero, it is seen that H
and H ' are equivalent in these subspaces,

By writing ZG(A)=exp[ —PE(A)], where E(A, ) is the free
energy, and identifying BElBA,=(Q)~, the expectation
value of Q 111 t11e gra11d-callolllcal ense111ble (GCE), leads
to

Mv ( 11m 0 (Q)1,)Z»nd ~I~ 00

where the g—+0 limit of ZG(A, ) has been identified as the
partition function of the free-electron band Z»„d. In a
similar manner the expectation value of any operator 0 in
the canonical ensemble of F& can be calculated using the
GCE expectation value and taking the limit of large A, .
Consider (OQ)x,

So the valence fluctuation f '~~f + e can be represented

by a resonance bctwccn a zero-cncrgy boson and a spin-J

fermion in the subspace where Q=n~ + nf 1. Since the-—
subspaces are disjoint, it is an easy task to project out this

subspace. The extension to the lattice is made by intro-

ducing a zero-energy boson for each site, with the ap-

propriate interaction H;„at the ith site. Hence,

H';„= g [V(k)c/, b' f' +H.c.]

The appropriate subspacc fof t4c IYlixed-valence lattice is

(OQ), = g (TrOe-~ '),,Qe-~'~fz, (X) .
Q=O

(O)F, =(T«e ~
)p, fZ, (l)= lim ((OQ)1 f(Q)x) .

In general the operators of interest will have zero expecta-
tion value in the Eo subspace and in the large-A, limit

(OQ)x~(o)1, enabling Q to be left out of the numera-
tor in (19),
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(O&z ——lim ((0&)„/(Q&~) . (20)

Equations (20) and (17) are the essential relationships be-
tween the GCE and the canonical ensemble with Q= 1,
enabling the properties of the I'~ subspace to be projected
from the properties of the GCE.

H;„can be treated as a perturbation about Ho—Hf +Hbg~d and the grand partition function can be ex-
panded as the path-ordered exponential of H;„,

(21)

kF(X) =,' ~/ ~ + /+ + ~ ~ ~

I
P-

+

ZG(A )
'

13r exp —f H;„(r)dr H

= —keT+e " l(ice„A, Ef)—, —
~n

D'(.) =(»(.)b'(0) &,

(23)

Here ( &H denotes the expectation value in the nonin-

teracting GCE.
The perturbation expansion of the path-ordered ex-

ponential is a standard summation of closed-loop connect-
ed and disconnected Feynman diagrams containing the
bare propagators

G;.(.) = (Tf.(r)f.'(0) &

FIG. 2. Closed-loop diagrams contributing to the expansion
of the free energy.

a certain number of closed loops around which charge
flows (Fig. 3). For each of these closed loops there is a
factor of the fugacity g so that when the A,~ac limit is
taken, the diagrams with a large number of loops vanish
relative to the Q = 1 diagrams.

There are two valuable results of this formalism. First-
ly, a closed expression for ZMv can be written in terms of
the full boson and fermion propagators. Because of the
chemical potential —A, , the spectral functions of the f
electron are centered around co=A, , thus defining the spec-
tral densities by

ksT+e —'""'l(iv„—X),
~n

G-„( )=( - ( ) -„(0)&,

(24) /If~(co) =m 'ImGf~(ro+Ai5), .—

B(v) =rr 'ImD(v+A, —i5),
(26)

(27)

AT pe —" i[ico„—E(k)], (25)
CO+

linked together by the interaction vertices generated by
H;„. The associated Feynman diagrams for these propa-
gators are illustrated in Fig. 1. A directed arrow is used
to show the flow of charge Q along boson lines.

As usual, the path-ordered exponential can be expressed
as the exponential of the change in free energy hF, and
6F is given by a sum of connected closed-loop diagrams
as shorvn in Fig. 2. ' In each connected diagram there are

where Gf and D are the full propagators in the interact-
ing GCE; (Q &~ is then given by

0(e px)

(a)

inn
1/( I(dn Ef X) 4 0 (8 2P)L)

i con
l / [i&un —E(k)]

ion

(c)
(/(ivn —X)

V{k) V{k)

f+e =f0

0 (e 5Pk)

FIG. 1. Notation used in Feynman diagrams: (a) f-electron
propagator, {b) band-electron propagator, and {c)boson propaga-
tor with directed line showing flow of charge Q.

FIG. 3. Fugacity dependence of connected diagrams contain-
ing different number of loops carrying charge Q.
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(Q)g= f de QAf (co)f(co+i.)+B(co)n(co+A)

(28)

where f(co)=[exp(Pcs)+1] ' and n(co)=[exp(bee) —1]
are the Fermi and Bose functions. By substituting this ex-

pression into (27), the partition function for the mixed-

valence impurity is thus

ZMv(P)= lim f der QAf (co)+B(ro) e
A,~ 00

J

(29)

The A, ~oo limits of Af and B are well defined because
the displacement of the chemical potential has been sub-

tracted out. However large A, becomes, the band electrons
will still produce a resonance between the boson and fer-
mion state because the separation of their bare energies is
always Ef. Thus if the propagators are expanded in terms
of their self-energies (Fig. 4)

Gf (ro)=[co Ef —Xf (co)—A, ]

D(v) = [v—II(v) —A, ]
(30)

it may be deduced that the self-energies contain an ima-

ginary part, giving rise to a width in the spectral func-
tions. The peaks of the spectral functions will occur at
energies Ef and Eb given by

Ef~ =Ef~+Re[Xf~(Ef +A, )],
(31)

Eb ——Re[II(Eh+A, )] .

These expressions are the analogs to the Brillouin-
Wigner expressions derived by Keiter and Kimball. Pro-
vided the temperature exceeds the widths of the spectral
functions at the lowest-energy poles, the spectral functions
can then be treated as 6 functions in the integral (29),
reproducing the we11-known Keiter-Kimball expression
for the partition function,

tion theory can not extend to the Kondo regime.
The other useful application of the boson technique is

to calculate the spectral function of the real f electron. In
terms of the Hubbard operators, the propagator for the
real f electron is given by

(&)= ( T[Xo (&)Xo (0)]~a

which in terms of the boson approach becomes

&m «)=
& T[b «)fm«)fm(0)b(0)] &F ~

(33)

(34)

By using (22), this becomes

(r)= lim [(Tb (r)f (r)f (0)b(0))g/(Q)g] . (35)

V(k) = V(k)/~N, (37)

where V(k) is kept fixed as N is made large. ' ' Now in a
general diagram of order 1/N, if A is the number of ver-

tices and L is the number of closed fermion loops, then

The numerator in this expression is simply the two-

particle correlation function C~ (r) shown in Fig. 5.
C~(r) can be expressed in terms of the full boson and fer-
mion propagators, integrated with a vertex term A(r~, rq)
for the renormalized mixed-valence interaction. Hence,

P
Cm(T) = dr&d~)G~(~p)D( —'T])A(~ —72, 7 1]) . —(36)

Now, in general, calculation of these spectral functions

would be thwarted by the difficulty of calculating vertex
functions. Vertex functions enter into the expansions of
the boson and fermion self-energies as well as the real f
spectral function. The problem is solved by recognizing
that for typical mixed-valence systems, the degeneracy is
large, and in the limit of large degeneracy the vertex
corrections are of order 0 (1/N ) and can be neglected.

To see this in detail, consider the large-N limit. To pro-
duce a well-defined large-N limit the bare interaction ver-

tex must be rescaled according to

zMv(13) =e (32)
R =A/2 L— (38)

Below a critical temperature characterizing the slow spin
and charge fluctuations of the system, the Keiter-Kimball
result becomes an approximation because the widths of
the spectral functions can no longer be ignored. The regu-
larization procedure used in the time-ordered perturbation
theory explicitly ignores these widths by forcing the self-
energies to be real. This is why the time-ordered perturba-

because each vertex adds a factor of 1/N, and each closed
fermion loop adds a factor of N due to the summation
over N spin states. Now the vertex functions are deter-

F ~ ZF ~- + g ~ ~ o

+ ~ ~ ~ ~

+ ~ ~ ~ ~ 0 (l/N )

FIG. 4. Expansion of fu11 propagators in terms of self-

energies. (a) Fermion propagator, and (bj boson propagator.
FIG. 5. Diagrammatic expansion of real f-electron Green's

function showing the vertex corrections.
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mined by the irreducible two-particle Green's functions,
and for a general diagram contributing to these functions
the number of links between the external lines, A/2 must
exceed the number of closed fermion loops by 2 (Fig. 6) or
more, so that A/2 —I.&2 leading to the above result. It

is. interesting to remark that the general n-particle irredu-
cible Green's function must be of order 0(1/¹)for simi-
lar reasons. From general field theory it is known that the
n-particle vertices I'" determine the functional dependence
of the free energy on the fields' according to

PpI'[f, f,b b]= I drdr'[ft(~)G '(~ r'—)f(r')+bt(I)D I(r v')—b(w')]
Pdrd~'d~"dI'"[f t(~)f(~' )I (~,~', ~",~"')bt(I."' )b(~"")]+

where the ellipsis includes the higher-order vertices. Here
spin subscripts have been left out, and the band-electron
degrees of freedom have been integrated away. Thus a
rigorous expansion of the free-energy functional to order
O(1/N ) can be obtained by ignoring vertex corrections
and higher-order interactions. Formally, the partition
function and thermal Green's functions are determined by
minimizing the free-energy functional, so this is the best
1/N expansion that can be carried out. This approxima-
tion is subtler than merely taking the highest-order dia-
grams in the expansion of the propagators. These argu-
Inents are independent of whether one is the "Kondo" or

011xed-valence reglHles.
This result can be exploited to produce expressions for

the boson, fermion, and real f-electron propagators that
are accurate to O(1/E ). The self-consistent diagrams
fol tllc cxpanstoll to 't1118 oldcl a1c sllowII 111 FIg. 7. T11c
dominant O(1) effect is the renormalization of the boson
self-energy II(v). The fermion self-energies are of leading
order O(1/N). This is consistent with the results of
Ramakrishnan, who showed that large degeneracy results
in a lowering of the empty-state energy Eo that is E times

0 (1/ N )

larger than the lowering of the energy Ef of the full state.
Carrying out the frequency sums in these diagrams is a

straightforward task, and taking the large-A, limit, the
self-consistent equations for the boson and fermion
Green's functions are (see Appendix A)

Xf~(co)=E 'Q
~

V(k}
~

D(co+E(k))f(E(k)),

II(co)= g i
V(k )

i Gf (co+E(k))f(E(k)} .

In this expression the large-A, limit has been taken and fre-
quencies are measured relative to the chemical potential
—A, . The real f-electron spectral function p~(co) is given
by the convolution of Af~ with 8 according to

p (co)= I dv[Af (co+v)8(v)]

X [ ~'+'+ ~ ]IZ (0) . (41)

To date the author has not obtained analytic solutions to
these equations, though their qualitative features are de-
duced from simple arguments and numerical solutions are
readily obtained by iteration. An alternative approach
would be to numerically integrate away the band electrons
in Eqs. (40} by progressively reducing the bandwidth.
Such an approach was not used here, but it is worth not-
ing that it would correspond to a dynamic version of Hal-
dane scaling. "

By co11sldcrlng thc spcctl'al dccoIIlposl'tloII of Af alld 8
(see Appendix 8) the general form of the spectral func-
tions can be shown to be

0(l / N') + 0((/N~)

+ 0((/N )

0(1/N )
Q P ) T +

FIG. 6. Showing how vertex corrections are of order
0(1/X').

FIG. 7. Diagrams for the self-consistent expansion of propa-
gators and self-energies to order 0 (1/X ).
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&f (~)=8(ro —Eo)Af+ (a))+8(EO—al)ZMv(p)euf (ro),
(42)

B(v)=B(v E—o)8+{a))+B{EO v—)ZMv(13)e~"b(v),

where the functions /I+, 8+, and a,b all have well-defined
and finite zero-temperature limits. Eo is the ground-state
energy of the I'l subspace measured relative to the energy
of the unperturbed electron sea. At low temperatures—PEOZMv-e, and so the second terms in these expressions
form exponential tails which vanish at absolute zero. At
absolute zero A. +(co) and 8+(ro) are the energy spectra of
the states formed by adding a single boson or f electron to
the unperturbed electron sea. These spectra necessarily
contain x-ray singularities at their threshold energies' '
because changing the number of bosons or f electrons
means that the charge Q is changed, and so the band elec-
trons experience a new scattering potential, resulting in a
power-law relaxation of the electron sea as an infinite cas-
cade of electron-hole pairs are produced. The fully re-
laxed new ground state has no overlap with the initial
state. Consider the addition of a boson to the unperturbed
electron sea to form the state b ~0;Q=0). Then the
propagator for this state will have a power-law depen-
dence on time at long times that is characteristic of in-
frared catastrophies,

(0;Q=0
~

T[b(t)bt(0)]
~

0;Q=0) —1/r, (43)

consequently 8(v)-
~

v Eo
~

'. —By substituting this
into the zero-temperature limit of Eq. (40) and iterating
once gives 3 (co)-

~

co Eo
~

'. B—y iterating twice, a is
constrained to a= 1/(1+N) and the low-energy forms of
D(v) and 6 (al ) are deduced to be

+ .5) [ imam/%+1/( E )x/%+ I]
G (~+l5) [elm/N+I/(~ E )I/%+1]

duces two-peaked spectral functions whose shapes may be
classified according to the three well-known regimes of
the Anderson model deduced from scaling theory ' (i)
the empty impurity limit, (ii) the mixed-valence regime,
and (iii) the Kondo regime. Typical spectra for these re-
gimes are shown in Fig. 8. These spectra were calculated
for a uniform band centered on the Fermi energy with

constant V(k )= V and density of states p. In regime (i)
there is a large peak of weight —1 per spin channel lying
above the Fermi level at the empty f-state energy, having
width b, =m

~
V~ p. As the bare f-state energy Ef be-

comes of order —0(Eb, ), this peak moves down towards
the Fermi energy, and begins to cross it when Ef- NS, .—
This is the mixed-valence regime (see Fig. 9). As the bare
f energy is further reduced the peak above the Fermi ener-

gy cannot move below 1t; 1t simply narrows into a Kondo
resonance of width Tz/X, and its weight reduces as Ef is
lowered. At this point the boson spectral function begins
to contribute increasingly to the real f spectral function,
producing a broad peak of width -Xb, centered at about

Ef, whose weight grows to 1 /X per spin channel (i.e.,
total weight 1) as one enters the Kondo regilne.

BOSON SPECTRAL
WEIGHT

To accuracy 0(1/N ), +=1/N, a result that could
have been deduced from Nozieres and De Dominicis'
theory, ' assuming X scattering channels, and each
scattering with a phase shift 5=@/X corresponding to the
single Q=l bound state. By their formula, a= +52/
~ = 1/N. This may well be an exact result.

By substltutlng flic cxplcsslons (42) ill thc cxpl'cssloll
(41) the spectrum of the real f state at absolute zero is
given by

Eo +Op

p~(co) =8(~) I /I~~(co+v)b(v)dv
0

4.0
. (b)

0.0

PSEUDO F SPECTRAL

WEIGHT

+8(—co) I af (co+v)8+(v)dv. (45)

For co-0 the products in these integrals are —1/v, giving
a finite and smooth real f spectral function at the Fermi
surface. Here the functions af~(v) and b(v) act as
smoothing functions, and it can be loosely said that the
real f spectrum below the Fermi surface has the
broadened shape of the boson spectral function (reflected)
while the real f spectrum above the Fermi surface has the
shape of the f-fermion spectral function Af+ (co). One is
forced to conclude that at all times the full f spectrum
will possess a two-peaked structure.

Numerical work confirms these arguments and pro-

0.0

CU/N 6
FIG. 8. Typical ferrnion and boson spectral functions. (a)

8(v), the boson spectrum, and (b) A(~), the fermion spectrum.
For these spectra %=6, Ef/XA= —1.1, and the bandwidth
=10%5.
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6.0 — F SPECTRAL
WEIGHT

4.0—
0

2.0—

I

(o)
quite rigorously, the overlap of the full mixed-valence im-

purity ground state
~
0;Q = 1) with the state b

~
0;Q =0)

is zero. Translating into the language of the conventional
representation of the Anderson Hamiltonian this means
that there is absolutely no overlap of the unperturbed Fer-
mi sea

~

0) with the true mixed-valence impurity ground
state

~

C o),

(46)

I

-4.0 -2.0 0.0

(d/Nb,
2.0

I

4.0

4.0

F SPECTRAL
WEIGHT

2.0—

—4.0 —2.0
I

0.0 2.0
I

4.0

I

F SPECTRAL
WEIGHT

(c)

—4.0 -2.0
I

0.0
I

2.0
I

4.0

FIG. 9. Real f-state spectrum, N=6, bandwidth=lONb, .
(a) Ef——0, empty impurity regime; (b) Ef/X 6= —1.1, mixed-
valence regime; (c) Ef———2.0%A, Kondo regime.

It has been traditional to use variational wave functions as
models for the mixed-valence impurity ground state.
These variational wave functions have a finite overlap
with

~
0)," a sign that they do not incorporate these in-

frared effects.
From the above discussion it is apparent that infrared

effects become weak in the large degeneracy limit, as the
exponent a vanishes as 0(1/N). However, caution must
accordingly be applied when interpreting the results of
any calculation that ignores these 1/N effects, for while
they vanish in a system of infinite degeneracy, they are al-
ways present in systems with finite degeneracy. The
high-energy features of such a calculation are reliable, as
are predictions of the ground-state energy and derived
quantities such as magnetic susceptibility, for none of
these are crucially dependent on infrared effects. It
remains unclear how reliable the predictions for the low-
energy excitation spectra can be if infrared effects are ig-
nored. One well-known artifact of an "infinite-N" calcu-
lation is the presence of a phase transition at finite tem-
peratures, ' ' which is not present in a finite-N calcula-
tion due to infrared effects.

The application of the boson approach to yield a
Feynman-diagram expansion for mixed valence is only
meant as an illustration of the value of this approach, and
further developments are envisaged. One of the great
drawbacks of the diagrammatic approach is that it gives a
closed expression for the partition function rather than the
free energy. This makes it difficult to treat the low-

energy thermodynamic properties, and although in princi-
ple, the diagrammatic treatment should yield an analytic
expression for the Wilson ration 8 =X/y that is accurate
to 0(l/N ), the author has not succeeded in deriving it.
A path-integral approach may be more appropriate for
low-temperature properties, as in the case of the Kondo
problem.

However, there is much to be learned from an extension
of the diagrammatic treatment to the lattice. This exten-
sion is achieved by introducing a conserved charge Q; for
each site and an associated chemical potential —A,;. The
partition function for the lattice is then given by

Z„„;„(P)= lim g [Z(A, „A,„.. . , A,; ) ] .
i) i

(47)

III. DISCUSSION: FURTHER DEVELOPMENTS
AND THE IMPORTANCE OF INFRARED

DIVERGENCES

Before discussing further developments an important is-
sue to be dealt with is the importance of infrared diver-
gences. From the above considerations, it is known that

The partition function for the GCE can be expanded as a
sum of closed-loop Feynman diagrams, as in the impurity
problem, and the projection operation selects those dia-
grams with one closed loop for each charge Q;. As in the
analogous Kondo lattice problem', this generates a clus-
ter expansion for the partition function,
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Zi.tt -(P}
lim a' 1+

Zb.~s x; ,. ag;

(ZJ +Z;ZJ )

I, J I J

(0)

where r is the nutnber of sites and the terms Z; J „are
the sums of all closed-loop connected diagrams connecting
sites i, j, . . . , n, while a is the partition function of a
noninteracting rare-earth ion,

a=1+ +exp( PEf—) .

Most important of all is the existence of a 1/X expan-
sion for the partition function. In the general p-site term,

A/2&L+(p —1)

z= ~ „v+
0 (1) t',

+

(o)

(see Fig. 10). Thus by (38} the general p-site term is of or-
der O(l/X~ '). This confirms the conjecture of Rama-
krishnan that to all orders in perturbation theory, inter-
site interactions are smaller by orders of I/E, a result al-
ready known for the Kondo lattice. ' It means that the
local picture of mixed valence will be a good approxima-
tion in the large-N limit.

To produce a consistent expansion of the free energy of
the lattice to order O(1/E ) it will thus be sufficient to
consider just one-site and two-site interactions. To this
order it is found that two new intersite interactions enter
into the problem, both of order O(1/X) (Fig. 11): an in-
teraction between empty states, and a hopping term which
will tend to delocalize the f electrons (Fig. 10). Later
work will develop these ideas in detail.

FIG. 11. Dominant 0(1/X) interaction terms in the mixed-
valence lattice. (a) Interaction between empty states. (b) Hop-

ping matrix element for f electrons.

IV. SUMMARY

This paper has shown how the introduction of zero-
energy bosons to represent the singlet valence states of
mixed-valence ions allows a simple reformulation of the
mixed-valence problem that is far more amenable to con-
ventional field-theory techniques. As an illustration of
the application of this technique, a conventional Feyn-
man-diagram expansion for mixed valence is developed:
The applications of this expansion to the mixed-valence
impurity have been presented in detail. The extension of
this approach to the lattice has been discussed and out-
lined.
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k~+
APPENDIX A: CALCULATION

OF SELF-ENERGIES TO 0 (1/X )

0 (1/N'}
(c)

FIG. 10. Terms contributing to the cluster expansion of the
mixed-valence lattice partition function. (a) Z;, (b) Z;~, and (c)

Z;Jk, showing the dependence on X.

The procedure for calculating a diagram is to explicitly
evaluate a diagram at finite A, , then to take the large-A,

limit. Figure 7 displays the diagrams for a 0 (1/X ) cal-
culation of the self-energies II(v;A, } and Xf (co;k). To
evaluate the diagrams the full propagators D(iv„;A, ) and

Gf (iso„;A)are first ex, panded in terms of their spectral
densities,
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D(iv„;A, )= f dco(iv„—A, —co) 'B(co;k),
(Al)+ 00

Gf~(&co„;A,)= dv(ico„—A, —v) Aug(v;A, ) .

In terms of the propagators the algebraic expression of
the diagrams is

T

II(iv„;A)=( —1) kg—T g I
V(k)

I
Gk~(ico„)

id)~1 k, Hl

n(co)=(e~ —1) ' is the Bose function. In the limit
oo, the integrals over f( A, +co) and n ( A, +v) vanish be-

cause the limiting spectral-weight functions Af~(co) and
B(co) have no weight at co= —A, (see Appendix 8). So
omitting these terms and simplifying using formulas (Al)
y1elds

II(v)= lim II(v+A, ;A, )= g I
V(k)

I
f(E(k))k~ 00

XGf (v+E(k)),
X

Gf~(&v„+&copped~)

(ico„;A,)= k~T —g I
V(k)

I
Gk (ico„iv„—)

XD(iv„;A,),

(A2)

(A4)

Xf (co;k)= lim II(co+A, ;A)= g I
V(k)

I
[1—f(E(k))]

A~00
k

XD(co —E(k)) .

If the band and matrix elements are assumed to be sym-
metric about the Fermi surface the second equation at-
tains the form used in (40).

where the additional minus sign in the first equation is
due to a closed fermion loop. The insertion of (Al) into
(A2) and carrying out of the frequency summations leads
to

APPENDIX 8: SPECTRAL DECOMPOSITION
OF BOSON AND FERMION PROPAGATORS

II(iv A) —y I
V(k)

I f dcoAf (co A)

k, m

f(E(k) ) —f(&+co)

iv„A, +E(k) —co—
Xf~(waco„;A.)= g I

V(k)
I f dvB(v;A, )

k

(A3)

The full boson and fermion propagators of the grand-
canonical ensemble may be spectrally decomposed as

Gf (7 A ) —( T[f (7 )f (0)]&x

= f dcoe ~"+ '[1—f(co+A, )]Af~(co;A),

(Bl)
D(r; A ) = ( T[b(r)b t(0)] &g

= f dve '"+ '[1+n(v+A)]B(v;g), ,

X
1 —f(E(k))—n(A, +v)

i co„A, E(k) v— — —

Here, f(co) =(1+e~) ' is the Fermi function and

where v. &0 has been arbitrarily taken. By explicitly ex-
panding the expectation values in terms of the eigenstates
of the grand canonical ensemble Ii;Q; &, Af~(co;A, ), and
B(v;A, ) can be explicitly written as

X I &j'Qj If Ii'Q & I
{e ' ' +e ' ' »(co (Ej ZG(A, ),

X I &j QjIb'I& Q & I'« ' '+e ' ' »(v «, —E)} ZG(A, ) .

Now taking the A,~ oo limit leads to

Af (co)= g I (j;Q=l
I f Ii;Q=O& I

e '5(co (E E))— —

B(v)= g I (j;Q =1
I

b
I
i;Q=O&

I
e '5(v (Ej E;)}——

Zband ~

Zband

(83}

In the T~O limit the dominant contribution to the sum
over i in these expressions comes from the ground state of
the Q =0 subspace

I
0;Q =0&. This is merely the unper-

turbed sea of band electrons. Measuring energies relative
to the energy of this state, then Zba„d~1 and the T~O
limits of A and B are

Af+ (co)= g I (i;Q=l
I f IO;Q=O& I'5(co E;), —

B+(v)= g I (i;Q= 1
I

b
I
0 Q=O&

I
5(co E;) . —(84)

Here the E; are the energies of the Q= 1 eigenstates,
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which all exceed Eo, the energy of the Q= 1 ground state.
Thus A+ and 8+ are zero at frequencies below Eo.

Now from (83),

normalizing these expressions by dividing by ZMv(P),
they have zero-temperature limits given by

af~(co)= limdf (to)e ~ /ZMv(P)

g (
(i;Q=0

) f [ 0;Q =0)
[ 5(co —(Eo—E,)),

Xe '5(to (Et—E~ )—) b(v) = lim 8(v)e ~'/ZMv(P)

= g ) (i;Q =0~ b ~0;Q =1)
)

5(v —(Eo E;)—) .

Zband

In the zero-temperature limit, the sum over j are dominat-
ed by the ground state of the Ft subspace,

i 0;Q = 1). So

The Q=l ground-state energy Eo is less than the Q=O
ground-state energy because hybridization lowers the ener-

gy of the system, and thus Eo &0. The excited states of
the Q=O subspace have Et ~0, so that Eo E; gO, —and
also so that af (~) and b(v) are zero for frequencies above
Eo. Combining the results (84) and (86) leads to the re-
sults quoted in (42).
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