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Critical properties of the Q-state Potts model for dimensions 3 & d & 6 are calculated by means of
Wilsons exact momentum-space renormalization-group equation. The scaling-field method of
Golner and Riedel is used to approximate the functional differential equation by a set of 11 ordi-

nary coupled differential equations. For d =4—e, lines of critical and tricritical Potts fixed points

are found as functions of Q that annihilate as Q approaches a critical value Q, =2+e /a +O(e').
For Q ~ Q„ the Potts transition is first order. Along these fixed lines the critical and tricritical ex-

ponents (upper and lower sign, respectively) are to leading order: 1/v=2 —
6 [e+(e —a5)'~ ],

P/v=+(e —a5)'~, and g = [e+(e a5)'—~2]2/216+ b5, where e=4 —d, 5=Q —2, and

5&5, =e /a +0 (e ). Whi1e the form of the e and 5 dependences is exact, the coefficients a and b

cannot be obtained systematically by e expansion, since the upper critical dimensionality of the Potts
model is six when Q&2. In our truncation, a=6.52 and b=0.065. The results have been extended

to dimensions 3.4(d (4 by solving the renormalization-group equations numerically. The percola-

tion limit of the Potts model, Q=1, is also investigated and the critical exponents v, P, and i)
determined as functions of dimension for 3 &d & 6.

I. INTRODUCTION

The Q-state Potts model has been widely studied be-
cause of its intrinsic theoretical interest and its many ap-
plications to physical systems. ' In 1973, Baxter found
that the phase transition of the two-dimensional Potts
model is first order for Q &Q, =4 but continuous for
Q & Q, . An explanation of this changeover by
renormalization-group (RG) techniques was given by
Nienhuis et al. These authors showed by conventional
position-space RG methods that the dilute Potts model
exhibit lines of critical and tricritical fixed points as func-
tions of Q that merge and annihilate as Q approaches Q, .
For Q & Q„ the phase transition of the pure Potts model
is governed by the line of critical fixed points and, for
Q & Q„by a line of first-order discontinuity fixed points.
The interest in the two-dimensional Potts model
heightened when conjectures were proposed that relate the
critical exponents of the Potts model to the thermal ex-
ponent of the eight-vertex model. A conjecture for the
thermal critical exponent was first proposed by den Nijs,
and later extended by Nienhuis et al. to the tricritical
thermal and critical and tricritical magnetic exponents. '

Recently, all three exponent relations have been obtained
analytically.

In contrast, the Potts model at dimensions larger than
two is much less explored. This article presents a study of
the Q-state Potts model for dimensions 3&d &6. ' Since
different RG techniques are required than for 8=2, here
the Potts model is cast into a Landau expansion IIt[o],
where o is a continuous-spin variable with X=Q —1 vec-
tor components. " This model is then investigated using
Wilson's exact momentum-space RG equation' and the
scaling-field method by Golner and Riedel. ' ' The ap-
proach allows one to vary continuously the spatial dimen-
sion d and number of states Q and, therefore, to apply

both numerical and expansion techniques. The scaling-
field method has also been used for high-precision calcula-
tions of the critical exponents of the isotropic X-vector
model in three dimensions' ' and for studies of the cubic
X-vector and the randomly dilute Ising models in dimen-
sions 2.8 & d & 4. '

The most striking result of the scaling-field calculation
for the Potts model is that the changeover from continu-
ous to first-order behavior with increasing Q occurs by the
same mechanism near four dimensions as in two dimen-
sions. Lines of critical and tricritical fixed points exist for
small Q and annihilate as Q approaches a critical value Q,
that depends on dimension. (Compare to Fig. 1.) This
result is obtained by a novel e expansion near four dirnen-
sions and numerically for 3.4&4 &dx. We make two ob-
servations.

(i) This topology of the RG phase diagram provides a
convenient definition of the critical value Q, =Q, (d) in
terms of the value of Q for which the lines of critical and
tricritical fixed points merge. This determines the largest
value of Q for which continuous Potts behavior is possi-
ble. By imposing constraints, first-order transitions at
Q & Q, can be induced.

(ii) The result of merging lines of fixed points follows
from microscopically derived recursion relations without
the use of the Potts lattice-gas concept. In fact, the recur-
sion relations differ strongly from the phenomenological
ones proposed by Nauenberg et al. ' to model the results
by Nienhuis et al. In our calculation near four dimen-
sions, the marginal operator associated with the merging
lines of fixed points can be interpreted as a dilution opera-
tor.

For a small but interesting range of Q, the Q-state Potts
model can be discussed by e expansion near four dimen-
sions, although its upper critical dimensionality is d, =6.
The reason. is that the model reduces to the Ising model
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when Q=2, for which d,'=4, and so for 5=Q —2«1
the coupling coefficients between the isotropic and Potts
field are of order 5. However, the expansion is special in
that for the Potts fixed point only the isotropic fields are
of order e, while the Potts fields are of order 1, reflecting
the fact that the true upper critical dimensionality is 6.
Therefore, even for d =4—e, the solution requires a com-
bination of expansion and numerical techniques. We have
obtained the following results. ' In d =4—e dimensions,
the Potts model exhibits lines of critical and tricritical
Potts fixed points for

Q & Q, (d =4—e) =2+@ /a+O(e )

that annihilate as Q approaches Q, . For Q&Q„ the
phase transition of the model is first order. An earlier re-

sult by Aharony and Pytte, ' according to which

Q, =2+@+0(e ), is incorrect. To leading order in
@=4—d and 5=Q —2 where 5(5,=e /a+O(e ), the
critical and tricritical exponents (upper and lower signs,
respectively) are

cases failed to yield the percolation exponents in three di-
mensions to satisfactory accuracy. Specifically, recent
studies by de Alcantara Bonfim et a/. ,

' Fucito and Mari-
nari, and Reeve et al. give no indication for the expect-
ed sign change in the exponent q as function of diinen-
sion. The scaling-field method is well suited for investi-

gating this question since the dimension can be varied
continuously and the calculation performed directly for
the dimension of interest. The results for our truncation
to 11 scaling-field equations show the expected depen-
dence on dimensionality, but larger truncations must be
considered for improved precision.

The outline of this paper is as follows. In Sec. II the
Landau Hamiltonian for the Q-state Potts model is de-

fined and the scaling-field formalism described. Results
for the Q-state Potts model in dimensions 3.4&d (4 for
general Q and in dimensions 3 &d & 6 for Q = 1 are given
in Sec. III. Section IV presents a brief summary. Appen-
dix A provides a guide to the derivation of the scaling-
field coupling coefficients and Appendix 8 presents com-
ments on e expansion near six dimensions.

—=2——,
' [e+(e —a5)' ],

V
(1.2)

II. MODEI AND METHOD
P/v= + (e —a 5)'~, (1.3)

(1.4)

denotes both the correction-to-scaling exponent
P= —6, (upper sign) and tricritical crossover exponent

(lower sign). These results are displayed for
d=3.98 in Fig. 1 below. For Q=2 or N= 1 the results
reduce to those of the Ising model. Also, note the similar-

ity between the above results and those for d =2, where, to
order 5' with 5' =4—Q,

and

1/v= —,
' +(3/m)(5')'i

P/v=+(8/~)(5')'~ (1.6)

While the form of the e and 5 dependences of the ex-

ponents (1.2)—(1.4) is exact, the coefficients a and b can-

not be calculated by e expansion since they are determined

by the fixed-point coordinates of the scaling fields associ-
ated with terms of Potts symmetry, which are of order 1
near four dimensions. This makes it difficult to determine
whether a and b are universal and independent of details
of the model. As expected, the values of a and b from the
truncated RG equations are not. The truncation of the in-

finite set of scaling-field equations to 11 coupled differen-
tial equations yields a =6.52 and b =0.065.

The second purpose of this article is to report results for
the percolation or one-state Potts problem in dimensions
3 (d &6. The critical exponents of the percolation prob-
lem are known exactly for d =2 (Refs. 7—9) and 6—e.
The interpolation as function of dimension between these
results has attracted much interest, partly because field-
theoretical expansion techniques that worked well in other

To apply Wilson's exact momentum-space RG equation
[see Eq. (11.17) of Ref. 12], one must first write the Potts
model in terms of a continuous-spin Landau Hamiltonian

Hi[o j. Here we follow the N-vector-model formulation

by Zia and Wallace, " adapted to the Wilson equation.
The RG investigation then uses the scaling-field
method. ' ' We discuss the method first.

Wilson's exact RG equation has the form of a function-
al differential equation for the Hamiltonian Hi[0]. The
idea of the scaling-field approach is to transform this
equation into a set of ordinary differential equations,
which in turn can be solved by successive approximation.
This transformation is carried out in three steps. First, we
construct the Gaussian eigenfunctionals Q [o] and eigen-
values y by linearizing the Wilson equation about the
Gaussian fixed-point solution HG[0]. Then, assuming
that the eigenfunctionals Q [o] provide a basis in the
space of RG Hamiltonians, we expand H&[cr] as follows:

Hi[~]=HG[~j+ gs (l)Q [~j (2.1)

The expansion coefficients p (l) in this equation are re-
ferred to as scaling fields. Finally, by substituting this ex-
pansion into the Wilson equation and projecting all terms
onto the basis operators, we obtain the set of scaling-field
differential equations,

dp (l)
dl

=y p (l)+ ga Jkpj(l)pk(l)+ ga Jp1(l)+a
j,k

(2.2)

The coupling coefficients a Jk, a~j, and a~ of Eq. (2.2)
are computed using an algorithm that involves an
operator-product expansion. ' ' ' These coefficients are
products of combinatorial factors and momentum in-

tegrals; for details see also Appendix A. Via these cou-
pling coefficients, Eqs. (2.2) depend on dimension d, num-
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ber of spin components N (and thus, number of states Q),
and a spin-rescaling parameter 5 (in Wilson and Kogut's'
notation, b, =—1 —d p/dl). The scaling-field equations can
be solved in certain limits by e or 1/N expansion. Alter-
natively, the equations can be used to define approxima-
tions by truncation. Both methods will be employed in
the following discussion.

Information about critical properties follows by study-
ing the recursion relations (2.2) in the usual way. ' ' The
leading thermal eigenvalue equals the inverse of the
correlation-length exponent v and the ratio of the two
leading thermal eigenvalues determines the crossover ex-
ponent or correction-to-scaling exponent (t(. The
correlation-function exponent 2) is determined by the
fixed-point value 6* of the rescaling parameter b:

g=2h* . (2.3)

A condition for calculating b," numerically has been
developed. We search for the value of b, that produces a
fixed point with marginal (i.e., zero) eigenvalue. ' ' ' In
our e-expansion approach near four dimensions, we use a
different though equivalent condition however, for e ex-
pansion near six dimensions, see Appendix B. The
scaling-field method is general and can also be used to
study thermodynamic properties of the Potts model. '6

For the Q-state Potts model, the expansion (2.1) re-
quires in principle all eigenfunctionals of isotropic and
Potts symmetry. The latter is the permutation group of Q
objects. The calculation proceeds as in Sec. II of Ref. 17,
where the scaling-field method is applied to the cubic N-
vector model. The Gaussian eigenfunctionals Q [cr] are
defined by Eqs. (2.7)—(2.9) of that reference. They are
polynomials in the spin variables 0. and momenta q. For
the Potts case, the spin variables are N =Q —1 component
vectors, cr=I(r;a=1, . . . , Q —1; —co &cr & oo]. Two
indices, m and I are required to label the spin dependences

I

of isotropic and Potts symmetry and one principal index,

p, is required to characterize the momentum dependence.
The latter is parametrized in terms of the set of homo-
geneous functions in q to all orders p, f~ IqI. We use the
index "m" to denote the set of indices,

m=Im, l p, . . . I . (2.4)

m/2
R -p[~]= g ~(q2; () ~(q2 ) (2.S)

The Potts eigenfunctionals to order cr (written without
momentum dependence on the spin variable) are given by

RQ3[~]=N ' g Q~p&~~~p &,
3/2

a, P, r

R23[+] R2Q[&]RQ3[+] ~

RQ4[cr]=N 'N(N+2) g F prso~crpcrrcrs
a,P, r, 5

—3(N+ 1)R4p[cr]

(2.6)

R24[c ]=R2Q[c ]Ro4[c']

Ro, [cr]=N' (N+6) g 6 prs2. cr crpcrrcrscrz
a, P, r,

5, A,

(2.9)

—10R23[o ] (2.10)

R Q6[cr] =(N+ 8)RQ6[cr] —1S(N+4)R24[(r] (2.11)

(The notation is chosen so that the cubic eigenfunctionals
of Ref. 17 can be easily included in future calculations. )

The spin dependence of the Gaussian eigenfunctionals

Q~ [(T] is defined via the functionals R [cr] in Eq. (2.9) of
Ref. 17. The isotropic eigenfunctionals are defined by

R Q33 [cr]=(N+ 8)(N +N+4)RQ33 [cr]—,', N(N+ 1 )(N+—2)(N+8)(N + 17N+ 12)RQ6[cr]

+ —,
' N (N+ 1)(N+4)(N+ S )(N+ 8)R24[o],

where

(2.12)

RQ6[cr]=N N(N+2)(N+4) g Haprs2„oaopcrroso2cr„1S(N+—1)R6o[cr] (2.13)

RQ33[(r] =N (N+2)(N+4)(RQ3[(r])

—6(N+ 1) (N —1)R6o[(r] (2.14)

The Q pr, I'~prs, etc are the Z. ia and Wallace factors"
thai are defined by

eae (2.1S)

in terms of the %+I vectors e', i =1, . . . , N+1, with X

components, o.=1, . . . , N, that point to the N+1 vertices
of a &-dimensional hypertetrahedron. The number of
Potts components is

(2.16)

We note that our convention for the indices i and u is re-
versed from that of Ref. 11. Multiple indices l; in
R —

& ([o], such as in Eq. (2.14), have a meaning

similar to that described in Ref. 17 below Eq. (2.11). The
Potts operators of Eqs. (2.6)—(2.12) are traceless. The
choice of normalization factors N in Eqs. (2.6)—(2.14) is
such that the percolation limit N —+0 can be properly tak-
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en. Therefore, in the scaling-field equations the parameter
N=Q —1 can be varied continuously between zero and
large X.

Three general statements concerning the coupling coef-
ficients a Jk can be made. (For details, see Appendix A
and Appendix A of Ref. 17.) First, two classes of cou-
pling coefficients vanish because of symmetry, apII =0
and aI zz

——0, where I and P are generic indices denoting
the sets of isotropic and Potts operators, respectively.
Second, a linked-contraction theorem holds that limits the
number of nonzero coupling coefficients a Jk. Similar
considerations apply to a z, for which ail apI ——aIp=O
and a linked-contraction condition restricts the nonzero
aII and app. The only nonvanishing coefficient a is
azo. z ———22b„where A is the normalization of the Gauss-
ian fixed-point Hamiltonian Ho[o]. Third, the equations
for the Potts scaling fields decouple from those for the
isotropic scaling fields when N= l. The calculation of
coupling coefficients involving Potts operators is facilitat-
ed by relations summarized in Appendix A. An explicit
example of a truncated set of scaling-field equations for
the Potts model is given in Sec. III A.

Except in limits, the scaling-field equations must be
solved numerically. Approximations are generated by
truncation. The present study of the Q-state Potts model
is for a truncation that includes the four isotropic scaling
fields ml p =20,0, 40,0, 60,0, and 20,2 and the seven Potts
scaling fields 03,0, 23,0, 04,0, 24, 0, 05,0, 06,0, and 033,0.
For simplicity, we delete the index p and refer to the
eleven fields as 20, 40, 60, and 2'0, and 03, 23, 04, 24, 05,
06, and 033. This truncation corresponds to retaining in
the expansion (2.1) all operators to order cr with p =0 as
well as the p =2 operator,

Qio[o] ——, Jq o(q) o( —q) . (2.17)

For the Gaussian amplitude factor, the value A =0.5 is
chosen. Results obtained from truncations depend weakly
on the choice of this parameter. With A =0.5, the critical
exponents for the isotropic ¹ectormodel agree well with
the results found by other methods. For details, see Sec.
III A of Ref. 17 and Ref. 16.

Eigenvalues are labeled y —I or y —
&

with superscripts
used to distinguish different types of fixed points. Specif-
ically, we denote the thermal eigenvalue yzo, the marginal
eigenvalue yq o, and the leading irrelevant eigenvalues y4o,
yo3 or yo4, the relative order of the latter depending on I
and Q;. The exponent P equals the leading irrelevant
eigenvalue divided by the thermal eigenvalue.

Difficulties with the scaling-field method can typically
be traced to the fact that truncations are being used. Two
such problems were observed for the Potts model.

(i) Studying a small truncation of only 11 scaling-field
I

equations restricts the range of Q and d for which Potts
fixed points can be found. No problems exist for small Q,
except when d &2.8. ' However, the critical parameter
Q, (d) can only be determined for 3.4 & d & 4. For d & 3.4,
the truncation is insufficient to accurately approximate
the physical marginal operator associated with the annihi-
lation of the lines of critical and tricritical fixed points as
Q approaches Q, .

(ii) Near six dimensions, the e-expansion solution of the
truncated set of scaling-field equations does not reproduce
the exact results for the Potts model. The structure of
the equation is such that all scaling fields pro~ with p & 2
and p4op pQ4p pi3p and po, ~ with p &0 assume fixed-
point values of orders e and e', respectively, and thus
contribute to the critical exponents to leading order. For
further comments on e expansion near six dimensions, see
Appendix B. The situation is different for the e expansion
of the Potts model near four dimensions. There the
scaling-field method yields exact expressions for the criti-
cal exponents and Q, when

~
5~ =

~ Q —2~ &&1 with,
however, the numerical coefficients depending upon the
fixed-point values of infinitely many Potts fields. These
Potts fields are of order 1 because the upper critical
dimensionality of the Potts model is 6.

The strength of the scaling-field method lies in the fact
that it allows the numerical calculation of critical proper-
ties for the dimension of interest, with no need for subse-
quent extrapolation or resummation. For the estimation
of Q, (d =4—e), it is important that analytical @-

expansion and numerical methods are available that sup-
plement each other.

III. RESULTS

This section contains three parts: the solution of the
Q-state Potts model by e expansion near four dimensions,
the numerical analysis of the problem for dimensions
3.4&d &4, and a discussion of the percolation or one-
state Potts problem for dimensions 3 & d & 6.

A. Analytical solution for d =4—e

In the Introduction, we motivated the possibility of an
analytical solution of the Potts model near four dimen-
sions, although the upper critical dimension is six. The
procedure differs from the usual e-expansion approach.
We first illustrate the method by considering a simple
truncation. Then we show that the form of the expres-
sions obtained for Q, and the critical and tricritical ex-
ponents [Eqs. (1.1)—(1.4)] holds in general, though coeffi-
cients a and b must be determined numerically.

Consider the truncation that contains only the set of
scaling-field equations for the isotropic fields pz&, p4O, and

pz o, and the Potts fields pQ3 and po4.

Pro q 2(N+2) N+2 p 2(N+2) 2 2

dl
2P'20 2820+

3
I1I 20I 40+ Ipp4O+

3 3
&ipse pp4o+2(N+1) (N —1)I)pop

+(N+ 1) (N+2)(N —1)(N —2)Iipo4 b, 2ppo+ Lip4o—3 2 N+2
(3.1)
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dp40 G 2(N+8) 2 12(N+1) (N —1) 3 2

dt'
=y 4oP40 — 8P2o P40+

3
I1p4o+ (N+2) pQ3+ 12(N+ 1 ) (N 1 )(N —2)IIpp4 —46p40 i

dP2'0 %+2 (N+1)'(N —1)
2[(2—A ) —b, (1—A )]p20+ J2p'40 4p2Q p'2'0+ Jlp03

24 4

(3.2)

(N+ 1)'(N+2)(N —1)(N —2)+
8

J2p04 ~ 2A 4Ap20+2p2'0

dP03
=yo3Po3 [6P—2oPo3+4IiP4oPo3+6(N+1) (N —2)IiP03P04] —3&P03

(3.3)

(3.4)

dP04 6(N+1) 2 2

di y 04p04 8p20 p04+ 8I1p40 p04+ (N+2) p03+6(N+ 1 )( —2 —3N+N )I&pp4 —46pp4 (3.5)

Here y denotes the Gaussian eigenvalues,

y —i
——d ——,( m+I )(d —2) —p, (3.6)

where m+1 with /=l&+ +l, is the order in o of
R i i [o]. We remind the reader that the subscriptm, li, . . . , 1

2'0 stands for (2,0;p=2) and that p=0 for all other
fields. For d=4 —e, both y40

——y04
——e and the spin-

rescaling parameter b, has a fixed-point value of order e .
The integrals I„and J„with n =1 and 2 are defined by
In —=In +~n and Jn =Jn +~Jn Only the portion of the
integrals independent of the spin-rescaling parameter b, is
necessary in calculations to leading order in e: they are
II ——m/(4A ) and J2 ——n /(3A ), and, for A =0.5,
I2 ——1.305 and Ji ——1.909. The definitions of these and
other integrals can be found in Ref. 17.

It is useful to introduce the parameter 5:

5=Q 2=N 1. — —
For

i
5

i
«1, the equations for the isotropic and Potts

scaling fields, pi ——Ip20, p40, p2 QI and pp= Ipp3 pp4) cou-
ple only "weakly" through coupling coefficients ai zz that
are of order 5. It is this property that makes it possible to
solve analytically the equations for pI when e«1 and
i5i «1. The fixed-point values of the Potts fields pp

are found to be of order 1, which reflects the fact that the
upper critical dimension is 6.

Case pz ——0. In this case, Eqs. (3.1)—(3.3) reproduce
the e-expansion results for the isotropic N-vector model,
i..e., the critical and tricritical fixed points, which we
denote by O, (N) and O, (N) The fixed-poi. nt values of the
isotropic scaling fields are

3(N+2)I2
2 2e +O(e ),

8(N+8) Ii

between results for O, (N) and O, (N). ] The corresponding
eigenvalues are

y2p &
=2— e+0(e ) y40 = —6+0(e )

lV +2
N+8

(3.9a)

g, =23,'= e +O(e ),2(N+8)'

y20, t =2 y40, t =~ nt =o (3.9b)

1

y03 t l+ 2 ~~ y04 t=~

(3.10a)

(3.10b)

Case pz&0. In the larger space of the Potts model,
there exist new branches of critical and tricritical fixed
point that we denote by P, (Q) and P, (Q).

(i) When Q =2, the equations for the isotropic and Potts
fields decouple because ai zz ——0. For this value of Q,
the Potts fields are superfluous and the equations repro-
duce the eigenvalues (3.9) of the Ising model, O, (N= 1)
and O, (N = 1). Equations (3.4) and (3.5) yield at
P, (Q=2) and P, (Q=2) fixed-point values for the Potts
scaling fields that are identical to leading order (order 1),

1 —e/12 2, —(1—e/6) 2
p03, ~ =

&i2 +O(e ) p04, ~ = +O(e )
(48Ii )

ii2 ' 24Ii

In calculations to this order, one may choose without loss
of generality p2p ——0. ' (See, however, Appendix 8 for e
expansion about six dimensions. ) Then Eq. (3.3) yields the
exponent g via Eq. (2.3). The fixed points O, (N) and
O, (N) are unstable under the Potts perturbations, pp3,
p04&0. The respective eigenvalues are

N —4 N —4 2
yp3, ——1+ e+O(e ), y04, —— e+O(e ),

2 N+8 ++8

36
2(N 8)I (3.8a)

and

(3.1 la)

and

P2o, t =P40, t =0 .
1+e/4

(3.8b)
+O e ) p04 ~ 24

+O(e

[The additional subscripts c and r are used to distinguish (3.11b)
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The corrections to order e affect only the Potts eigen-
values. For Q =2, we find the eigenvalues

24I] a2'0, jkb=lim g '
pjpk.

j,kCP
(3.20)

ypz, ———2+ —,'e+O(E ), y~, ———2+O(e ) (3.12a)

and

3 03,t
—2, goo, ~= —2 —e . (3.12b)

(ii) When Q=2+5 with ~5~ &&1, one can substitute
expressions (3.11) for jzpz and jzpi into Eqs. (3.1)—(3.3).
Fixed-point expressions for pzp and p4p are easily found
since aI pp o: 5. To leading order,

e+(e —a5)2 1/2
(3.13)

l2r,

with a=4 for this truncation. The corresponding fixed
points are singly and doubly unstable (upper and lower
sign, respectively) with eigenvalues

y zp
—————2——,

' [e+(e —a 5) '~ ]+0(e ),
V

(3.14)

y~ ——+=+(e —a5)'~ +O(e ), (3.15)

rj= „', [e+(e' a5)'~ —] +5b+O(e'), (3.16)

where a =4 and b =0.051 for truncation (3.1)—(3.5).
Hence, Eq. (3.13) defines the critical and tricritical
branches of the Potts fixed points P, (Q) and P, (Q) as
functions of 5=Q —2 for d =4—e. When @&0, both
branches exist for 5&5,=e /a+O(e ). As 5—&5„ the
branches annihilate. To leading order, the marginal
operator is the dilution operator Q4p[o]. For 5&5„
"runaway" fiow is interpreted as indicating first-order
behavior. Therefore, the largest value of Q for which con-
tinuous behavior is still possible is given by

Q, =2+a /a+O(e ) . (3.17)

where the sums j and k are over all Potts scaling fields.
Since all aI ii ~5, this equation implies a solution of the
form (3.13), with a given by

a = lim 24Ii g '
pjIzk .

),k~~
(3.19)

Similarly, one obtains for b, from the equation for pz p,

This behavior is summarized in Figs. 1—3.
Now we show that the structure of the e and 5 depen-

dence of results (3.17) and (3.14)—(3.16) is correct in gen-

eral, i.e., not restricted to the truncation defined by Eqs.
(3.1)—(3.5). The results are the consequence of the fact
that all coupling coefficients aI pp are of order 5, and the
fixed-point coordinates pp are of order 1 and are identi-

cally the same for critical and tricritical solutions to lead-

ing order. The untruncated equation for p4p to leading or-
der in @is

2
dp40 940 3

=Ejz4p 2(N+8)Ii +—y a4p kpjpk+O(E' ), .
dl j,k&P

(3.18)

The equations for the Potts scaling fields pp cannot be
solved through systematic expansion near four dimen-
sions. Therefore, we expect the coefficients a and b to de-
pend on all Potts fields in the Landau Hamiltonian (2.1).

The results of Eqs. (3.14)—(3.17) are new. The mecha-
nism of "merging lines" of critical and tricritical fixed
points and the changeover in the nature of the Potts tran-
sition from continuous to first order has not been obtained
before for this range of dimensions, d &4.

B. Numerical solution for 3.4&d &4

A numerical calculation is required to compute the
coefficients a and b in Eqs. (3.14)—(3.17) and to extend
the results to other d and Q. The results presented here
are for the truncation to 11 scaling-field equations defined
in Sec. II. Our numerical analysis of the scaling-field
equations differs from the e-expansion approach in two
ways. (a) The coefficient integrals are calculated for the
dimension under consideration and not for the dimension
about which one expands. When dimension is changed, '

the coefficient integrals are recalculated and the fixed-
point analysis as function of Q is repeated. (b) The fixed-
point value of the RG scaling parameter b, is determined
by searching for a value of b,~ that produces a fixed point
with marginal eigenvalue y2 o,

yzp(~*) =0. (3.21)

This criterion and the one used in the e-expansion solution
are identical to leading order in e for d =4—e. Details
are published elsewhere. '

The numerical analysis of the Q-state Potts model by
the scaling-field method led to the following results.

(i) d=4. The values of the Potts fixed-point coordi-
nates LMp for d =4 determine the coefficients a and b in
Eqs. (3.14)—(3.17). One obtains

a =6.52 and b =0.065 (3.22)

for the truncation to 11 coupled equations. The corre-
sponding results for Q, (d), as defined by Eq. (3.17), are
shown as the dashed curve in Fig. 2, below.

(ii) d=3.98. Figures 1(a)—1(c) exhibit the exponents

yzp, y@&, and i) vs Q associated with the critical and tri-
critical Potts fixed points, P, (Q) and P, (Q), for dimension
3.98. The results show the parabolic shape anticipated
from Eqs. (3.14)—(3.16). The location of the tip of the
curve for the thermal exponent yzp offers a convenient
definition of Q, (d). The next-to-leading exponent y@
changes sign at or close to Q, (d), with the degree of agree-
ment measuring the internal consistency of the calcula-
tion. That means the critical and tricritical fixed lines
form a smooth curve that changes stability at Q, . For
d =3.98, the analytical and numerical results for Q, agree
to better than 0.2%%uo.

(iii) 3.4&d &4. For dimensions in this interval, the
graphs for the critical and tricritical exponents are similar
to those for d =3.98. With decreasing d, the difference
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FIG. 2. Critical value Q, of the Potts model as function of di-
mension d. Shown are the results by the numerical scaling-field
calculation (open circles), extrapolation of scaling-field e expan-
sion (dashed curve), conjecture for d )4 (solid curve) (Ref. 29),
variational RG calculation for d =2 and 2.32 (solid circles) (Ref.
28), as well as smooth interpolation of series expansion data for
d =3 (cross) (Ref. 28). The result Q, (d =2)=4 is exact (Ref. 2).

0
2.00000 2.00005

FIG. 1. (a) Thermal exponent yap, (b) next-to-leading thermal
exponent y4Q and (c) correlation. -function exponent g as func-
tions of the number of states Q for the critical (c) and tricritical
(t) Potts transitions in d=3.98 dimensions as obtained numeri-
cally for a set of 11 scaling-field equations.

d &3.4 arise. Over the full range
~

e~ &0.6, one finds

Q, (d=4+ I&I)=Q,(d=4 —I~I) &s d~6, the c~tical
exponents yap and rI approach their mean-field
values yap" ——2 and ri "=0 for all Q. For dimensions
d &3, the point Q=2 with Gaussian eigenvalue yap=2
plays a special role. There the coefficient of the o4 term
in the fixed-point Hamiltonian H*[tr] changes sign and
solutions beyond that point should be discarded as un-
physical. The point is located on the tricritical branch for
d & 4 and the critical one for d & 4. Further remarks con-
cerning the interpretation are deferred until the end of this
subsection.

The following comments will place the results into con-
text.

between the Q at which yap exhibits the tip and y4p
changes sign increases slightly (to about 0.2% for d =3.4).
The values of Q, =Q„~ are recorded as open circles in Fig.
2. The numerical values are Q, =2.00637, 2.0272, and
2.070 for d =3.8, 3.6, and 3.4, respectively.

(iv) 3&d &3.4. For these dimensions, the calculation
yields critical and tricritical fixed points only for values of
Q that are smaller than the expected Q, (d). The difficulty
manifests itself in the application of the criterion (3.21)
for determining g. We suspect that the truncation does
not include sufficient terms in the expansion of Ht[o] to
resolve the redundant marginal operator from the physical
marginal dilution operator in the region where the critica1
and tricritical fixed points annihilate. For d =4—e, we
found that the physical marginal operator to leading order
is the dilution operator Q4p[cr].

(v) d & 4. Equations (3.13)—(3.17) apply also when
e~O. Figure 3 exhibits numerical results for the leading
thermal exponent yzp as function of Q for d=3.98, 4.0,
and 4.02. Similar results are found for dimensions up to
d=4. 6, at which point problems reminiscent to those for

2.0 l

d = 4.02

Ppp
d = 4.00

~H+

2.OO-

l,99
l.99995

I

2.00000
Q

I

2.00005

FIG. 3. Thermal exponent y~Q as function of the number of
states Q for the critical (c) and tricritical {t)Potts transitions in
dimensions d=3.98, 4.0, and 4.02 as obtained numerically from
a set of 11 scaling-field equations. Dashed lines indicate non-

physical solutions. As dimension is increased, the point
yzo{Q =2)=2 wanders from the tricritical (t) to the critical (c)
branch.
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(i) Exponents. Most striking is a comparison of the
curves in Fig. 1 for d=3.98 with the analogous ones for
d =2 and d=1.58 and 2.32 in Fig. 1 and Figs. 2—4,
respectively, of Ref. 28. The graphs exhibit similar shapes
for Q & Q, (d), the difference being a vast change of scale.
For the two-dimensional Potts model, the results were ob-
tained by position-space RG methods applied to the Potts
lattice gas. This line of attack was motivated by physical
considerations. The result —one smooth curve for the
critical and tricritical fixed lines —led to the conclusion
that these two behaviors are connected. It is interesting
that analogous results for a very different range of dimen-
sions have been obtained here by a method that does not
use the vacancy idea. It is an open question whether this
RG mechanism for changeover in phase-transition
behavior (here from continuous to first-order behavior) via
the annihilation of pairs of lines of fixed points is realized
in other systems.

(ii) Crossover value Q, (d). Besides results for Q, by the
scaling-field method, Fig. 2 exhibits results for dimensions
d=2 and 2.32 from position-space RG calculations as
well as an estimate for d =3 from a smooth interpolation
of series-expansion data. It is not known whether Q, is
universal except for Q, =4 at d=2 (Ref. 2) and Q, =2 at
d)4. The results of our analytical and numerical
analysis (dashed curve and open circles, respectively)
match smoothly onto that latter result, Q, =2 for d =4.
This is not the case for the result Q, (d =4—e)
=2+e+0 ( e ) by Aharony and Pytte, which is in error. '

Our findings are consistent with those by Kogut and Sin-
clair, who used 1/Q-expansion techniques to estimate

Q, (d) for d & 2. Fucito and Parisi ' mention the possibili-
ty that Q, may be nonuniversal. These three references
(Refs. 19, 30, and 31) do not address the question of the
RG mechanism responsible for the changeover from con-
tinuous to first-order behavior and use definitions for Q,
different from ours. In our definition, Q, =Q„;~ gives the
largest value of Q for which continuous behavior is possi-
ble; however, first-order transitions can be induced for
Q & Q, by appropriate constraints, e.g., dilution.

(iii) Thermodynamic functions Our calcul. ation implies
that the three-state Potts model in three dimensions un-
dergoes a first-order phase transition. Thermodynamic
quantities may still exhibit large contributions due to fiuc-
tuations, so that results by laboratory and computer exper-
iments with insufficient resolution might suggest second-
order behavior. Thermodynamic functions can be corn-
puted by the scaling-field method' but no results have
been obtained yet. Calculations by Nauenberg et aI. '

were based on phenomenological RG equations that differ
considerably from our microscopic ones.

Returning to the interpretation of the evolution as func-
tion of d of the pair of Potts fixed points that annihilate
as Q —+Q, (d), we observe the following: For d &4, the
phase transition of the Potts model is first order when

Q &2, and continuous when Q &2, the latter becoming
classical as d —+6. The results in Fig. 3 seem to contra-
dict that picture. However, in analytical RG calculations,
lines of fixed points cannot terminate. For example, the
line of Potts critical fixed points as function of Q does not
terminate at Q, (d) but changes into and continues as a

line of doubly unstable tricritical fixed points. Whether
this line has physical significance in a given calculation
depends on whether it is connected to a segment of the in-
itial physical parameter space Ht 0[a] by RG flow. For
d =4—e, the Gaussian eigenfunctional Q4o[0] is to lead-
ing order the dilution operator of the Potts lattice gas so
that tricritical behavior is physical in the limit Q&Q, .
For Q =2, the tricritical behavior is classical for all d )3
and we discard as nonphysical the portion of the tricritical
fixed line with Q &2. The observation that lines of fixed
points cannot terminate applies also to the evolution as
functions of dimension of the pair of Potts fixed lines,
P, (Q) and P, (Q), and explains why this result changes
smoothly as d is varied about d=4. (See Fig. 3.) For
d &4, the situation with regard to the branch of critical
fixed points P, (Q) is similar to the tricritical one for
d &4. Now the critical behavior at Q=2 is classical and
the segment Q & 2 of the line of fixed points is unphysical.
In this regime, the classical critical behavior is expected to
be preempted by a first-order transition. As d ~6, we ob-
serve that the exponents y2O and g approach their classical
values, but the proof of the change to classical behavior at
d )6 for Q &2 would again require the study of RG
flows.

C. Pcrco1ation For 3&d (6
The limit Q~ 1 of the Potts model is related to the per-

colation problem. The latter is representative of
physical problems with upper critical dimensionality
d, =6. Much effort has been extended to obtain the per-
colation exponents yap

——1/v and i) as functions of d for
2 &d &6. (Exponent relations yield expressions for P, y,
etc., as well as the cluster exponents 0 and r. ) Figures
4(a) and 4(b) exhibit representative results for yzo and rt .
The only exactly known results are

1/v = —,, g = —„ ford=2,

and e-expansion results near six dimensions,

(3.23)

1 jv =2— +O(e ),q = — +0(e ) for d=6 —e,
21 21

(3.24)

recently extended to order e . ' Interestingly, though the
e-expansion results to third order indicate a sign change in

with decreasing dimension, the results derived for g
by a resummation of the series do not. ' Field-theoretical
expansion techniques, which have been applied successful-
ly in other cases, fail to obtain reliable results for the per-
colation exponents 1/v and q in three dimensions.
The need for the change in the sign of r) in the interval
2 & d & 6 is reminiscent of the change in the sign of g for
the random Ising model for 3&d &4.' (There, e expan-
sion to second order about four dimensions yields the sign
change. ) In Figs. 4(a) and 4(b) we compare results from
the scaling-field method with exact results at d=2 and
6—e, position-space RG calculations near d =2, extra-
polation of e-expansion results to second and third or-
der, ' as well as results from resummation of the e (Ref.
21) or loop expansions, ' and, for d =3, from Monte
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2.0

l.5—

value of 6 such that yz'o(h=6, *)=0. The remaining scal-
ing fields, p6o, pz4, and po3$ have fixed-point coordinates
of order e and need not be included in calculations to
leading order in e. %'ith A =0.5, our truncation yields

P

~so I.O— yzo=i/~"=2 —»~ ~ ———
0 ' (3.26)

O. G
I

iO(e ) (b)

r O(e )

X

I

2

FIG. 4. Exponents of the one-state Potts or percolation prob-
lem as functions of dimension d: (a) leading eigenvalue

y20 ——1/v, and {b) correlation-function exponent q as functions
of dimension d for the percolation problem Q=1. Shown are
results from scaling-field method (solid curve), extrapolation of e
expansion (dashed curve) (Refs. 20 and 21), resummation of the
loop (Ref. 22) and e expansions (Ref. 21) to second and third or-
ders, respectively (crosses), Monte Carlo calculation for g and
series expansion for v {open circles) (Ref. 38), position-space
RG for d=1.58 by Migdal method (open triangles) and for
d=2.32 by Kadanoff method (open squares) (Ref. 28), as well as
exact results for 2=2 (solid circles) (Refs. 7—9).

and the leading correction-to-scaling eigenvalue y4Q- —e.
The results (3.26) for d =6—e dimensions were obtained
numerically with e=10, 10, and 10 . The
discrepancy between (3.26) and the exact results (3.24) is
due to the fact that the scaling fields pzo~ with p &2 as
well as p4Q p piQ4 p @23p and pQ5 p with p & 2 are not in-
cluded in the calculation. These scaling fields all con-
tribute to the coefficient C of the fixed-point coordinate
pQ3 in Eq. (3.25). For further comments, see Appendix B.

The extension of the above results for the one-state
Potts model to dimensions 3&d &6 uses the 11 scaling-
field equations. Exponents are determined numerically, as
described in Sec. II, for integer and noninteger values of
dimension. The results are as follows.

(i) Figure 4(b) exhibits the results for the critical ex-
ponent g as function of d. Obviously the results for ri
from this truncation are too large in value both in the lim-
it d~6 and for d =3. From the analysis near six dimen-
sions, we suspect as the reason the small size of the trun-
cation. %'e note, however, that we obtain the correct sign
change and curvature in g as a function of 1 necessary to
link the results for d =2 to 6—e.

(ii) Figure 4(a) shows the results for the critical ex-
ponent yzo ——1/v as function of d. The values of yzo are
larger and exhibit more curvature as function of d than
the results by the e and loop expansions as obtained by
resummation. We expect that an improved scaling-field
calculation will lead to smaller values ofyzo.

(iii) Figure 5 exhibits results for the three leading ir-

]/2
PQ3 =CE' (3.25)

as well as pzo, p4o, and p&4-0(e), and pz3, po5-0(e ),
with pz o ——pz o(h) being a parameter of order 1 that is ad-
justed in the usual way by determining the fixed-point

Carlo simulations for g = —0.06+0.03 and series expan-
sion for v =0.88+0.02. The discrepancy between the
various results, particularly for g, is striking and will be
discussed here.

%e consider the one-state Potts model in the limit
d=6 —e. As discussed in Appendix 8, the truncated
scaling-field equations do not reproduce the exact e-
CXpaAMQQ re3UItS, — '-

H.Qt even IG ICRBing OiQCI' if1 e.20, 21

However, the truncation does preserve the structure of
these solutions. Equations (3.1)—(3.5) can serve to demon-
strate that; however, since the equations for p23 and pQ5
also contribute to leading order, we consider the trunca-
tion to 11 scaling-field equations. Then, with yo3 ——e/2
from Eq. (3.6), we find

I

l I

P
Jog

cl

FIG. 5. Leading irrelevant eigenvalues yp&, y~, and y40 as
functions of dimension d for the one-state Potts or percolation
problem from the scaling-field method (solid curve}, as well as
results from yp~ by resummation of the e expansion (crosses}
(Ref. 40), and extrapolation of the O(e ) formula (dashed curve)
(Ref. 41). For d =2, the exact result y~ ———2 is shown (Ref. 8).
Dotted part of the curve denotes a conjugate complex pair.
pair.
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relevant eigenvalues yp3 yp4 and y4p of the one-state Potts
model. (Eigenvalues associated with isotropic eigenfunc-
tionals containing odd powers in the spin o are not con-
sidered here. ) The merging of the two solid curves near
d =5 is an artifact of the short truncation and indicates
that the two eigenvalues coalesce forming a conjugate
complex pair (dotted curve). Also shown are the results
for yp3 obtained from e expansion by a resummation tech-

nique (crosses) and by extrapolating the order-e formula
(dashed curve). ' lt is of interest that eigenvalues obtained
by the scaling-field method cross near d=4. Unfor-
tunately, only limited information exists for the
correction-to-scaling exponents of the percolation problem
at dimension d =2. It has been conjectured that

y4p ———2, and results by the Kadanoff variational
method extrapolated to Q =1 yield y4p- —2. Results
for dimensions near d=2 [such as existed for y2p(d) and

y1 (d); see Fig. 4] are not available for y4p(d). No attempt
has been made to link the scaling-field results with the
spectrum of correction-to-scaling exponents at d =2 since
all calculations to date are for only a limited parameter
space. Specifically, operators that are expected to have

eiyenvalues y & —3, are neglected, e.g. , the ones with yap 4,
P P

y03 2, y042, andy402.

IV. SUMMARY

The Q-state Potts model has been studied as function of
the number of states Q and dimension d. For dimensions
3.4&d &4, lines of critical and tricritical Potts fixed
points P, (Q) and P, (Q) were found for small Q that an-
nihilate as Q —+Q, (d). This mechanism for the change-
over from continuous to first-order behavior as a function
of Q is identical to the one discussed by Nienhuis et al.
for d =2, ' but is obtained here for a different range of
dimensions by an entirely different technique. By e ex-

pansion about d=4, we have also obtained the exact
dependence of Q, upon e,

Q, (d=4 —e)=2+e /a+O(e ),
with a being a coefficient of order unity. Our results for
Q, as a function of dimension lends full support to the as-
sertion that 2 & Q, & 3 for d =3.

The percolation fixed point at Q= 1 has been studied
for dimensions 3&d &6. Unlike calculations that apply
resummation techniques to e or loop expansions, our
results for yi exhibited a sign change as function of di-
mension and thus show the curvature necessary to link e-
expansion results for d=6 e to exact re—sults at d =2,
where g~(d =6 e) & 0 an—d g (d =2)= —,', , respectively.

Finally, the work provides the structure of the scaling-
field equations, whose knowledge is necessary for the
study of correction-to-scaling exponents, phase diagrams,
and thermodynamic functions of the Potts model. Di-
mension can be varied continuously so that results from
this momentum-space RG method at higher dimensions
can be linked with those from position-space RG tech-
niques near two dimensions. To do this in detail requires
larger truncations of scaling-field equations. This work
also opens the possibility to study problems containing

Potts symmetry in three spatial dimensions, such as the
cubic or random M-vector models. '
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APPENDIX A: COMPUTATION OF THE COUPLING
COEFFICIENTS

The computation of the coupling coefficients a~jk and

a~j in the scaling-field equations (2.2) is facilitated by the
following rules. (See also Refs. 14—17.)

(1) The following three formulas" simplify the com-
binatorial algebra necessary to derive a Jk.-

&+1
a

(Al)

(A2)

geaeI3 = (A3)

The first two rules specify that a~jk ——0 if the n+ 1

derivatives exhaust either RJ [o] or Rk[o]. The third rule
specifies the relationship between the orders in o. of
R [o], RJ[o], and Rk[o], which we denote I. ,j, and k,

For examPle, in deriving the couPling coefficient ay) p3 p3,

one needs to perform the following summation:

N +1 (N +1)'
X Qap QySA = ~ FapyS 3 ~af@yS ( 4)

A.

Since the result of this summation is of order o, one must
project onto the functionals R4p[o] and Rp4[o.] of Eqs.
(2.5) and (2.8), which yields

12(%+1) (N —1)
~40,03,03 =

%+2
and

6(%+1)
a 04,03,03 ~ 2

~

(2) A linked-contraction theorem limits the number of
nonzero coupling coefficients a~jk. ' ' Three rules may
be derived from the fact that the combinatorial algebra
used in deriving a Jk requires (n+ 1) differentiations of
both R~[o] and Rk[o],

8'"+"R [o] a'"+"R,[o]ga, R [o.]
Bo 80

(A7)
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respectively. Note that Eq. (A7) is schematic in that it is
written for X =1.

(3) With the exception of the changes in the combina-
torial algebra described above, all procedures follow Ref.
17. We have tabulated all coefficients a~Jk with m, j or
k=20, 40, 60, 03, 23, 04 24, 05, 06, and 033. Coeffi-
cients with I, j, or k =2'0 are treated as special cases, as
described in Ref. 17. For example, a2o Jk for j,k CP is
nonzero when the triangular conditions described under
(A7) are satisfied and

~ j—k
~

&2. This coefficient is then
obtained by replacing the integral I„ in a2o pz by
—J„/(2d), where n is the number of contractions.

APPENDIX 8: e EXPANSION NEAR
SIX DIMENSIONS

In calculations by the scaling-field method, we distin-
guish between analytical and numerical e expansion. This
refers to two schemes for the determination of the fixed-
point value of b, which in turn yields the critical exponent

g via Eq. (2.3) and defines the physical fixed point for
which the spectrum of eigenvalues is determined by
linearization.

The two methods were introduced in e-expansion stud-
ies near four dimensions. ' ' For analytical calculations,
it is most convenient to choose "the gauge"

920,2=O ~

and to determine b,* from the equation dp2o2/11=0.
This gauge choice yields exact e-expansion solutions for
those fixed points for which the p' are smaller or of O(e)
for all m. ' Exceptions include the random Ising fixed
point for d=4 —e (Ref. 17) and the Q-state Potts fixed

point for d =6—e. For numerical studies employing trun-
cations, the physical fixed-point value 6* is determined by
the condition

J 2o, 2(~*)=o (82)

and then p2o 2 assumes in general a nonzero fixed-point
value pzo2 ——p2o2(h"). (See Sec. II for details. ) Applying
the latter scheme at fixed dimension d =4 e—, with e «1,
yields results identical with those obtained from the gauge
choice (81) for all cases but the Potts fixed point near six
dimensions. ' ' [For the random Ising fixed point, con-
sistent results are obtained using Eqs. (81) and (82), but
they agree only approximately with the exact e-expansion
solutions. ' ] The reason for the discrepancy between
methods (81) and (82) for the Potts model near six dimen-
sions is that the analytical scheme using gauge (Bl) is jus-
tified only if, to leading order, pro z is the field conjugate
to the marginal redundant operator. This is not the case
for the Potts model near six dimensions: Because
pQ3 ~ O(e' ), we find that the marginal redundant eigen-
vector has a strong O(e'~ ) component in the po3 direc-
tion. ' This results in a value for p2o2 of order 1 if
method (82) is applied. Since we cannot justify the
gauge choice (81) for this fixed point, we accept as the
only applicable method the numerical e-expansion scheme
(82).

Parenthetically we note that if criterion (81) is applied
to the case of the one-state Potts model over, e.g. , the
range of dimensions 5.8&d &6, then one obtains as a
function of dimension a much larger drop in g and a
somewhat larger one in y2o than with criterion (82).
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