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We consider a simple model of the work function based on the overlapping spherical atomic
charge-density approximation to the potential (the so-called Mattheiss construct). We show analyti-

cally that the dipole barrier of nonpolar crystals is simply related to a moment of the spherical den-

sities, and hence there is no face dependence of the work function in this model. FoI' the polar faces
of polar crystals there is an additional face-dependent term that was found previously by different
means. We calculate the bulk contributions to the work function for the metals with atomic number
less than 50. Thc dipole barriers obtalncd from fI'cc-atomic dcnsltlcs I'csult ln woI'k functions which
are on the average -80% too large. The use of contracted atomic densities, while leaving the bulk

density virtually unchanged, decreases the dipole barriers and yields work functions in reasonable

agreement with experiment. Some implications for surface calculations, electronegativity scales,
and charge-transfer and bonding trends are briefly discussed.

I. INTRODUCTION

One of the most important physical properties of a
crystal surface is its work function, P. Defined as the
work necessary to remove a Fermi-level electron from the
crystal to infinity, ' P not only controls the ability of
electrons to escape the crystal but it correlates with the
chemical properties of both the surface and the bulk. For
example, Gordy, and more recently Miedema and co-
workers, have equated the P of the elemental crystals to
their electronegativities, an electronegativity being the
ability of one element to compete with others for the
valence electron charge when a compound is formed. In
this paper, we consider a very simple model of the work
function which relies on the so-called Mattheiss construct
for the crystal potential. This potential yields surprisingly
good band structures; in fact, self-consistent calculations
must be done with some care if they are to improve on
these initial results. Although not universally recognized,
this construct has crystal surfaces implicitly built in. The
work function is then simply the (negative of the) Fermi
energy of the energy bands calculated with this potential.
Having the virtue of being well defined, the construct
offers a benchmark with respect to which the results of
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FIG. 1. Schematic representation of the energies relevant to

the work function P. The dipole barrier D is the difference be-
tween the vacuum zero and the bulk zero Vo. The chemical po-
tential p is given by the Fermi level e~ relative to Vo.

more detailed calculations may be measured.
For metals, P is of the order of 3 to 6 eV, and the vari-

ation from fact to face of the crystal is typically a few
tenths of an eV. There are two types of contributions' to
the work function. First there is the bulk chemical poten-
tial p which is the Fermi level measured with respect to
some suitable reference potential or "zero" of the crystal
potential and, secondly, there is the dipole barrier D asso-
ciated with the surface of the crystal. The work function
is then (cf. Fig. 1)

where D and IM must, of course, be defined with respect to
the same reference potential, Vo. The potential outside
the crystal is the vacuum zero. The dipole barrier depends
upon the charge distribution at the surface, in particular
on how the electronic charge decays into the vacuum.
Other factors may contribute to D. There will be seen, for
example, a term intrinsic to polar surfaces of polar crys-
tals associated with the alternating layers of + and-
charges.

The Mattheiss construct assumes that the crystal den-
sity is a superposition of spherical (atomic) densities. This
approximation has been very successful in non —self-
consistent bulk calculations and has even been used in
self-consistent surface calculations in which the spherical
densities were modified. If we assume that the surface, as
well as the bulk, of a perfect crystal is created by sum-
ming over these spherical densities, then the charge-
density falloff in the vacuum is atomiclike, which is intui-
tively reasonable. The situation for a monatomic system
is depicted in Fig. 2: There is a surface (in fact a set of
crystal faces) implicit in a Mattheiss construct and each
surface has a dipole charge distribution associated with it.
There is no net dipole in the crystal because of the oppos-
ing faces. This must be, given that, the crystal has been
constructed by a superposition of spherical charge densi-
ties. Granted that different crystal faces have different
atomic densities within atomic layers and different spac-
1ng bctwccn laycI's, lt 1s reasonable to ask whether the dl-
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FIG. 2. Schematic representation of a superposition of ob-

jects with no net dipole moments (arrows crudely represent the
dipole moments of each half of the atom) and the resulting po-
tential. The dipole barrier D is the difference between the aver-

age potential inside and that outside the film.

pole barrier within the Mattheiss construct varies with the
face involved. It will be shown analytically that the sum
is, in fact, independent of the face for a nonpolar crystal.
If it were otherwise, the calculated crystal potentials, used

by so many workers, would depend on how the individual
charge densities were summed. This would be unfor-
tunate. The known variations in work function from face
to face on monatomic crystals thus involve factors outside
the Mattheiss construct such as reconstruction and
valence charge reorganization specific to specific surfaces.
Previous workers have used ' the Mattheiss construct to
obtain face-dependent dipole barriers but this was because
scfccn1ng terms werc introduced into thc sums and thcsc
terms were the source of the face dependencies.

In the next section we consider the overlapping spheri-
cal atomic charge-density approximation and derive some
exact relationships between the spherical densities and the
dipole barrier. In particular, we find that there is no face
dependence of the work function within this model if the
system is nonpolar as is the case for the elemental metals.
There is, however, an additional face-dependent term
when the crystal is polar. We then apply our results to the
problem of obtaining dipole barriers and work functions
of the metals with an atomic number less than 50.
Whereas the dipole barrier is a purely electrostatic term,
the chemical potential implies a quantum-mechanical
treatment; we obtain P from the band-structure results of
Moruzzi, Janak, and Williams. '

While necessary for the calculation of the work func-
tions, the P, when defined with respect to a common
reference potential Vo, are of interest by themselves. It
will be shown, in Sec. V, that the P of the transition met-
als do not correlate with known electronegativity trends;
hence thc relative position of the chemical potentials does
not control the bonding and charge transfer associated
with transition-metal compound formation.

II. GENERAL CONSIDERATIONS

Consider a slab of M layers normal to z and partially
filling the half-space z&0, where each layer consists of
one, or if computationally necessary, several planes of
atomic sites such that thcI'c ls nclthcI' 8 nct charge noI' 8
normal dipole moment associated with the layer' (the

charge of the atoms, making up the layer, may extend out-
side its boundary). These requirements imply that there
are no long-range Coulomb interactions between the layer
and a charge at some distance from it.

Consider the average Coulomb potential at some posi-
tion z, where the average has been taken over a plane nor-
mal to z (and parallel to the boundaries of the layers).
This potential may be written as a superposition of poten-
tials u(z), each one derived from the periodic array of
Rtomiclikc dcns1tlcs Rssoclatcd w1th 8 slnglc layer. Note
that we can use U (z) instead of the full position-dependent
U(r) without loss of generality since the dipole barrier by
symmetry can depend only on z. In order to ensure con-
vergence of sums as we let M (the number of layers) go to
infinity, we must require that

lim zu(z)=0.
/Z [~a

If the interlayer spacing is d, then we can write the total
(averaged) potential V(z) as

V(z)= g U(z+nd),

where the sum starts with n=O since the crystal surface
has been defined to be at z=O.

Now let us define the dipole barrier as the difference in
the Coulomb potentials aveI'aged over a layer on going
from far inside the slab to far outside, i.e., the average
electrostatic work a unit test charge must do to leave the
Slab

where ( )~ denotes the average over a unit cell of the
layer at z =Ed. For a semi-infinite crystal, we will let
M, X,X'~no subject to having X'&&M and that M and
X'd be small compared with the transverse dimensions of
this slab. It should be noted that our definition of the
reference potential is not the only possible one: other defi-
nitions are possible, such as using a reference level inside
the crystal, which is zero in the same sense that the vacu-
um zero is zero, i.e., which is defined for a crystal where
the surface as well as the bulk atomic sites are constrained
to have the charge-density distribution of bulk Wigner-
Seitz cells with no charge leaking outside the surface layer
of cells. This choice of a "renormalized-atom" potential
would shift the second term in Eq. (4) by a constant
amount. Since, however, we are interested in the woI'k
fuIlctloll glvcll by Eq. (1) a collstallt slllft 111 D Qnd ln p
will callccl out alld $ will bc independent of tllc cllolcc of
zero. The first of the above choices of zero, which corre-
sponds to the Ewald convention for the bulk, ' is of the
same form as that used in many jellium calculations, "
and has the advantage of being both a well-defined quanti-
ty and the natural reference to work within the present
derivations. The disadvantage associated with this choice
is that taking the averge of the potential samples deep into
the core of an atomic-charge distribution, causing D and p
to be separately large in magnitude and to depend strongly
on the element involved. This serves to mask the trends in
dipole behavior associated specifically with the charge at
thc surfaces of the CI'ystals. Thc second cho1cc 1s less dcfl-
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cient in this respect, so one reference will be employed in
the calculations and the other when inspecting the results.

Let us now determine the averages of the potential.
First consider z =Ad in the vacuum; we will average over
the region (N ——,')d &z &(N+ —,

'
)d [it is easy to verify

that the final results will be unchanged if instead we aver-
aged over (X—5)d &z & (%+1—5)d, where 5 is any fin-
ite number]:

(Eg 1/2)d
( V(z) )~ =—f dz V(z)

(X—1/2)d

(Xy1/2)df dzu(z+nd) .

After rearranging sums and integrals, we arrive at

(M +X+1/2)d
( V(z) ))v

———f dz u (z) .

of the layer. Again without loss of generality, we need
consider only the z-averaged density p(z), i.e., the first
component of the two-dimensional Fourier representation.
The z-averaged potential and density are related by
Poisson's equation

$2
u(z) = —4mp(z) .

z2

VAth the boundary conditions that the potential and elec-
tric field vanish at z =+ co, the potential is given by

u(z)= —4m f dz' f, dz"p(z") .

Interchanging the order of integration leads to the stan-
dard (but less familiar) form

tf

u(z)= —4~ f dz"p(z") f dz'

For X tending to infinity, this average vanishes since the
individual u(z) vanish [cf. Eq. (2)]. (V(z)))v is then the
vacuum zelo.

Now consider the case for z = E'd:—
( —X'+ 1/2)d

(&(z))—z = J, dz V(z(
( —N' —1/2)d

(M —X y1/2)d
dzu(z) .—(X' y 1/2)d

Using Eqs. (5) and (6), we obtain an expression for the di-
pole barrier:

l (M +N + 1/2)d l (M —X'+ 1/2)d
D =— dz u (z) ——, dz u (z)

((V —1/2)d (1V'~1/2)d—

(M +X+1/2)d l (X—1/2)d
dz u (z) —— dz u (z) . (7)(M —)v'+1/2)d d —(x'+ 1/2)d

For a finite slab (M & co ), the net dipole barrier will van-
ish as N, N'~ (x). This result is in accord with Fig. 2, that
the total dipole moment must vanish.

In order to obtain the dipole barrier between the inside
of the crystal and the vacuum, we must have M-2E'.
Then letting N, X' go to infinity, the first term in the
second line of Eq. (7) goes to zero and we are left with

At this point we observe that adding a layer of different
atoms or molecules to the crystal surface will not affect
the dipole barrier (and hence the work function) unless the
adsorbate has a net dipole moment. (If the adsorbate does
not have a permanent dipole moment, and does not induce
a dipole in the substrate, then for

~

z
~

large enough, the
adsorbate potential will not contribute to the average po-
tential inside or outside. ) This simple result demonstrates
the quite general feature that the adsorption of atoms on a
surface which causes a change in the work function (e.g.,
cesiation of the surface' ) must be accompanied by polari-
zation and/or charge transfer at the interface.

Let us express this result in terms of the charge density

u(z)= —4a f dz'z'p(z') ((-4mz f dz'p(z') .

It is easy to verify that Eq. (9) satisfies Poisson s equation.
From Eq. (2), we see that we must deal with layers that
are (i) neutral, (ii) have no net dipole moments, and (iii)
have a charge density that vanishes at infinity faster than
z . The first two conditions ensure that the potential
and electric fields vanish at z = —co, while the third con-
dition guarantees the convergence of the infinite summa-
tions and integrals. This last condition is satisfied for all
realistic models of the surface since the wave functions
(and hence the density) have exponential falloff.

Using Eq. (9), the dipole barrier of Eq. (8) is given by

D = z z'z'p z' —z z'p z' . 10

If the charge density of a layer is given as a superposition
of spherical charge densities p ( r ),

p (r)=n (r) —Z 5(r)

centered at y„the site of the uth atom in one of the unit
cells [n (r) is the radial charge density and Z is the nu-
clear charge], then the average density p(z) is given by

(z)= f drilXp (r ) )

where the integration is in the plane normal to z (A being
the area of a layer unit cell in that plane) and the sum is
over sites in the layer. Then

00

p(z) =—g 2m f dr rn (r) —Z 5(z —y, )
I& —x, l

—= Xpo« —)'»
where

2%
po(z) = f dr rn (r) — 5(z) .

F« the case of neutral entities, for which the potential as-
sociated with po is zero at large distance, substitution of
Eq. (11) into (10) yields a dipole barrier
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D= g f dzz p (z). (13)

In order to obtain Eq. (13), we have made use of the rela-
tion p ( —z}=p (z). We can write this in terms of the ra-
dial density as

g 4m f dr r n~(r)+ g q~(y, )2, (15)30. 0

where q is the net charge associated with the spherical
distribution centered at the o.th site, i.e.,

q~—:—Z +4m dr r n~(r)
0

=A zP0 z (16)

Consider, for example, a polar surface with alternate
layers of +q and —q charges, one pair of charges per area
A, separated by d/2. Then, the second term of (15) be-
comes

gq y = ( —,'q) ——:2m.o( —,'), (17)
a

where cr( —,') is the dipole moment density for charges

+q/2 (not q), d/2 apart, per area A. This result has been
obtained by a quite different method elsewhere. Clearly
the Mattheiss construct for polar crystals does yield a di-

pole term which depends on the crystal face involved.
The variation from face to face is substantial; ' for exam-
ple, for an ionic charge, q =0.25e, and a spacing d=3 A
(and assuming A =d ) the resulting polar dipole term of
Eq. (17) is almost 2 eV. This is large compared with the
variations in N which are actually encountered suggesting
the importance of screening at polar surfaces.

The q, as defined by Eq. (16}, are associated with
spherical charge distributions centered on, but not neces-
sarily localized within, the atomic cells in question. Thus,
to the extent to which the actual valence charge density iri

a polar crystal can be described as a superposition of such
spherical charge distributions, the q associated with these
distributions provide a physically meaningful definition of
the ionic character of the system. These q are relevant to
the crystal fields within, as well as to the dipole terms at
the surface of, the crystal in question. [Any asphericities
in the valence charge density that cannot be accounted for
within this construct will, of course, also contribute to the

D= +4m f drr n~(r),30 (14)

where we have made use of the fact that the volume of a
unit cell in a layer making up the crystal is just A=Ad.
Note that the sum over u is over atoms within the volume
Q. We see that the barrier, in this model, is a property of
the bulk and hence this construction cannot give any face
dependence to the work functions of the monatomic met-
als.

Equations (13} and (14) were obtained for neutrally
charged entities. Their extension to the case of a polar
crystal adds a term yielding

D= Q f dzz po(z)+ —Qq (y, )

spherical (and higher l} component(s) of the potential at
an atomic site. These can be obtained with the bipolar ex-
pansion. ' ' ]

Once obtained, the simple form of the dipole barrier
given by Eq. (14) is obvious: The Mattheiss construct
yields a surface dipole which is independent of the crystal
surface involved unless that surface is a polar one. [In
such a case there is the extra term given by Eqs.
(15)—(17).] The known variations in the work functions
of monatomic crystals comes from reconstruction and
valence charge redistribution and screening. The Smolu-
chowski rules' are associated with such terms and, as has
already been discussed, recent worker's imposed' '" local
charge neutrality on their Mattheiss constructs in a way
which introduced face-dependent results.

III. THE CALCULATIONS AND THE EXPERIMENTAL
WORK-FUNCTION DATA

Although the dipole barrier is strictly an electrostatic
property, the work function requires knowledge of the
bulk chemical potential which may be obtained from
band-structure calculations. For this we have utilized the
work of Moruzzi, Janak, and Wilhams who published'
self-consistent local-density calculations for the elemental
metals with an atomic number less than 50. To obtain JM

of Eq. (1), we use their value of the Fermi level relative to
the muffin-tin zero ( VMS) plus the calculated difference
between the average Coulomb potential aild VMyz for a
muffin-tin density created by overlapping spherical atoms
in a manner consistent with their work; i.e., the same lat-
tice constants and crystal structures were assumed and the
atomic calculations, yielding the spherical charge densi-
ties, employed the same exchange-correlation potential.
Moruzzi et al. chose the room-temperature crystal struc-
tures (e.g., calculations were done for the bcc, rather than
the lower-temperature hcp, structure for Li and Na), and
they substituted fcc calculations for the hcp structures
when they occurred. In addition, they determined the lat-
tice constants variationally, obtaining results in reasonable
accord with experiment. The structure and lattice con-
stant enter the dipole term, defined by Eq. (14}, only
through the volume Q. These factors are of more impor-
tance, however, when defining the dipole and chemical po-
tential terms with respect to a common reference poten-
tial.

The atomic calculations were done for free atoms
which, for the case of transition elements, were taken to
be in d "s' configurations. This is the closest atomic con-
figuration, with integral d and non-d counts, to what is
appropriate in the metals. Other choices were investigated
and one example of the effect of changing the d count will
be reported in the next section. As will be seen, free-atom
charge densities lead to surface dipole terms which are too
large, as already noted by Taut et al. , and results for
free atoms in stabilizing potential wells will also be con-
sidered. The potentials associated with these wells were
taken to be constant out to the %'igner-Seitz radius, to rise
linearly by a value of 0.25 Ry at twice this radius, and
then to be constant outside. This proved computationally
convenient though one could as well have taken the poten-
tial associated with a suitably chosen positive charge dis-
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tributed over a spherical shell at the signer-Seitz radius.
The point of using such a potential is that it leaves the
atomic-wave-function shape untouched within the
Wigner-Seitz cell while reducing the tail outside. Employ-
ing the resulting charge density in a Mattheiss construct
makes a negligible change in the charge density within the
crystal while significantly affecting the surface dipole.

As noted earlier, the use of the average Coulomb poten-
tial as the zero of energy, while convenient for calcula-
tions, has the disadvantage of masking the trends in dipole
behavior. Instead of presenting the dipole barriers given
by Eq. (14) with respect to this zero, we instead will define
p, and D with respect to the "crystal zero" which will be
taken to be equal to the vacuum zero when the crystal
sites, up to and including the surface sites, are taken to be
bulk %igner-Seitz cells unth the bulk charge density inside
them. The chemical potential with respect to this "crystal
zero" can be obtained given the calculated Coulomb po-
tential of Moruzzi et al. ' and an assumed distribution for
the charge density in the interstitial region. This chemical

potential and the correspondingly shifted dipole barriers
{assuming spherical Wigner-Seitz cells and a constant den-
sity between the muffin-tin and Wigner-Seitz radii) will be
termed P' and D', respectively. The work functions, of
course, do not change. Bounds will be given for p

' which
are obtained by placing the charge of the muffin-tin re-
gion entirely at the muffin-tin radius on one hand and
placing it at the Wigner-Seitz radius on the other. This
range of p

' values should encompass the effects associated
with properly accounting for the fact that Wigner-Seitz
cells are polyhedra rather than spheres.

In comparing with experiment, we must keep in mind
that there is significant scatter in the experimental work-
fllflctloli values available ln tlie llteiatlll'e. Tllls ls dlle, 111

part, to questions of sample preparation and, in part, to
the use of different measurement techniques. We will em-
ploy the "preferred polycrystalline" values tabulated by
Michaelson. There are undoubtedly some inconsistencies
in the tabulated experimental numbers, on going from one
metal to another, but these are not important here.

TABI.E I. Calculated values of the work-function contributions in eV. The chelnical potentials IM, IM are given with respect to the
average electrostatic potential and the "crystal zero, " respectively. The calculated work functions and corresponding dipole barriers
relative to the "crystal zero" are obtained from free-atomic densities (PO, DO ) and for atoms in a well (P,D '). These are compared
with the D' deduced from experimental values of the work function P,„„,.

H
I1
Be
Na
Mg
Al

3.7
0.8
9.1

1.8
5.5
9.7

—0.2
—2.2

1.6
—2.2
—1.4
—0.2

7.2
7.5
9.2
4.8
5.3
7.5

7.0
5.3

10.8
2.6
3.9
7.3

4.0
4.3
4.8
3.1

3.5
4.2

3.8
2.1

6.4
0.9
2, 1

4.0

2.9
5.0
2.8
3.7
4.3

0.7
6.6
0.6
2.3
4.1

K
Ca
Sc
T1
V
Cr
Mn
Fe
Co
Ni
Cu
Zn
Ga

2.5
6.0

10.1
14.4
17.8
20.3
20.7
20.8
20.3
18.4
16.6
14.9
12.4

—2.1

—2.0
—1.3
—0.3

0.2
1.1
0,8
0.7
Q.3

—0.6
—0.8
—0.4
—1.1

4.0
5.9
7.6
8.9

10.0
9.7
9.7
8.9
8.7
8.1

6.6
4.9
6.6

1.9
3.9
6.3
8.6

10.2
10.8
10.5
9.6
9.0
7.5
5.8
4.5
5.5

2.8
4.0
3.9
4.4
5.1

4.8
5.1

4.8
5.0
5.1

4.2
3.2
4.1

0.7
2.0
2.6
4.1

5.3
5.9
5.9
5.5
5.3
4.5
3.4
2.8
3,0

2.3
2.9
3.5
4.3
4.3
4.5
4.1

4.5
5.0
5.2
4.7
4.3
4.2

0.2
0.9
2.2
4.0
4.5
5.6
4.9
5.2
5.3
4.6
4.1

3.9
3.1

Rb
Sr
Y
Zr
Nb
Mo
Tc
Ru
Rh
Pd
Ag
Cd
In

3.1

7.0
12.1
16.9
20.0
23.8
24.2
24.5
23.2
20.2
17.9
15.3
13.2

—2.1
—2.0
—1.3
—0.4
—0.3

0.8
0.2

—0.1
—Q.8
—2.1
—1.7
—1.4
—1.8

3.6
5.4
7.0
7,9
8.7
8.4
8.7
8.3
8.0
7.9
5.7
4.6
5.7

1.5
3.0
5.7
7.5
8.4
9.2
8.9
8.2
7.2
5.8
4.0
3.2
3.9

2.7
3.7
3.8
4.3
5.0
4.6
5.2
5.1
5.3
5.7
4.1

3.4
40

Q.6
1.7
2.5
3.9
4.7
5.4
5.4
4.9
4.5
3.6
2.4
2.0
1,2

2.2
2.6
3.1
4.1

4.3
4.6

4.7
5.0
5.1

4.3
4.2
4.1

0.1

0.6
1.8
3.7
4.0
5.4

4.6
4.2
3.0
2.6
2.8
1.3
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IV. WORK-FUNCTION RESULTS

Results appear in Table I. First displayed are p, and p, ',
the chemical potentials defined with respect to the average
and the "zero" of the crystal potentials, respectively.
Then listed are the dipole terms Do, obtained with free-
atom charge densities and, with them, the resulting work-
function values. These are, on average, 80% larger than
experiment. Some of the error may be associated with de-
tails of the band calculations and with the class of crystal
potentials used, but this probably contributes less than 0.5
eV to the error. It would appear that the surface dipole
terms are simply too large. This can, in part, be associat-
ed with a wrong choice of atomic configurations em-

ployed in the atomic densities or with densities simply be-

ing too diffuse. Consider the former: d "s' configurations
were assumed for the transition elements which for Pd is
d s with a resulting P of 7.9 eV. Going to the self-
consistent charge density for a d s Pd atom and in
turn d' s, yield P of 6.6 and 4.9 eV, respectively. The
latter is in fair accord with experiment. However, sp-d
hybridization in transition metals tends to increase the
non-d electron count to above one, implying that the d "s'
P of Table I are, if anything, underestimates. Of course,
the atomic configuration would differ somewhat at the
surface. An elementary estimate for Ni indicates ' an in-
crease in d count and would suggest a decrease for transi-
tion metals with under half-filled bands. More recently
there have been detailed band calculations for a number of
surfaces. Any detailed accounting of charge character
must apportion the valence charge outside the muffin-tin
spheres. Neglecting this, calculations for V, W, Fe, Ni,
Pd, and Pt all indicate that the fraction of valence charge
which is d-like within the muffin-tin sphere increases at
the surface in all cases. The effect is small, being
equivalent to an increase of 0.1 d electrons or less at a sur-
face site. However, using the Pd results cited above, this
could yield a 0.25- to 0.5-eV reduction in the surface di-

pole as compared with a construct employing the atomic
configuration appropriate to bulk sites. (The most pro-
nounced feature of the surface calculations is the reduc-
tion of p-like character at surface sites. )

It would appear that free-atom charge densities simply
yield too large surface dipoles in the Mattheiss construct.
Consider an alternative: The D ' and the associated P

' of
Table I were derived with the densities obtained for the
atoms in the stabilizing wells described in the preceding
section. These work functions are in semiquantitative
agreement with experiment; two thirds of the P are within
0.5 eV of experiment and only Li, Ca, Sr, and Zn have re-

sults in error by greater than 1 eV. The results tend to be
a few tenths of an eV greater than experiment. A some-
what deeper stabilizing well would "correct" for this and
would allow for going to atomic configurations with Inore
realistic nonintegral electron counts. This will not be done
here. The point is that the Mattheiss construct with free-
atom functions yields too large a surface dipole but that
the construct with stabilized atomic wave functions,
which are arguably a good linear combination of atomic
orbitals (LCAO) basis set for bulk calculations, yields sur-
face dipoles of the right magnitude. This observation has
been made by Taut et a/. previously.

V. THE CHEMICAL POTENTIAL
AND ELECTRONEGATIVITY SCALES

If the chemical potentials of two different regions in a
solid are not the same, one expects charge to flow from
the one which is higher to the one which is lower so as to
equilibrate them. This leads to the idea of attributing a
chemical potential or electronegativity to an atomic
species which upon compound formation measures the
charge transfer between it and other species. Lacking a
measure of the chemical potentials within crystals, Gordy
and Thomas early on introduced the usage of work func-
tions as an electronegativity scale, i.e., they employed the
two terms of Eq. (1) rather than P alone. More recently,
Miedema and co-workers employed the same type scale
in their model Hamiltonian for the heats of compound
formation. There are many other electronegativity
scales based on atomic ionization energies and electron
affinities, on hyperfine effects, on pseudopotentials, and
on fitting thermochemical or dielectric properties or force
constants. Involving different measures of bonding effects
these scales are not the same but generally, starting with
the alkalis, they increase (i.e., the chemical potentials
drop) monatomically until they peak somewhere at the
upper end of a transition-metal row.

The chemical potentials obtained in the band calcula-
tions of Moruzzi et al. display a quite different trend.
These are plotted in Fig. 3. The solid line is the P' of
Table I where the chemical potential is measured with
respect to the crystal zero and a constant valence charge
density is assumed in the muffin-tin region (see Sec. III).
The upper bound of the shaded region is associated with
placing all the charge of the interstitial region on the sur-
face of the muffin-tin sphere while the lower bound has
the charge at the Wigner-Seitz radius. A careful account-
ing of the charge distribution within the muffin-tin region
and of the shapes of the Wigner-Seitz cells would likely
lead to results between the line and the upper bound.
Some of the jaggedness of the plot is associated with alter-
nating between bcc and fcc structures (the two structures
assumed in the band calculations' ).

The p,
' for the 3d and 4d rows peak at Cr and Mo,

respectively. This is readily understood since these metals
have half-filled d bands where the "bonding" levels are oc-
cupied and the "antibonding" levels are not. Maximum
cohesion is obtained by compressing the atoms so as to
gain the bonding energy associated with having a large
bandwidth. This is done at the cost of raising the band
center of gravity so that P

' lies shallower than it does in
the metals of the neighboring elements. Assuming that
charge transfer is controlled by the relative positions of
the elemental metal chemical potentials would then have
Cr and Mo donating electrons to elements to both their
left and their right. This is contrary to bonding trends
and to conventional wisdom concerning charge transfer.
The dominant factor involved in transition-metal bonding
and electron transfer is d-band hybridization. While the
relative position of the d bands is not insignificant in this,
the strength of hybridization is largely controlled by the
relative availability of occupied and unoccupied d-band
levels and by the bandwidths. It has been shown that
the d transfer associated with d-band hybridization is con-
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FIG. 3. Chemical potentials relative to the "crystal zero. "

sistent with the conventional view of electronegativity
trends.

VI. DISCUSSION

In this paper it has been shown analytically that the
Mattheiss construct leads to a surface dipole term which
is independent of the crystal surface involved unless that
surface is a polar one. The form of the dipole barrier
given by Eq. (14) is exactly the difference in the average
potentials between the Ewald' and Bethe-Frenkel con-
ventions for nonionic infinite bulk crystals. (The differ-
ence between these conventions for the bulk zero arises
mathematically from the interchange of limits and in-
tegrals in a conditionally convergent integral and corre-
sponds physically to how the crystal is made infinit'e. )

From our results, it is clear that the Bethe-Frenkel con-
vention must have implicitly the same construct for the
surface as discussed here. Hence although the results
which we have presented have not, to our knowledge, been
previously derived in the context of surfaces, they are in-
tuitively obvious. Moreover, there is an extra face-
dependent term associated with polar surfaces which has
been derived in a quite different way elsewhere7s and
whose presence does not seem to be generally appreciated.

The nonpolar surface dipo1e, associated with the
Mattheiss construct, involves a sum over the lattice sites
of the crystal but here it has been shown that this can be
rewritten, Eq. (14), as a sum of an atomic moment over
the one or several atoms comprising a unit cell in the crys-
tal. This result was then used, along with the ban. d-theory
calculations' of Moruzzi et al. , to calculate the work

functions of the lighter metals (Z & 50). As was already
noted by Taut et al. , the utilization of free-atom charge
densities yields surface dipole terms, and in turn work
functions, which are too large. The present investigation
introduced a simple stabili. zing well which, when used,
contracted the tails of the atomic densities and led to work
functions in semiquantitativie agreement with experiment.
The very agreement suggests that these contracted atomic
densities would provide a good starting potential for self-
consistent surface band calculations though, of course,
such contractions are not the only way valence charge
redistributes itself at a crystal surface.

The extra dipo1e term associated with polar surfaces in-
volves an ionic charge defined by Eq. (16). This follows
from having limited consideration to only the spherical
term in a multipole expansion and suggests a mathemati-
cally and physically sensible, but computationally incon-
venient, measure of ionic character: namely, to the extent
that the charge distribution within a crystal or at its sur-
face is describable as a superposition of spherical charge
densities (which may extend well outside of the atomic
sites in question), let the charge associated with those dis-
tributions [i.e., Eq. (16)] define the site ionicities. A quite
different picture of bonding effects might arise than that
from the approach of counting charge just within muffin-
tin (or Wigner-Seitz) spheres as is often done.

Calculations of the work functions required estimates of
the Fermi levels inside the crystals and for this purpose
we employed the band-theory results of Moruzzi and co-
wol kcrs. These chemical potcntlals al c plotted w1th
respect to a common crystal "zero" in Fig. 3 correspond-
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ing to having peeled-off surface dipole terms. If one attri-
butes these chemical potentials to individual atomic sites
within an alloy or compound, one might ask whether
charge transfers from the site with the higher chemical
potential to the one that is lower. This is not the case for
transition-element systems as was discussed in the preced-
ing section. This is because d-band hybridization, which
depends only weakly on the positions of the chemical po-
tentials, is primarily responsible for changes in site d
counts and hence in the net change in valence charge at a
site. Work functions have been used ' as a measure of

electronegativity or bonding tendencies and thanks to the
surface dipole terms which contribute to them, they are
not indicative of the relative positions of local chemical
potentials of atoms within a crystal. Instead, and it would
seem by accident, they mimic the combination of bonding
effects important to compound formation.
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