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The zero-temperature equation of state of metals, in the absence of phase transitions, is shown to

be accurately predicted from zero-pressure data.

Upon appropriate scaling of experimental

pressure-volume data a simple universal relation is found. These results provide further experimen-
tal confirmation of the recent observation that the total-binding-energy—versus—separation rela-
tions for metals obey a universal scaling relation. Important to our results is a parameter 7, which
is a measure of the anharmonicity of a crystal. This parameter is shown to be essential in predicting
the equation of state. A simple formula is given which predicts the zero-temperature derivative of

the bulk modulus with respect to pressure.

I. INTRODUCTION

Many aspects of the energetics of metals can be under-
stood if the zero-temperature equation of state (EOS) is
known. Predictions of the EOS are difficult and therefore
rare. In this paper we will show that the zero-temperature
EOS of metals (both alloys and elements) can rather gen-
erally be determined, in the absence of phase transitions,
from a universal function. These results also allow the ap-
proximate determination of the pressure-volume relation
for the experimentally inaccessible regime of negative hy-
drostatic pressure as well as the ultrahigh-pressure regime.

Recently, three of the authors! > have examined the na-
ture of metallic bonding. It was predicted on the basis of
theoretical calculations that the binding-energy—distance
relation could be quantitatively described in terms of a
simple two-parameter scaling of a universal function and
knowledge of the equilibrium specific volume per atom.
The zero-temperature EOS follows directly from the
universal energy relation and is specified by the zero pres-
sure, equilibrium values of the cohesive energy AE, the
isothermal bulk modulus B, and the specific volume per
atom, which we characterize by the Wigner-Seitz equili-
brium radius rwsg.-

The major results of this paper are as follows. Firstly,
we show that in the absence of a phase transition, the EOS
can be straightforwardly predicted. Secondly, we show
that the experimental data can be transformed into a
universal function F* which is related to the pressure P
and the volume V as F*« V2/3P(V). The fact that a
universal form emerges when V2/3P(V) is appropriately
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scaled experimentally confirms the existence of a universal
binding-energy—distance relation for bulk metals under
compression.

The theoretical development of the EOS from the re-
sults of Refs. 4 and 5 are carried out in Sec. II. We find a
length scale / which describes the range over which strong
forces act. The ratio of the size of the atomic cell to this
length, n=rwsg /I, provides a measure of the anharmoni-
city of a crystal. A table of this anharmonicity parameter
is provided for many of the elemental metals. Other re-
sults in this section include a table characterizing the rup-
ture pressure for a metal under negative hydrostatic pres-
sure and a simple expression for the change in the bulk
modulus with pressure.

The experimental confirmation of a universal form for
the binding-energy—distance relation is given in Sec. III.
First we show that given the universal energy relationship
derived in Refs. 4 and 5 as well as AE, rywsg, and the iso-
thermal bulk modulus B, we can accurately predict the
EOS for a number of elemental metals and for a represen-
tative alloy, 347 stainless steel. We collect these results
and show (1) that a universal form for F* in fact exists,
and (2) that its form was predicted by theory. We con-
clude this section by comparing the experimental results
for (3B /dP); with the prediction of theory. Our theory
predicts (0B /0P); for the covalent semiconductors Ge
and Si as well as for metals. We conclude the paper with
a discussion of our results. One point of particular impor-
tance is that (to the accuracy of our results) the prediction
of the EOS reduces to the prediction of the three input pa-
rameters AE, B, and rysg.
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II. THEORY

Detailed, first-principles calculations of the cohesive en-
ergy of metals as a function of lattice parameter have ap-
peared in recent years.®~ 10 It has recently been shown’*>
that the shape of these curves can be obtained from a sim-
ple two-parameter scaling of a universal function E*(a*),

E(rys)=AE E*(a*) . 2.1)

Here E is the binding energy per atom, rwg is the radius
of the Wigner-Seitz sphere containing an average volume
per atom, and AE is the equilibrium binding energy. The
parameter a* is a scaled length determined by rs,

a*=(rws—rwsg)/! . (2.2)

The equilibrium radius is rwgg and / is the length scale
which we have introduced. Thus, the total energy as a
function of separation relative to the equilibrium radius
can be accurately represented in terms of the two parame-
ters AE and [ once E*(a*) is known.

First-principles calculations of the cohesive energy of
cu®, K® Mo®, Ba”, Sm?*t7, and Sm**+"’ have been
scaled and are displayed in Fig. 1. Here AE and / have
been chosen so that E*(a*=0)=-—1, E*(0)=0, and
E*"(0)=1, where the prime denotes differentiation with
respect to a*. As can be seen, the agreement among these
different metals is good. In Refs. 4 and 5 it was further
shown that the universal function E*(a*) was not restrict-
ed to the description of the bulk binding energy of metals.
Rather, as shown in Fig. 2, this same function describes
quantitatively all first-principles calculations of bimetallic
adhesion, molecular binding, cohesion, and chemisorption
of gas molecules on metals. The degree to which these
widely disparate phenomena can be represented by a single
two-parameter function is remarkable.

The existence of such a simple form for the binding en-

SCALED BINDING ENERGY E*

L & | | | 1
1 o0 1 2 3 4 5 6 7 -8
SCALED SEPARATION a*

FIG. 1. Bulk energies for various metals scaled using Egs.
(2.1)-and (2.2). The Mo, K, and Cu data are from Ref. 8, while
the Ba, Sm?*, and Sm*+ data are from Ref. 7.
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FIG. 2. Binding energy as a function of separation for four
systems as noted; scaled in analogy with the bulk energy.

ergy implies a simplification in the EOS. The pressure at
T=0 (P=—dE/dV), can be calculated using Eq. (2.1).
We find

AE 1 g%y . (2.3)

4')Tr %VS l

P(V)=—

Here the prime denotes the derivative with respect to a*
and V =4xrys /3 is the volume. Note that Eq. (2.3) im-
plies that there is no two-parameter, universal scaling rela-
tion for P(¥) because of the coupling between 73 and a*
[Eq. (2.2)]. However, the shape of the force relation,

F(V)=47rr%vsP(V)=—-Al£E*'(a*) , (2.4)
| I I I I
4+ -1
3+ ]
2 -
F*(a*)
1+ —
0
-1 ] 1 1 1 ]
-4 -3 -2 -1 0 1
_a*

FIG. 3. Shows the function F*(a*) plotted vs —a*. Thus,
the values of F* to the right of —a* =0 correspond to compres-
sion of the solid and values to the left correspond to rarefrac-
tion.
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can be scaled into a universal form under a two-parameter
transformation. We write

F(V)=AF F*(a*)

where AF=AE/l and F*(a*)=—E*(a*). Figure 3
shows the universal function F*(a*). Note that F* has a
minimum at a*~1.

A second universal function, G*(a*), which may have
use in experimental data analysis, can be derived from Eq.
(2.5). We note that the force depends linearly on a* near
equilibrium. Thus, we can rewrite F* =a*G*. Explicitly,
G* is given by

(2.5)

417'"%5]312

G*(a*)= P(V). (2.6)

AE(rws—rwse)

If zero-pressure data are available for a given phase
then AE and rwsg can be determined directly from the
equilibrium specific volume and cohesive energy. The
length scale / can then be fixed in terms of AE and the iso-
thermal bulk modulus B by requiring that E*"(0)=1. We
find, after taking two derivatives of Eq. (2.1),

AE 172

I= 127Brwss

(2.7)

The length scale / describes the width of a binding-
energy curve. Consequently, it describes the distance over
which strong forces act when the crystal is uniformly di-
lated. In confirmation of this point of view, it has been
shown in Ref. 1 that / is given to fair accuracy by an ap-
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propriate screening length of the metal. Since / sets the
range over which strong forces act, it also sets the range
of the Hooke’s-law region. A crystal will be said to be
strongly anharmonic if it exceeds the Hooke’s-law regime
for a relatively small change of its initial volume. On the
other hand, in a more harmonic crystal, the Hooke’s-law
region is not exceeded until a relatively larger change in
the initial volume is reached. We can consequently mea-
sure the anharmonicity of a crystal in terms of the ratio
n=rwse/l. If I, and consequently the Hooke’s-law region,
are small compared to the size of the crystal cell, i is
large and the crystal is more anharmonic. Small values of
7 correspond to more harmonic crystals. In Table I, ,
rwse, and n are listed for many of the elemental metals.
The three input parameters for evaluation of the EOS of
many of the elemental metals are given in Tables I and II.
Values of AE and rwsg (deduced from the specific
volume) were taken from Kittel’s book.!! The values of B
were taken from the lowest-temperature result in the
tables of Simmons and Wang!? with the exception of the
values in parentheses which were taken from Kittel.!!

The anharmonicity parameter 7 can be written simply
in terms of the three input parameters as

3 172

127Br WSE

AE

n (2.8)

This relation can be used to explain the trends exhibited
by n across the Periodic Table which are considerable, as
7 varies by a factor ~2.6. First, 7 tends to increase along
the alkali-metal column. The large increase in r%VSE down
the column is compensated by a similarly large decrease in

TABLE I. Scaling length / [Eq. (2.7)], equilibrium Wigner-Seitz radius (Ref. 11), and dimensionless parameter, 17=rwsg /], which
describes the anharmonicity are given. For each element, first line gives value of / (in A), second line gives value of rysg (in A), and

third line gives value of 7.

Li [Be B C N 0 F |Ne
.553 | .312
1.719 |1.25
3.10 |4.01
Na M R i P |S
562 | 316 1336/0 344 ¢ pr
2.080 (1.77 n.s8 |1.68
3.70 |5.60 h.71 |4.88
K Ca Sc [Ti v Cr Mn Fe Co  [Ni Cu In Ga 8e As  [Se [Br [Kr
.651 | .283 .340| .310 | .254 .274| .262| .270| .272| .215 -344
2.573 |2.18 | -- |1.62 [1.49 [1.42° | -- [1.41 [1.39 [1.38 [1.41 | 1.54 -- [1.76
3.94 |4.52 4.76 [4.81 [5.59 5.16 |5.31 |5.11 |5.20 | 7.16 5.05
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In_ [Sn [Sb [Te 1 Xe
.658 .47 .395] .336 | .265 .245 .237| 7269 .214.360
2.750 | -- [1.99]1.77 [1.63 [1.55 -~ 11.48 | -- |1.52 [1.60 | 1.73 [1.84
4.18 4.23|4.48 [4.84 |[5.85 6.04 6.41 |5.94 | 8.08 f5.11
Cs Ba La |Af Ta W Re 0Os Ir Pt [Au Hg T [Pb [Bi [Po |At |Rn
.714 | .558 .373| .330 | .274 | .247 .230| .237| .236 .331] .303
2.977 |2.46 | -- |1.74 {1.62 [1.56 [1.52 | -- [1.50 |1.53 |1.59 -~ [1.90 1.93
4.17 |4.4 4.66 [4.92 [5.69 [6.15 6.52 16.47 |6.75 5.74 b.37
Fr an Ac
Ce r Nd Pm Sm Eu Gd Tb Dy Ho |[Er Tm |Yb Lu
.648 .478 | .467 . 404 .393 .506
2.02 2.27 {1.99 1.96 1.94 1.99
3.1 4.75 |4.27 14.85 4.94 3.94
Th483 Pa U INp Pu Am Cm Bk [Cf Es [Fm Md  |No Lw
1.99
4.12
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TABLE II. Cohesive energy and the bulk modulus are tabulated for many metals (Refs. 11 and 12). In addition, the theoretical
limit for the characteristic negative hydrostatic pressure, Pg /B, at which a metal ruptures, is tabulated. For each element, first line
gives value of AE (eV), second line gives value of B (10'2 dyn/cm?), and third line gives value of — Py /B.

Li Be B C N 0 F Ne
1.65 |3.33
.133 |1.144
.21 17
Na Mg Al Si P S C1 Ar
1.13 [1.53 3.34 |4.64
.0729| .369 .794{0.99
.19 .14 .15
K Ca Sc |[Ti v Cr Mn Fe Co Ni Cu In Ga. |Ge |As [Se [Br [Kr
.941 |1.825 4.86 |5.30 [4.10 4.29 14.39 |4.435(3.50 |1.35 3.87
.0366(.152) -- |1.097 (1.570{1.901 | -- |1.724{1.948|1.876{1.420| .804 --10.77
.18 .16 a5 | .16 | .14 41 .14 A5 | 14 |
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In |Sn [Sb [Te |I Xe
.858 4.3916.32 |7.47 [6.810 6.62 3.936(2.96 [1.16 2.6
.0306| -- .423) .973|1.730 2.653 | -- |3.152| -- [1.955(1.087| .621 .464
a7 171 .15 .15 .13 .13 2 .13 (.10 .14
Cs Ba La [Hf Ta W Re 0Os Ir Pt Au Hg T1 Pb  |Bi Po [At |Rn
.827 |1.86 6.35 {8.089 [8.66 [8.10 6.93 |5.852(3.78 1.87 | 2.04
.0231{(.103) -- (1.106(1.942/3.142|3.715 | -- {3.704/|2.884(1.803| -- .383.488
17 .16 16 | .15 ] .13 | .13 Jd2 ) 12 ] a2 13 .12
Fr Ra Ac
Ce Pr Nd Pm Sm Gd b Dy Ho [Er Tm  [Yb Lu
4.77 .80 {4.14 3.1 3.3 1.6
(.239) .147) .405 .41 .468 (.132
.21 15 | .17 .15 .15 .17
Th  Pa [U Np [Pu [Bm [Cm  [Bk [Cf [Es [Fm [Md [No  |lw
5.926
(.543)
7

B. The decrease in AE leads to the increase in 1. Note
that n peaks roughly in the middle of each 3d, 4d, or 5d
transition-metal row and generally increases in going
down the columns of transition metals. This is in spite of
the similar variation of AE, given that the cohesive energy
AE and 7 are inversely related. It is consistent with the
variation of the bulk modulus B, however. The large
values for Zn, Cd, Mg, and Ca relative to their neighbors
is due to smaller cohesive energies and larger rwsg, and
occur despite their small bulk moduli.

An accurate, analytic representation of E*(a*) is need-
ed to practically evaluate the pressure. The most rapid
variation in the binding energy as a function of separation
is assumed to be exponential. Hence, we propose to ap-
proximate E*(a*) using the function

E*a*)~f*(a%)e™", (2.9)
where f* is assumed to be slowly varying. Consequently,
f* can be represented by a low-order polynomial (if
a* <1). We assume that

fHa®)=fo+fla* +f3a* +fla*3. (2.10)
The constraints introduced by E*(0)=—1, E *'(0)=0, and
E*'(0)=1 require that f;=—1, f1=—1, and f3=0.
We fix f3 from the thermal expansion of Cu (Ref. 13) to
be f3 = —0.05. Higher-order terms in the polynomial are

expected to be small and are neglected here.
The EOS is determined from Egs. (2.3) and (2.10),

Py 3LV/vy'”—1]

—a* 1 * *2
B VAL e % (1—-0.15a* +0.05a*) .

(2.11)

Here Vo=4nrsg/3. Two quantities which are charac-

teristic of the pressure can be extracted from this equa-
tion. The bulk modulus is characteristic of the behavior
near the minimum. The second characteristic pressure
corresponds to a theoretical limit on the negative hydro-
static pressure at which a solid ruptures. This pressure,
Pg, corresponds to the minimum in Eq. (2.11). Typically,
P is 10—20 % of the bulk modulus. As a fraction of the
bulk modulus, Py is largest for the more harmonic solids
(n small) and smallest for the anharmonic solids. Values
of Pi for many elemental metals are included in Table II.

The description given above allows the derivative of the
bulk modulus with pressure to be determined, starting
from the definition

oP

B=—
V oy

(2.12)

T

After taking the derivative of this equation with respect to
pressure and using Eq. (2.7) we find at T=0K,

B
oP

_ 1 Twse E*"(0)
T

B0 2.13)

E*"(0) and E*"(0) can be evaluated from the information
given above and are 1 and —2.3 explicitly. Consequently,

B
oP

2.3 Twsg
31

= (2.14)
T

A similar although more tedious derivation can straight-
forwardly be carried through for (3’B /3P?)r and higher-
order derivatives.
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III. EXPERIMENTAL VERIFICATION
OF THE UNIVERSAL BONDING RELATION

In this section we collect experiments on the compres-
sion of metals with pressure [V (P)] and use them to test
our hypothesis of a universal form for E*(a*) and F*(a*).
Two types of experiment were considered. First, there are
static press measurements which were made by Bridgman
up to 100 kbar.!* The second class of experiments involve
shock-wave experiments'® in which metals are collided at
high velocities. Very large compressions (V/Vy~ %) and
pressures (up to 10 Mbar) have been achieved by this tech-
nique. Unfortunately, the determination of both the pres-
sure and volume are indirect. For example, in a shock-
wave experiment on Pd, the internal temperature is as
high as 7000 K.!> From a model of the shock-wave exper-
iment, the experimentalist predicts a zero-temperature iso-
therm. Clearly, some room for systematic error lies here.
Mao et al.'® have used shock-wave data!’ for four ele-
ments (Pd, Ag, Cu, and Mo) to establish a high-pressure
scale based on a ruby crystal fluorescence line. Given the
importance of this scale, we have included these four ele-
ments in our studies. Agreement between theory and ex-
periment not only tests the hypothesis, but also tests the
accuracy of the shock-wave data and analysis.

In Fig. 4 we show the experimental EOS’s for four met-
als and compare them with the theory. Similarly, Fig. 5
shows the same comparison for four other metals. Note
particularly that an alloy [stainless steel 347 (Ref. 18), tak-
en as 70% Fe, 19% Cr, and 11% Ni for our calculations]
has been included. The data for Li and Rb come from
Bridgman’s work'* and thus are independent of the
shocked-wave analysis. The theory curves use Eq. (2.11)
and the zero-pressure data in Tables I and II. The elemen-
tal input data have been taken from handbook values ex-

trapolated to zero temperature and have not been adjusted .

to improve agreement. In the case of stainless steel the
bulk modulus was determined from the experimental data
and / was found by an average over the concentration for
the constituent elements. As can be seen, the overall
agreement for the eight metals plotted is good. For five of
the cases (Li, Rb, Ag, Cu, and stainless steel) the agree-
ment is essentially exact. For Pd, Mo, and Pt the small
discrepancy is unexplained. Its origin may lie either in a
small correction to our hypothesis or more probably in the
analysis of the shock-wave data. Overall the agreement
between theory and experiment is satisfactory.

The clearest demonstration of a universal relation re-
sults from scaling the experimental data using the zero-
pressure data rwsg, AE, and B. As discussed in Sec. II the
function F*(a*) is expected to have a universal form. F*
can be related to experimental results via Eqgs. (2.4) and
(2.5), which yield

v
Vo

1 "wse
3.1

F*(a*)= (3.1)

Figure 6 shows the results of transforming the data for
the eight metals previously cited. As can be seen, a single
functional relation clearly emerges. We note that a* is de-
fined by Eq. (2.2). Thus, only AE, B, and rwsg enter in
the determination of Eq. (3.1). A theoretical estimate for
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FIG. 4. Predicted (solid line) and experimental EOS (O’s) is

shown for four metals. Note the very different pressure scales.
Rb and Li are from Ref. 14, stainless steel from Ref 18, and Cu
from Refs. 16 and 17.

E*(a*) is given by Egs. (2.2) and (2.10), which allows us
to approximately predict F* as

F*(a*)=a*e~"[1—0.15a* 4-0.05a*"] . (3.2)

The theoretical estimate is in complete agreement with the
function determined by scaling the experimental data.
The range of data used in deriving F* is quite wide. The
Rb data were taken below 100 kbar while the stainless
steel represents pressures up to 4 Mbar. Thus, a factor of
50 exists in the measured pressure for comparable points
on the curves. It is not possible for us to decide if the
small deviations from the predicted curves represent small
errors in our hypothesis or if they result from the experi-
mental method and analysis.

Finally, some experimental data exists for the derivative
of the bulk modulus with pressure, 3B /0P. The last sys-
tematic compilation (of which we are aware) for this

T T T T T T

10.0[~ — Theory -1 1.0 -1
o Experiment Pt Ag
8.0 ~
£ S o5 4
a 1 o
1 oi 1 L L
0.4 1.0 0.8 0.6 0.4
T T T T T
1.0~ 1.0 ' -
Pd Mo
s i~
3 3
= 0.5 — = 05+ -
o a
0 1 | 1 0. 1 1 |
1.0 0.8 0.6 0.4 1.0 0.8 0.6 0.4
V/Vo V/Vo

FIG. 5. Predicted (solid line) and experimental EOS (O’s) is
shown for four metals. Note the very different pressure scales.
Ag, Pd, and Mo data are from Refs. 16 and 17. Pt data are
from Ref. 15.
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quantity is that of Swenson!® in 1968, who reports results
at room temperature for 10 metallic elements. Recently,
Anderson and Swenson have obtained accurate results for
Na, K, and Rb and a new value for Cs.?> A value for Li
was given recently.?! Also, a careful study (small quoted
error bars) has been made of Au, Ag,and Cu (Refs. 22 and
23) as a function of temperature down to 77 K. Results
for the covalent semiconductors Ge and Si are also avail-
able.’ The theoretically predicted value is in good agree-
ment with those metals for which we have found accurate
experimental values which can be extrapolated to zero
temperature (i.e., Au, Ag, Cu, Na, K, and Rb) as shown in
Table ITII. The other experimental results, primarily mea-
sured at room temperature, are in fairly good agreement
across the Periodic Table including Si and Ge. Discrepan-
cies occur for the bcc transition elements.!®?* These
discrepancies are not currently explained. It should be
remarked that the experimental values are difficult to
measure and somewhat uncertain.

IV. DISCUSSION

The compilation of many first-principles calculations
has recently been used to show that the metallic binding-
energy—distance relation exhibits an unexpected simplici-
ty. In particular in the region of strong bonding it is ade-
quate to assume there is a single length scale / which de-
scribes the range over which strong forces act. For this
region the entire bonding curve was described by the
universal function E*(a*) and two parameters / and AE.
In this paper we have shown that the EOS can be deter-
mined from these two parameters, 7wsg and the derivative
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FIG. 6. Result of scaling the experimental pressure-volume
data as in Eq. (3.1). The solid line is the result of the theoretical
estimate given by Eq. (3.2).

TABLE III. (3B /dP)r—, is predicted for many of the elemental metals and compared with experiment when it is available. Ex-
perimental results for Na, K, Rb, and Cs are from Ref. 20; Li from Ref. 21; Al from Ref. 19; Cu, Ag, and Au from Refs. 22 and 23;
Si and Ge from Ref 9; Nb, Mo, Ta, and W from Ref. 24; Pb from Ref. 25; and Fe from Ref. 26. For each element, the first line gives
the value of 3B /3T | ;o from theory, and the second line gives the value from experiment.

Li Be B C N 0 F Ne
3.38 | 4.07
3.5
Na Mg Al Si P S Cl1 Ar
3.84 |5.29 4.61/4.74
3.90 4.72/4.2
K Ca Sc  [Ti v Cr Mn Fe Co i Cu n G G A S B K
4.02 [6.28 4.65/3.69 |5.29 4.96 (5,07 [4.92 |'4.99 |49 | |H.8af > [T [T
4.07 5.29 5.25 4.6
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In |Sn [Sb [Te |I Xe
4.20 4.4314.72 | 5.49 5.63 5.91 |5.55 |7.19 |4.92
4.07 4.1 4.7 5.87
Cs Ba La [Hf Ta W Re Os Ir Pt Au Hg 11 Pb  |Bi |Po [At [Rn
4,20 [4.38 4.57 14.77 5.36 | 5.72 6.00 [5.96 | 6.18 5.40|5.88
3.98 3.8 4.5 5.90 5.45
Fr Ra Ac
Ce Pr Nd Pm Sm Eu Gd b Dy Ho [Er Tm  |Yb Lu
3.39 4.64 |4.27 4.72 4.79 4.02
Th Pa U Np Pu Am Cm  [Bk [CF Es |Fm Md  [No Lw
4.16
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of E*, i.e., F*(a*)=—E*(a*). Good agreement was ob-
tained with experimentally measured values of EOS’s. We
then inverted the procedure and scaled the experimental
data to obtain an experimental estimate for F*(a*). This
curve was in good agreement with the predicted F*(a*).
Thus we have experimentally verified the universal scaling
relations (in the region of compressive loading of bulk
metals) proposed earlier.! —>

The fact that the scaling results exist focuses attention
on AE, B, and rwsg as crucial variables in the theory of
the EOS. If these quantities could be predicted we would
have a complete theory of the zero-temperature EOS in
the absence of phase transitions. It is thus of some in-
terest to see if these quantities can be predicted empirical-
ly, using the quantum-defect method as discussed by
Bloch and collaborators,?’” or the approach of Miedema.?®

Other equations? (e.g., that of Murnaghan®’) have been
used to represent the high-pressure EOS of metals. These
equations have the common feature that they represent a
fit to the high-pressure data. For example, 0B /9P is re-
quired as an input. Such equations are unlike the present
results since our work predicts the pressure and 0B /0P
from zero-pressure measurements.

The accuracy of our predictions for P(¥V) must be deter-
mined by comparison with experiment. This comparison
is quite good, as shown in the preceding section. We can-
not determine from the current data whether apparent
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discrepancies between the experiment and theory are due
to inaccuracies of the model or systematic errors in the ex-
perimental data. We note that the overall good agreement
between theory and experiment lends support to the
current pressure scale which was deduced from shock-
wave experiments.

In conclusion, the EOS for metals at zero temperature
in the absence of a phase transition has been determined
from the universal form for the total-energy—distance re-
lation proposed earlier.!™> A  universal form,
F* < V?*3P(V), was predicted. These predictions were
compared with experiment and found to be in good agree-
ment with the data. This work thus serves as a direct ver-
ification of the universal binding-energy relation in the
compressive region.
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