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Anderson’s theory of local moments is applied to the f-shell metals with the use of parameters
for the electronic structure given earlier. A criterion for localization (abrupt in this theory) of Z;
levels per atom is that the resonance width be less than 2U sin(mZ;/14), with U the intra-atomic
repulsion associated with s-f transfer. Americium and the heavier actinides satisfy this criterion, as
do all the rare earths except cerium; plutonium is borderline. The traditional term “localized state”
is used here though “correlated state” would be more appropriate. For the cases considered the lo-
calized states are found to have net spin (or moment) but that is not a necessary condition. They are
found to contribute to the f-band pressure on the crystal, but reduced by a factor of about W,/3U,
equal to 0.09 for americium, where W; is the itinerant f-band width. The localized f levels may
themselves be thought to form bands, but with reduced width, and they may even have Fermi sur-
face, though that was not found for the systems considered. A comparison of this state with band
ferromagnetism is made. An approximate calculation of the total energy of the localized and delo-
calized states as a function of volume correctly predicted the large volume and localization for
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americium.

I. LIMITATIONS OF DENSITY-FUNCTIONAL
THEORY

Rigorous density-functional theory' provides a formula-
tion of the total ground-state energy of atoms and solids.
The density itself is written in terms of one-electron wave
functions, and a variational argument leads to one-
electron eigenvalues; the ground state is necessarily speci-
fied in terms of occupation of these levels consecutively in
energy. If the exact density functional could be used, this
would lead to the exact ground-state energy; the local-
density approximation ordinarily gives quite good values
for the ground-state energy.

The eigenvalues themselves are not directly meaningful,
though in many systems they are approximately equal to a
removal energy for the corresponding state, thus they are
frequently thought of as one-electron energies. This view
is quite inappropriate in the rare earths where the f-like
states are generally thought of as localized or atomlike. A
few volts may be required to transfer an electron from an
f state to the Fermi energy, and a few volts may also be
required to take an electron at the Fermi energy and add it
to an f shell. Thus two energies are required for the f
shell, one for adding electrons and one for subtracting
them. Density-functional theory gives only one energy for
each orbital, and the eigenvalues representing the partially
filled f shell must come at the Fermi energy. This narrow
f band would suggest a high density of states at the Fermi
energy and a correspondingly large electronic specific heat
which will in fact not be observed. This is not an error of
density-functional theory, since that theory is only
guaranteed to give the ground-state energy. However, it is
a serious limitation in density-functional theory in not
suggesting the nature of the state as reflected in its excited
states. A representation of the electronic structure which
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does suggest the nature of the state is much preferred.

The missing characteristic here is localization of the
electron. The simplest case of such a localization is that
associated with the Heitler-London transition; it is desir-
able to describe that phenomenon since it is based upon
the same physics which we will analyze here, but is
simpler and can be solved exactly. Consider a single
atomic orbital on each of two identical atoms. The corre-
sponding states, with spin up or down, are written |1+ )
and |2+ ). If the two states of the same spin are coupled
by V, an eigenstate for a single electron of that spin can be
written cosy|1+)+siny|2+ ), where we have written the
coefficients as a sine and a cosine to assure normalization.
Let this be the lowest-energy one-electron state of that
spin, for example, cosy =siny =1/v2. Now we seek the
ground state with two electrons present if the Hamiltonian
contains, in addition to the coupling V, a repulsive in-
teraction U which increases the energy of the system by an
energy U if both electrons are on the same atom. This is
no longer a one-electron problem, but the basis contains
only six states (e.g., one electron of spin up on the first
atom and one of spin down on the second) and it can be
solved exactly giving an energy relative to that of uncou-
pled atoms with one electron on each. The ground-state
energy is U/2—[(U/2)* + 4V?]/2, When V is large in
comparison to U the corresponding state is close to that of
each electron occupying a symmetric bond orbital as
described above. These are also the one-electron states
which would be obtained in density-functional theory,
since density-functional theory would lead to a symmetric
Hamiltonian. However, as ¥ becomes small the exact
state becomes predominantly a combination of the local-
ized state with one electron on the first atom and the oth-
er on the second (with opposite spin).

This localization occurs continuously in the exact solu-
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tion, but is not apparent in the states arising from
density-functional theory even if the exact density func-
tional, leading to the exact energy, is used. For the more
complicated problems we shall treat, only an approximate
solution of the problem can be made in any case, and we
seek an approximate ground state which contains this lo-
calization. We may do this by approximating the repul-
sive term in the Hamiltonian as in mean-field theory. We
write that term as the probability (e.g., cos’y) of one elec-
tron being on an atom multiplied by the probability for
the other on that atom multiplied by U. The correspond-
ing ground state will consist of an electron in a state such
as given above (with a value of y to be determined) with
one spin, and an electron in the mirror-image state with
the opposite spin. The energy, relative to two atomic en-
ergies, is

4V siny cosy +2U sin’y cos’y .

These two terms and their sum are plotted in Fig. 1(a) for
negative V. If —V is greater than U/2 there is a single
minimum (2V 4+ U/2 relative to isolated atoms) corre-
sponding to a doubly occupied symmetric bonding state.

2usin? y cos?y

TOTAL

(a)

4V siny cosy

FIG. 1. Localization for two electrons in a pair of coupled
levels. y specifies the form of the one-electron states in mean-
field theory and is midway, at m/4, for a symmetric bond state.
The upper curve in (a) is the Coulomb energy from the intra-
atomic U, the lower curve is the energy gain from the interac-
tion between levels, and the middle curve is the total, showing
two minima corresponding to partial localization. (b) Shows the
total energy as a function of U/V, corresponding to simple
bonds—or itinerant electrons—at small values of U (dashed line)
with a second-order transition to localized states (dotted line) at
large U. The solid curve is the exact energy with no sharp tran-
sition.
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On the other hand, if — V is less than U/2, there are two
equivalent solutions (with spins flipped) (—2V2%/U) in
which each electron resides predominantly on one atom
and can be said to be localized as in the exact solution.

In this mean-field approximation there is an abrupt
transition to a localized state, rather than the continuous
transition of the exact solution. Furthermore, the energy
obtained for the localized solution is —2¥?2/U while the
exact solution approaches —4¥2/U when V is small. It is
nevertheless a significant improvement upon density-
functional theory as ordinarily carried out. In Fig. 1(b) we
have plotted the exact energy, along with the mean-field
energy. Also shown is the continuation of the delocalized
solution to small ¥ which would correspond to an approx-
imate solution of the density-functional theory (corre-
sponding to the local-density approximation). In compar-
ison to the latter we have improved upon the energy and
have also incorporated localization in the state. This in-
troduces an abrupt transition, which does not occur in the
exact solution, but there is no discontinuity in the slope at
the transition so that the transition to delocalization under
pressure is only of second order and the error is not seri-
ous even near the transition.

Also, it provides the satisfying view that on the
itinerant side of the transition the ordinary band theory,
with no correction, is appropriate, but on the other side a
partially localized solution is to be preferred. The physics
of the localization obtained here is essentially the same as
that in the Mott insulators discussed by Brandow? and in
the f-shell metals which are described here.

The Anderson Hamiltonian and Anderson’s solution®
accomplished this localization in a metal. The Hamiltoni-
an contained a d state of spin up and one of spin down;
both were coupled to a series of free-electron states so that
they became resonant d states. In addition, there was a
term in the Hamiltonian adding an energy U if both states
were occupied; thus a state could be constructed (if U was
large enough) with the spin-down state occupied (below
the Fermi energy) and the spin-up state empty (above the
Fermi energy). The two were separated by approximately
U due to the occupation of one. Another state of the sys-
tem was found with both states partially occupied at the
Fermi energy, but that state of the system was of higher
energy.

The new state obtained is closely analogous to the
Heitler-London state discussed above and was referred to
as a “local moment,” since the spin of the state could be
reoriented at no cost in energy, just as in an isolated free
atom. However, the electronic state is a resonance wheth-
er or not the local moment is formed, and the spacial ex-
tent is not significantly different in the two cases. T. V.
Ramakrishnan (private communication) has suggested to
us that for this reason it would be preferable to refer to a
“correlated” rather than a “localized” state. We agree,
but retain the traditional terminology in the present study.

In Anderson’s solution the transition is abrupt, but in
the exact solution it is continuous.> The essential feature
which has been added is the possibility of different poten-
tials being seen by different electrons as in the approxi-
mate treatment of the Heitler-London transition given
above.



Here we directly extend this concept to f-shell metals
for which we have a relatively simple understanding of the
electron structure.*> The f shell has 14 states on each
atom. We shall consider the possibility that some Z; of
these may be resonances below the Fermi energy and
14—Z; may be resonances above the Fermi energy. We
shall in fact need to check in each case to see if such a
state exists, and if it is more stable than the state with all
14 resonances at the same energy, near the Fermi energy.
The U which enters is associated with the energy for
transferring an additional electron from the sd shells to
the f shell, not the energy U, associated with aligning or
misaligning a fixed number of f electrons, so the essential
question is not one of moment formation or ferromagne-
tism, but of localization; we may in fact expect localized
spins to align in accord with Hund’s rule, but that is not
the central point. We shall also generalize the Anderson
model to include an f shell on every atom and the corre-
sponding formation of bands. As long as the bands
formed from the occupied resonances and those associated
with the empty resonances do not cross the Fermi energy,
this makes only a minor difference in the arguments, but
when a crossing occurs the formation of the local state it-
self will be seen to be impeded.

II. FORMULATION

A phase shift may be associated with each of the 14 res-
onances for each atom, depending upon energy. The in-
teresting value is that at the Fermi energy 67 (&) for the
occupied resonances and 8% (£) for the empty resonances;
we shall suppress the Fermi energy £ at which the evalua-
tion is made, since only these values enter. From the
Friedel sum rule® it is known that each resonance accumu-
lates an integrated electron density 8% /7 at the scattering
center. Thus it is convenient to define an effective f-state
occupation for the atom

Z}=Z;8 /m+(14—Z,)8% /mr, (1)

which will be approximately equal to Z; in all cases.
Now if we are to increase the occupation of some reso-
nance, the energy at which we add electron density de-
pends upon the occupation of the other states—as in
Anderson’s analysis. The energy will contain a term Z}" U,
but reduced by the contribution of the state itself. We
write those energies as

€ =9 +(Z} -8~ /MU, €f =3 +(ZF-8T/mU. ()

This gives the different resonant energies for the two types
of states. The phase shifts themselves depend upon a reso-
nance width T, which will be the same for all; these phase
shifts are given approximately by

r/2
6}1—5 '
Equations (1) and (3) may be used to convert Eq. (2)
into the two relations between 8% and 8~ to be given in
Sec. IV, and the allowed solutions are the intersections of
the two. There will always be a solution with §+t=§"

which we write as 8% It is the itinerant or delocalized
state and the state described by traditional band theory.

tand* =

(3)
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There may also be solutions with 548, which are what
may be called localized states. We shall return in Sec.
VIII to the total energy and see that these localized states,
if they exist, have lower energy. In this mean-field theory
the distinction is sharp, as in the approximate curve in
Fig. 1(b), whereas we presume that in an exact solution the
transition is continuous.

III. PARAMETERS FOR THE f-SHELL METALS

Most of the needed parameters are available from a re-
cent paper on the electronic structure of f-shell metals*
and are collected in Table I. The appropriate Zy is an in-
teger which was given for both rare earths and actinides,
as was rg. U, obtained from Herbst, Watson, and
Lindgren,” was listed for the actinides and the correspond-
ing values for the lanthanides were obtained from Hiifner
and Wertheim.> U, had been given for the actinides, but
was corrected here for a factor-of-2 error; corresponding
correct values for the lanthanides were obtained from the
same source.’

Bandwidths provided by Skriver'® had been given for
the actinides and are included in Table I. The correspond-
ing values for the lanthanides are not available, except for
lanthanum and cerium given by Glotzel and Fritsche.!!
We have extrapolated these to the other lanthanides using
a known forrr;),4 W= 182ﬁ2rf5 /mr{. We deduced a value
of r,=0.58 A for cerium from the bandwidth for y-
cerium computed by Glotzel and Fritsche and obtained
the corresponding bandwidth for a-cerium corrected for
the change in ry. We then assumed that the ratio of r, for
each lanthanide to that of cerium was the same as that of
the corresponding actinide to that of thorium; the result-
ing values for W, are listed in Table I. The value for lan-
thanum obtained in this way was 1.55 eV, but we listed
the value 1.20 eV obtained by Glotzel and Fritsche;!! the
discrepancy provides some kind of estimate of the reliabil-
ity of the extrapolation.

The resonance width I" in Eq. (3) may be related to the
bandwidth using a condition for the band minimum and
band maximum in the atomic sphere approximation.'?
This can be evaluated by expanding the spherical Neu-
mann and Bessel functions for small arguments to give

T=2(ksro)' W; /3675, @

where Wy is the f bandwidth, ks is the electron wave
number at which the resonance occurs, and r is the atom-
ic sphere radius. ky in our case may be taken equal to the
Fermi wave number. For all of the actinides and almost
all of the rare earths, there are three free electrons per
atom so kfro=(27rr/4)1/ 3, and we obtain

C=0.677W; . (5)

Values for the 6_‘} could be obtained following Froyen’s
procedure!® for the transition metals. He obtained values
for the s-state and d-state terms from free-atom calcula-
tions, and used a tight-binding formula to relate the s-
band minimum to the s-state energy, and then a free-
electron formula to obtain the Fermi energy £. The values
for € depended significantly upon whether or not
Hartree-Fock or Herman-Skillman term values were used,
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TABLE 1. Parameters for the f-shell metals, mostly from Ref. 4.

z ro (A) W, (V) U (V)P U, rke (A) rim (A)
La 0 2.08 1.20
Ce 1 2.02 0.65 5.6 2.30
Pr 2 2.02 0.37 6.7 0.39 1.71 1.52
Nd 3 2.01 0.26 7.1 0.41 1.45 1.43
Pm 4 0.23 0.42
Sm 5 1.99 0.20 6.0 0.47 1.27 1.33
Eu 7 227 0.08 5.0 0.48 1.27 1.33
Gd 7 1.99 0.20 12.0 0.49 1.12 1.33
Tb 8 1.95 0.23 6.9 0.52 1.22 1.31
Dy 9 1.96 0.22 7.3 0.53 1.24 1.31
Ho 10 1.95 0.23 7.7 0.55 1.28 130
Er 11 1.94 0.24 7.8 0.58 1.36 1.30
Tm 12 1.93 0.25 7.6 0.61 1.52 1.29
Yb 14 1.99 0.20 5.1
Lu 14 1.92 0.25
Ac 0 2.10 7.08
Th 1 1.99 3.58 2.3 3.29
Pa 2 1.81 3.71 1.7 0.22 2.59 2.05
U 3 1.70 4.24 1.9 0.27 2.20 1.91
Np 4 1.66 3.93 2.0 0.29 1.98 1.82
Pu 5 1.68 3.10 4.4 0.32 1.66 1.76
Am 6 1.91 1.26 3.9 036 1.65 1.73
Cm 7 2.03 7.0 0.40

*From Ref. 10 for the actinides and extrapolated from Refs. 11 and 10 for the rare earths.
®From Refs. 7 and 8; in hindsight we would prefer actinide values from Ref. 18.
“Reduced from Ref. 9; an error of a factor of 2 in Ref. 4 has been corrected.

but the final self-consistent energies were quite indepen-
dent of that. It will be adequate here to require that as the
resonances become very narrow (8~ approaches 7 and 8%
approaches zero), Z}‘ approaches Z, and the Fermi energy
lies midway between the two resonances. This gives, from

€p—=—(Z;—3)U . 6)

This gives us explicit values for all parameters needed to
determine for each case whether or not localization occurs
and what the energies of the resonances are.

However, we should recognize that these resonant states
are still coupled to each other, as when bands formed in
the light actinides,* and we should ascertain in each case
whether these bands cross the Fermi energy. In Ref. 4 we
replaced the true density of f-band states by the Friedel
model,* a constant density of states (14 states per atom)
of width Wy, where W; was obtained by requiring that
this model reproduce the second moment of the f band.
(These are the values listed in Table I.) The relation was

12n
7
(Here we neglect spin-orbit coupling which made only a
small contribution.) » is the number of nearest-neighbor
atoms, taken as 12. We wish to make the same approxi-
mation here, but note that the sum over couplings for the
occupied resonances is reduced by the restriction to only
occupied resonances. If Zy is 7 and we assume, by Hund’s
rule, that if localization has occurred all Z; states will

Wi= (Vo +2Via+2Vis+2Virs) - @)

have parallel spin, the occupied resonance W, from the
earlier analysis will be reduced by a factor (Zf/7)1/ 2,
Among the empty resonances, all of one spin will be
present, so Wy remains appropriate. This is a very crude
treatment of the bands, but an improvement requires
specifying just which orbitals are occupied and a calcula-
tion of the resulting bands.

There is also coupling between empty and full reso-
nances, which will be included in Sec. V using perturba-
tion theory. This crude description of the bands will be
sufficient to indicate when crossing is expected and what
the effect will be when it does.

IV. SOLUTION FOR AMERICIUM

By substituting Egs. (1), (3), and (6) into Eq. (2), we
may solve one for 8~ and the other for 87 in exact analo-
gy with the local-moment problem.> We obtain

o r 8+ 8+ 1
= — —(4—Zf)—+—+(Z;—3) |,
Z; | 2Utans* ( f)ﬂ_ + - +(Z; 2)’
(8)

+___ T r _,ZS_— 5~ (Z,—4)

14-Z, |2Utans- 7w DT

Taking parameters for americium from Table I, we plot
these two curves in Fig. 2 (we have also iterated these nu-
merically to obtain the values we quote). We see that
there are three intersections. The interesting one at
87 =2.85 corresponds to six localized states at €, =1.44
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FIG. 2. Separation of the 14 f states per atom into upper res-
onances, with phase shifts 8* at the Fermi energy, and lower
resonances, with phase shifts §~ at the Fermi energy, is allowed.
Each is written in terms of the other and with parameters for
americium three self-consistent solutions are obtained. Middle
solution is the itinerant, band-structure-like solution. To the
right is a localized solution, of lower energy, with six resonances
below the Fermi energy. Solution on the left has higher energy;
it corresponds to an excited state with eight resonances below
the Fermi energy; all three have effective f-state occupation Z}
close to 6.

eV below the Fermi energy; the eightfold ef states lie 1.81
eV above the Fermi energy. With an americium band-
width of 1.26 eV neither set of f bands overlaps the Fermi
energy.

The solution at 8~ =8%=1.34 may be called the
itinerant state. It corresponds to all 14 resonances lying
0.10 eV above the Fermi energy. This state is of higher
energy than the localized state, as we shall see in Sec.
VIII. The bands in this case would extend well below the
Fermi energy, giving f bands corresponding to itinerant f
electrons very similar to the d electrons of transition met-
als; however, this is not the low-energy state and we have
predicted localization. The third solution at 8~ =0.20 is
also interesting. The eight 8% resonances lie below the
Fermi energy at —0.35 eV, and the six 8§ resonances lie
above at 2.26 eV. We would have obtained the same solu-
tion had we assumed Z;=38, rather than 6 at the outset.
We expect this to be of higher energy than the state with 6
below, and indeed the procedure used to obtain the total
energy in Sec. VIII confirms this. Thus this state is a
screened excited configuration. One should presumably
compare all different occupation values for each case to
see which has lowest energy, but we have not done that.

It is interesting that the Z}‘ obtained from the localized
ground-state solution is 6.04; that for the itinerant state is
5.97. Both are close to the free-atom value of 6, and are
close to each other. Even the excited configuration gives
Z;=6.14. It would appear that a density-functional
description would see little difference between the three
solutions.

V. STRUCTURE OF THE STATES

Having established that the localized state is the ap-
propriate description, we may ask which set of f states are

2921

expected to be filled. The exchange energy will of course
favor an alignment of the spins, according to Hund’s rule.
That energy is —Zs(Z;—1)U,/2 for all Z; spins aligned,
as opposed to —2(Z;/2)(Z;/2—1)U,/2 for half of the
spins up and half of the spins down. For americium, with
U, given in Table I, this difference is 9U, =3.24 eV.

Spin-orbit coupling of this S=3 state will tend to orient
it antiparallel to the L =3 orbital state to give a J=0 state.
The increase in energy in going to the J=1 state would be
2V, =0.66 eV, taking the value of ¥V, from Ref. 4.

Opposing this tendency is an orbital energy associated
with the coupling between resonances on neighboring
atoms. If all f orbitals could be occupied on one site and
all orbitals empty on the neighboring site, we could esti-
mate the total lowering in energy of all of the occupied or-
bitals from this interaction in perturbation theory as

2Vio+2Vien+2Vis+2Visg) /(65 —€f) ,

with the factor of 2 for spin. If we randomly occupied Z
spin-up and spin-down states on the two atoms, this
would be reduced by a factor (14—Z)/14 for the reduced
number of empty states and Z;/14 for the reduced num-
ber of filled states. Finally, we may multiply by the num-
ber of neighbors n to obtain the energy gain per atom as

Evand =an( 14—Zf)( szfa +2V}f,,
+2Vi5+2Virg)/98(e5 —ef)

=—Z/(14—Z;)W}/168U , 9)

where we have used Eq. (7) to obtain the final form, and
approximated ef_—-e}" by —U. For americium, E,,q is
only 0.12 eV. This could be enhanced by decoupling the
spin and orbital motion and suitably picking spin orienta-
tions, but the band energy would appear to be too small to
cause that. These considerations confirm the picture
given, for example, by Skriver, Andersen, and
Johannson,!’ of a localized, J=0 state for americium.

For itinerant electrons, the corresponding energy is*
Evana=—2Z7(14—Z;)W;/28. For the localized case this
is replaced by Eq. (9), a reduction of the energy by-a fac-
tor of W;/6U and the volume derivative of the energy by
a factor of W;/3U, equal to 0.09 for americium. This is,
of course, part of the cause of the large atomic volume of
americium. There is also a large expansive contribution
from the localization energy to be calculated in Sec. VIIL.

It is interesting that the localization reduces the
compressive effect of the f electrons, but does not elim-
inate it. There could be cases where the splitting between
full and empty resonances is not nearly so large and a siz-
able compressive effect remains. There may also be cases
where different terms dominate in the determination of
the nature of the localized state—instead of localization of
a Hund’s-rule state, Z /2 specific orbitals, with both spins
occupied, could be occupied because of a lifting of the or-
bital degeneracy by the crystalline environment.

VI. CONDITION FOR LOCALIZATION

It is very useful to derive a criterion for localization
(analogous to the U> |2V] for the Heitler-London case of
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Sec. I) from the two conditions, Eq. (8), which were plot-
ted in Fig. 2. The second equation, that for 8, is the one
which diverges as 8~ goes to zero. The condition for hav-
ing three solutions, and therefore localization, can then be
seen from the figure to be that the magnitude of the slope
of the second curve, evaluated at the itinerant solution
(8t =58"=8), be less than that of the first curve. We
evaluate the slopes of both the second curve and the first
curve, respectively, as follows:

a6t 1 T'r
= — —Z:+1
3~ 14—2Z; | 2Usin®s~ 7
.10
a8t ' B
=Z; | -— — _(14—2Z,)+1
35~ 7|7 2Usin%t P+

Both are negative. Note that they are equal if
' /(2U sin?8) is equal to one. The condition for localiza-
tion becomes

C7/2Usin’8°<1 . (11)

We may use Eq. (1) and the approximate equality of Z} r
and Z; to rewrite the condition as

T <(2U/m)sinX(Z;m/14) . (12)

The condition for the Anderson Hamiltonian, with only a
single level, does not contain the sin? factor, which is a
major difference. That factor drops to 0.05 at the begin-
ning and end of the series making it more difficult to lo-
calize. It is striking that this same factor appears in the
theory of the photoemission of cerium by Gunnarsson and
Schénhammer. !

All of the necessary parameters appear in Table I. A
convenient way to present the result is to evaluate the crit-
ical ' from Eq. (12), and the critical Wy from this I us-
ing Eq. (5), and then obtain the critical atomic sphere ra-
dius (from the W; given in Table I and dependence

Wf~r0 ). The resulting values are listed in Table I as
rioe,

° When the observed r, also given in Table I, is less than
r{)‘”, the states are regarded as delocalized and bandlike.
We see that this is true for the actinides up to plutonium.
For plutonium the condition is so close that we must see if
the bands overlap the Fermi energy. Using just the pro-
cedure carried out for americium in Sec. IV, we find, for
plutonium (with Z;=35), the resonances ef at 1.47 eV
above the Fermi energy and €7 at —0.49 eV below the
Fermi energy. (ZF, incidentally, is found to be 5.04.)
From the W in Table I we see that both bands overlap
the Fermi energy and each other. When a band overlaps
the Fermi energy the electrons redistribute, reducing the
energy shift in the equations such as Eq. (2). This has the
same effect as reducing U and suppresses localization. It
seems clear that this more complete analysis would
predict plutonium to be itinerant, and a preliminary esti-
mate using a Friedel model for the density of states con-
firmed this.

We saw in Sec. IV that americium was predicted to be
localized with no bands overlapping the Fermi energy, and
this would clearly be true for the heavier actinides. Thus
the theory can be said to be completely in accord with ex-
periment for the actinides. On the other hand, this is not
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really a prediction of localization. The principal differ-
ence in the parameters for americium and the heavier ac-
tinides as opposed to the lighter actinides is the difference
in the experimental ry. If americium were compressed to
the 7y value of plutonium it would be predicted to be
itinerant, and that prediction is presumably correct. A
real prediction of localization requires the prediction that
the total energy of the large-r(, localized state is lower
than the small-r, itinerant state. We shall attempt this in
Sec. VIII, where we consider the total energy.

In the rare earths, we correctly predict localization for
all of the elements except for cerium. The observed 7,
which appears in Table I for cerium is for the room-
temperature ¢y phase which is thought to have localized
electrons. For our T=0 theory we predict delocalization
and the consequent contraction of the volume, consistent
with the observed low-volume a phase at low temperature.
We have not included temperature to see if the transfor-
mation to y at higher temperature would be predicted. It
is principally the factor sin’Z rm/14 which makes the
delocalization condition so easy to satisfy in cerium; it is
satisfied though U is nearly 10 times the f bandwidth.

VII. FERROMAGNETISM: ITINERANT
AND LOCALIZED

We found that when localization occurs an alignment of
the spins in each atom is expected. In the solid these
might then form a paramagnetic state, an antiferromag-
netic state, a ferromagnetic state, or even a spin-glass. If
it forms a ferromagnetic state and the localized states
form into bands, as we have indicated that they do, we
might ask what distinguishes the state from the usual
band ferromagnetism. The distinction is clear in our
analysis. First, the driving force is U, not U,. Further-
more, the Z; levels lowered are just those occupied, and
not all levels of the same spin. On the other hand, given
the final set of bands (in the ferromagnetic case), it is not
clear that there is an objective distinguishing characteris-
tic. It may still be valid to distinguish the state in real
systems, as we distinguish  ordinary liquids and gases, al-
though it is possible to go smoothly from one to another
around a critical point.

It is therefore interesting to discuss, in the context of
our analysis, the itinerant ferromagnetic state. Skriver,
Andersen, and Johansson!® had in fact found that in the
itinerant description of americium a spontaneous spin po-
larization, the itinerant ferromagnetic state, was favored.
In Ref. 4 we made the corresponding analysis for the sim-
plified electronic structure, finding a criterion for spin po-
larization of U, > W, /7. Our failure to predict spin po-
larization for americium arose from an error of a factor of
2 in obtaining the value of U, from the data given by
Nugent.” We have corrected that error in Table I where
we see that the criterion predicts spin polarization for
americium, but not for the other actinide metals. This is
again a result of the large experimental atomic volume for
americium, not from the differences in f-state radius 7y,
and U,, which are very much the same for plutonium and
americium. Skriver, Andersen, and Johannson!®> were in
fact using the ferromagnetism as a way of modeling the
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true localization which the present analysis indicates
occurs in americium, since the f-electron pressure which
produces the small atomic volumes in the itinerant ac-
tinides is also greatly reduced in the ferromagnetic state of
americium: The pressure deriving from  the
—Z(14—Z;)W;/28 term in the energy is reduced by a
factor of 4 by placing all six electrons in states of one
spin, compared to the reduction by a factor of 11, about
which we found for localization.

We may tabulate the criterion for itinerant ferromagne-
tism in the same form we used for localization. We sim-
ply use the condition Wy <7U, to find the atomic sphere
radius ro at which ferromagnetism occurs; the results are
listed in Table I. It seems astonishing that the criteria are
so nearly the same, perhaps within the uncertainties of the
parameters, since they depend upon the fundamentally
different atomic parameters U and U,. It helps justify the
use of ferromagnetism as a model of localization, at least
for half-filled bands.

However, we should remember that the states them-
selves are quite different in this case. We anticipate that
the localized state gives no density of states at the Fermi
energy as the band model does. Furthermore, if localiza-
tion is favored, as we find for americium, the alignment of
spins gains all of the energy which ferromagnetism does
and the localized ferromagnetic state should be favored
over the itinerant one.

In a system such as praseodymium, where we find r ferro
greater than r°, we would predict that under pressure the
localized electrons (with spins aligned) should first delo-
calize into an itinerant ferromagnetic state, and then into
an itinerant nonmagnetic state. This prediction could be
questioned since there is a continuous path between the
first two states, but this fact does not preclude a first-
order transition to the itinerant state.

VIII. TOTAL ENERGY

We may also discuss the total energy of the system as a
function of volume. For a real criterion for localization
this is necessary since we must compare the energy of the
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FIG. 3. Total energy for americium as a function of volume.
The dashed curve is for the itinerant bandlike state, based upon
parameters from Ref. 4. The dotted curve is the energy of the
localized state. This predicts a localized ground state at a
volume considerably larger than the observed 30 A3,
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localized state (at the corresponding large equilibrium
volume) and that of the itinerant state (at the correspond-
ing reduced volume). In Ref. 4 we obtained the volume-
dependent terms in the energy; they were the kinetic ener-
gy of the sd electrons (three per atom), the exchange ener-
gy for those electrons, their pseudopotential repulsion (in
terms of an empty-core pseudopotential radius), the
Madelung energy (for ions of charge 3), the band energy
associated with the partial filling of an f band, and the f-f
repulsion energy. These terms describe the crystal with
itinerant f electrons, and gave a good account of the light
actinides though there were significant errors in the
predicted bulk modulus due to small errors in large can-
celing terms. All parameters are given there, and we may
use the forms given there for the itinerant state. The cor-
responding plot for americium is shown in Fig. 3.

In the localized state, the band energy is reduced to the
value given in Eq. (9). In addition, there is a lowering of
the energy which we call the localization energy due to the
splitting into two resonances and the occupation of only
the lower resonance. In Fig. 4 we show the energies of the
two resonances for americium as a function of atomic
sphere radius ry. As the splitting occurs with increasing
ro, there are 14 levels per atom at the center of the reso-
nance at €7 which split into Z levels per atom dropping
in energy and 14—Z; levels rising in energy. In addition,
the energy of all other levels coupled to this resonance are
shifted in energy. The two effects are of opposite sign and
of comparable magnitude so we must include both.

The first contribution to the localization energy is the
gain from dropping Z; electrons per atom from €f" to
€7 . The second may be obtained by summing the shifts in
energy over the states from the bottom of the free-electron
band (e=0) to the Fermi energy (e=§). If there are Z,
resonant states, at €, this value is!’
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FIG. 4. Energy €/ of the upper resonance, that of the lower
€7, and that of the itinerant state e’}i“, as a function of the atom-
ic sphere radius 7 in americium. ’ol‘he localized state is predict-
ed to occur at ry greater than 1.65 A.
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where in the second step we used Eq. (3) for the phase
shift, taking the small argument form for the tangent; this
should be suitable if the resonance is not too near the Fer-
mi energy. Principal values were taken in the integration

— +
€ €Efr —
8Ejpe==— |ZIn |-L—= | +(14—Z;)In f+§
€f €f
€ — €+ +_ eitin
= |zmn| < §4 | 4 1am tm § I
2 €f —& €f —& f

We take the different €, to have similar values, measured
from the free-electron band minimum, and set the final
factor in each logarithm equal to one. Numerical esti-
mates confirm this as a good approximation. Then we use
Eq. (3) and add the transfer term to obtain the total locali-
zation energy,

Eloc—Zf Ef emn

tand°
5+

+ 1|z

In tand*
27 s

tan

(15)

tan

‘ 14In

This is the form we shall use in calculating the total en-

ergy, but it is helpful first to simplify it somewhat in or-
der to see more clearly what it means. We may look in
particular at the weak-localization limit where 8 =8"—
and 8~ =8°+A, with A small and positive. Then the
tangents and the logarithms may be expanded to give
Z,TA (14-2Z/)TA
25in?8° = 2msind®cosd’
The first term is from the first term in Eq. (15) and is al-
ways negative—a gain in energy due to localization. The
second term will generally be positive; when Z; exceeds
seven so the numerator is negative, the resonance will lie
below the Fermi energy and cos8 will also become nega-
tive. Evaluation of this as a function of Z; (taking
8=z r7/14) indicates that the first term is always larger
in magnitude, so we may generally expect localization to
occur if the criterion, Eq. (12), is satisfied and if neither
resonance produces bands which cross the Fermi energy.

In this weak-localization limit, with only a small split-
ting between the two resonances, only a small portion of
the Ey,pg=Zf(14—Z f)Wf/28 is lost; an approximate cal-
culation of Ey,,q which varies smoothly between this form
and Eq. (9) would be appropriate. However, in the weak-
localization limit the bands will cross the Fermi energy so
other refinements are also necessary. For our purposes it
will be sufficient to use Eq. (9) which is appropriate for
strong localization, and in fact the resulting energy is
small enough that we may neglect it altogether. We thus
add E,, from Eq. (15) to all terms in the f-shell—metal
energy from Ref. 4 (except the Ey,,q term) to obtain the
total energy labeled “local” in Fig. 3.

Before discussing this curve we may note that the same
evaluation of Eq. (15) may be made for the second local-

(16)

loc~ —
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across the singularity. The contribution to the localiza-
tion energy is such a contrlbutlon from Z £ resonances at
€7 plus the effect of 14—Z; at €/ minus the effect of 14

resonances at €™,

6_mn__ g I ]
Gmn

(14)

ized solution from Fig. 2, that with eight resonances, rath-
er than six, below the Fermi energy. This yields a positive
localization energy of 0.175 eV, rather than the —3.87 eV
for the Z;=6 solution, confirming that it is an excited
state.

The behavior of the localized curve is qualitatively
correct. It reaches a minimum at larger volume than the
itinerant curve, and the energy at the minimum is consid-
erably less than at the itinerant minimum. However, we
appear to have considerably overestimated the gain in en-
ergy due to localization. The minimum occurs at a
volume considerably larger than 30 A3 at which americi-
um is observed.

In Ref. 4, the pseudopotential core radius was actually
adjusted to yield the correct equilibrium spacing for amer-
icium, assuming that with localization there was no band
energy, but also that there was no localization energy; the
discrepancy has come because we have now added the lo-
calization energy from Eq. (15). We might therefore read-
just the pseudopotential core radius to bring the equilibri-
um volume into agreement with experiment, requiring an
r. of 0.28 A rather than 0.80 A. This, however, seems
too small in comparison to the core radii obtained from
the free-atom ionization potential for the f-shell metals.
We presume therefore that the discrepancy comes not
from an inappropriate pseudopotential, but from inaccura-
cy in our estimate of the localization energy from Eq. (15),
in analogy with the factor-of-2 error in the energy of the
localized Heitler-London state (compared to the exact
value) which we noted in Sec. I. We may also note that
the discrepancy may not be excessively large in compar-
ison to discrepancies we found in Ref. 4, and as large as a
factor of 3 in the predicted bulk modulus for two of the
actinides.

For the lighter actinides the condition for localization
becomes more difficult to satisfy. First, U tends to de-
crease as we move to the left in the table (except for Pu,
which from Herbst’s values’ is larger than Am;
Johansson'® did not find this reversal and perhaps his
numbers are to be preferred). In addition, the sin® factor
in Eq. (12) drops from 0.95 to 0.81 in going from Am to
Pu and continues to drop. Both Am and Pu have the
same W, at the same volume, but W, and T' increase as
we go further to the left. Thus the general trend is
correct. However, it is clear that the same calculation
which predicted localization for Am would predict locali-
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zation also for Pu, since localization is expected very near
the Pu equilibrium spacing (see Table I) and the similarity
with Fig. 3 makes it clear that the prediction will be simi-
lar. A more accurate treatment of the localization energy,
and perhaps other terms is clearly needed if these predic-
tions are to be numerically accurate.
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