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The purpose of this paper is to explore the possibility of using augmented Slater-type orbitals

(STO) as basis functions for electronic-structure calculations. STO s have a radial dependence given

by r" 'exp( gr—) and as a result have a number of important advantages. They are localized about

sites and have the same asymptotic form as actual atomic orbitals. They are regular at the origin

and possess analytic Fourier transforms. The Fourier transform can be manipulated to yield an ad-

dition theorem, that is, a reexpansion formula for an STO about another site which is similar to the

one used for spherical Bessel functions. Augmenting the STO's with numerical solutions of the

Schrodinger equation within touching spheres leads to a small secular matrix since the numerical

functions are orthogonal to all the core states and the STO's are only used in the interstitial region.

The method has been applied to copper, silver, and palladium using Chodorow-type potentials and

accounting for all relativistic effects except spin-orbit coupling. The results on copper are in good

agreement with previous calculations and with experiments. The results on Pd and Ag are in better

agreement with photoemission experiments than fully self-consistent local-density calculations.

I. INTRODUCTION

The purpose of this paper is to present a new method
for solving Schrodinger's equation in crystals. The
method can also be applied to films, chains, or molecules.
It is a direct outgrowth of the linear muffin-tin orbital
(LMTO) method' of Andersen and co-workers and the
augmented spherical wave (ASW) method of Williams,
Kubler, and Gelatt. Both of these schemes are attractive
because they resemble the traditional linear combination
of atomic orbitals (LCAO) approach, hence lead in princi-
ple to easy interpretation of the resulting equations. How-
ever, as written, they have two disadvantages. One is that
the basis functions have relatively long-range tails, decay-
ing as llr +', which means more neighbors need to be
considered than if a more localized basis set were used.
Also, in the LMTO method the overlap matrix for two s
functions diverges at the center of the Brillouin zone
which then requires special treatment. The other problem
is that it has proven difficult to include non-muffin-tin
corrections in an exact way. They are handled by approxi-
rnating integrals over the Wigner-Seitz cell by integrals
over the sphere of equivalent volume (atomic sphere ap-
proximation). This must be an excellent approximation
for close-packed structures, judging by the results, but is
nevertheless not a well-controlled approximation. Also,
for more open structures and particularly for surfaces it is
not appropriate. These problems can be overcome to some
extent by adding extra "empty" spheres. ' Another ap-
proach, by Kasowski, has been to use the standard
LMTO basis but to perform integrations over the intersti-
tial region by using fast Fourier transforms. The LMTO
method has been applied to films by Krakauer and
Cooper.

Another point relevant to the LMTO method is the
number of independent functions used. The impression

one has is that there are two functions per angular-
momentum quantum number, one, g, a numerical solution
of the Schrodinger equation within the spheres and a
second one, g, the energy derivative of that function. In

fact, there is only one energy-independent function per k.
This is because a particular linear combination of g and g
is chosen by requiring that the log derivative of the com-
bination be equal to the log derivative of a Bloch sum of
tail functions. As noted by Harris and Painter and more
recently by Casula and Herman one would often like to
have more than one function per k in order to increase the
variational freedom.

In this paper a different approach to these problems is
proposed: the use of Slater-type orbitals as tail functions.
These functions are given by'

(r)=r" 'exp( gr)Yt (r), —

where the Yt 's are standard spherical harmonics. They
decay more rapidly at large distances than I/r'+' or
spherical Neumann functions, so interactions should be
limited to substantially fewer neighbors. Secondly, they
are known to accurately represent atomic wave functions
at large distances so they form an attractive basis set to
understand the difference between atoms and solids.
Thirdly, they are regular at the origin and have known
Fourier transforms. This means that integrals over the
unit cell can be performed by sums over the reciprocal lat-
tice so that non-muffin-tin terms can be included in a
practical way. As with the LMTO and ASW methods the
STO's must be augmented within touching spheres sur-
rounding each atom. Following Andersen' radial func-
tions and their energy derivatives are chosen to represent
the wave function within the spheres. Relativistic effects
(except spin-orbit) are included by solving the "j-
weighted-average" Dirac equation within the spheres fol-
lowing, for example, Koelling and Harmon. " This leads
then to a linear augmented Slater-type orbital (LASTO)
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method which has the advantage that it has the same
form as an LCAO or tight-binding formalism, but all in-
teractions (i.e., all neighbors and all three-center terms) are
included. The basis functions are short ranged so that
Ewald techniques should not be necessary to evaluate the
lattice sums which enter. On the other hand, since the
Fourier transforms are known, Ewald techniques could be
used if desired. The "screening constant" g is of the order
of one atomic unit which is why the functions decay rap-
idly with distance. In the ASW method the tail functions
also have an exponential cutoff but the screening constant
is usually taken to be -0.1/ao, where ao is the Bohr ra-
dius. One way to choose g is to require that the STO's
rnatch smoothly onto the numerical radial function inside
the spheres. This gives

(&a)

where g /g is the logarithmic derivative of g. This is con-
venient because a second independent function can be
chosen which matches smoothly onto g. As an example,
Andersen' has argued that the band center lies at the en-

ergy where the logarithmic derivative of g evaluated at the
Wigner-Seitz radius is equal to —( l+ I)/Rws. Applying
this criterion to Eq. (2a) yields

n+l
Rws

(2b)

For example, for a 3d function in copper (=1.88/ao.
This is in reasonable agreement with the shortest-ranged
3d function used in atomic calculations on copper with
STO basis sets. ' '

Compared to Gaussian-type orbitals' ' STO's should
be better at describing regions of low charge density such
as that outside a metal surface. It is often noted that
GTO's do not satisfy the "cusp condition, " i.e., they do
not have a finite slope at the nuclei in contrast to actual
atomic wave functions. STO's do, of. course, satisfy this
condition, but because they are not used inside the spheres
this is of no special advantage. In fact, Batra and co-
workers' have advocated using augmented Gaussians in
the same spirit as Slaters are used in this paper which el-
iminates the cusp problem completely.

In common with all the augmented schemes, including
the augmented-plane-wave method, the numerical func-
tions used inside the spheres are orthogonal to all the core
states so the size of the secular matrix is determined by
the valence orbitals only. However, in contrast to pseudo-
potential methods the core states can be explicitly calcu-
lated and allowed to adjust to the crystalline environment.

Finally, since the Fourier transforms of the STO's are
known functions„Poisson's equation can be solved along
the lines suggested by Weinert and Harnann. ' '

The remainder of this paper is organized as follows. In
Sec. II the method is derived in detail and the form of the
basis functions given. In Sec. III the secular matrix is de-
rived. In Sec. IV results for calculated energy bands for
copper, silver, and palladium are given, and in Sec. V
there is a discussion. Appendix A gives the Fourier
transforms of STO's and Appendix B the formulas for
reexpanding an STO about another site.

II. LASTO METHOD

with

(r)= +exp(ik R;)pz(r —R;),
C I

(4)

where N, is the number of sites in the crystal and the Pz
are Slater-type orbitals centered at site R;. Upper case X
is a composite index implying n, l, m. It is assumed that
there is one atom per unit cell, but the generalization to
more is straightforward as is the inclusion of more than
one orbital of given N at a site.

The Bloch sum of STO's [Eq. (4)] is used only in the in-
terstitial region, between touching "muffin-tin" spheres.
Within spheres the function is replaced by a linear com-
bination of numerical functions to which it matches
smoothly. The numerical functions are gi(r) and g&(r), the
energy derivative of gl as usual in the LMTO method ex-
cept that relativistic effects other than spin-orbit are in-
cluded. Then, within the ith sphere,

1
giv(r)= +exp(ik R;)[piv Lgi (r;).

&Nc

++x, L'gi (ri ) ]~'L (r ' ) ~

The g 's are normalized within the spheres,
R

J r gi(r)dr=1,

and gi and gi are orthogonal. They satisfy the radial
equations

and

h„gl ——egl (7)

hr81 =~gl +gl

where h, is the scalar relativistic Hamiltonian,

d 2 d
h = —— +—

2M dr2 r dr
l(l + 1)

r 2

1 dVd
2M 2~g2 dr dr

+V,

as discussed by Koelling and Harmon. " In Eq. (9)

(9)

M-™1+' ',
2mc

and the other symbols have their usual meaning. Notice
that as c~ oo, Eq. (9) reduces to the usual nonrelativistic
radial Schrodinger Hamiltonian.

In order to effect the matching at a given sphere it is
necessary to expand an STO about a site other than the
one on which it is centered. This is a problem which has

In this section the equations for the LASTO method are
written in a way which mirrors tight binding as closely as
possible. The wave function is expanded as

ti~(r)= g A„i 1(i„i (r),
n, l, m
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been considered by many authors. In practice the ex-
prcsslon glvcn by SllvcrstoQc ls convcnlcnt bccausc lt
resembles closely the more familiar one for spherical
Bessel and Neuman functions. Silverstone*s result (with
indices reordered) is

Pnt~( r —R ) = g 4IrI(L, L', L" ) Vtt I (I',R)
I tt

X YL (I') YL-(& ),

where I is the Gaunt integral

I(L, L', L" )= I YL(r)YL (r)YL (r)d v,

'I
gt+'it (gr)kt-(gR) .

(12)

The i's and k's are modified spherical Bessel functions of
the first and third kinds, respectively. They are polyno-
mi»s in (ltx) times exp(+gx) (see Appendix 8). For the
(nonphysical) case n =0, i =0, m =0, Eq. (10) is called
Gegenbauer's addition theorem. IQ order to actually com-
pute V it is convenient to expand Eq. (12) into elementary
functions as advocated by Sharma and by Jones and
Weatherford. ' ' Using Eq. (12) and standard representa-
tions fol' ll ~ aIld kt ~ lt Is sllowll 111 AppcIldlx 8 tlla't

Vn ( g ) g g Vn (
I II

)(g )n' —I[ gP+ ( 1 )I '+n' —1 —
gP](gg )n"—I

n'= I ' n" ——'I"=
(13)

It can be anticipated therefore that the band problem will involve "structure constants" which are defined as

D L(k):—g (gR )" 'exp(ik. R —gR )YL(R ). .
j~o

(14)

These structure constants are the analogs of those appearing in the LMTO, KKR, or ASW methods. But note that they
al'c well behaved. Tllc sllnl ovcI' I collvclgcs fol all values of k (lllcllldlllg k =0).

With the use of these expansion formulas it is possible to match at the ith sphere in the following way:

p LL~gt~(r)+a L L~gt (r)=l'" exp( —gr)5LL + g exp(ik'R ) +4IrI(L L' L")Vtt t~ (r 8 )YL (R )
j +0 I"

for r =R, . It is also required that the radial derivative of
this equation be satisfied for r=R, which yields two
equations for the two unknowns, p and a.

All of these expansions have been carried out in real
space. Altcrnativc1y, they can bc done ln reciprocal space.
The Bloch sum of STO's has a reciprocal-lattice represen-
tation given by

obtained straightforwardly. The overlap matrix is

~xN' ~ nfl r n'I'm' r

l / e
~

~

P L L"P 'L L"+ L L n'L L""(gt"
I gt" ~ ~

Qe""+"'Ant (k+g)n Itl ~~ V
n Nl

where V, /X, is the volume of the unit cell, the g 's are
reciprocal-lattice vectors, and P is the Fourier transform
of P (see Appendix A). The series, Eq. (16), converges
fairly quickly because the P's are relatively slowly varying
in space. To match at the ith sphere requires

P L L'gt'( )+& L I. gt'(r)

4~1' Jt (m) YL (e)P.t (q»
V,

where q =- k+ g. Energy bands for copper have been cal-
culated using both 1cal-space and rcclpl oca1-space
methods [Eqs. (15) and (17)] with the same results.

A. SPhCfC tCrmS

From the matrices P and a defined by Eq. (15) the con-
tribution to the overlap and Hamiltonian matrices can be

&illi&= J, "«i'. (20)

Notice that (g
~ g ) =1 and (g

~ g ) =0. In a similar way,
and using Eq. (8), one finds

l ~1~N N' e~N N'+ QPnL L"+n'L' L" .

Tbc generalized sccUlar equation,

may no%' bc solved to glvc thc clgcnvalucs ancl. clgcnvcc-
tors. Making use of Eq. (21) this can be rewritten to ob-
tain an effective Hamiltonian without overlap:

(23)

(note that [p*a] is a matrix). This bears a close resem-
blance to the LCAO procedure of Anderson and Bullett
cxccpt that a very flexible basis sct has bccn Usccl to coll-
struct H,~~. A similar procedure has been advocated by
A.ndersen. "
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B. Intersphere terms

In order to evaluate the integrals over the region be-
tween spheres the STO's are integrated over all space and
the contributions from the spheres are subtracted out.
Since the STO's are regular at the origin, this integration
is well defined and presents no special problems. Further,
since the Fourier transforms of STO's are known the in-

tegration mn be evaluated using either real- or reciprocal-
space techniques. The method will be dictated by the
form chosen for the potential in the interstitial region.
The reciprocal-space version is given here. A Bloch sum
of STO's has a reciprocal-space representation given by
Eq. (16). Consequently, the integral over all space is given

by

XNrxN r 3r= ' Nk+g N k+8 . 24

The integral over the interstitial region is then obtained by
subtracting from Eq. (24) the integral of the X's over the
spheres. The integral over the spheres can be obtained us-

ing the expansion formula, Eq. (10) (although some care
must be taken with the limit r~0). In the current work
this integral was not evaluated explicitly. Instead the
atomic sphere approximation was used and only integrals
over the Wigner-Seitz sphere (volume equal to the unit-
cell volume) were computed.

IV. APPLICATION TO Cu, Pd, AND Ag

In order to test the LASTO method bulk band-structure
calculations were performed for fcc copper, palladium,
and silver. The overlap integrals were evaluated in the
atomic sphere approximation. " That is, the integrals were
carried out over a sphere with volume equal to the unit-
cell volume (Wigner-Seitz sphere) and the interstitial re-
gion was not included. The lattice constants were taken to
be Cu, 3.61 A; Pd, 3.89 A; and Ag, 4.09 A.

For copper the potential was taken from Burdick ' (the
Chodorow potential) except that it was interpolated onto a
logarithmic mesh (using four-point Lagrange interpola-
tion). For palladium and silver a Hartree-Fock-Wigner-
Seitz (HFWS) potential ' was used. This potential
(which is also known as a renormalized-atom potential) is
essentially a Chodorow potential since Chodorow used a
similar procedure to obtain his famous potential for the d
electrons in copper. For the atoms treated here a Dirac-
Fock calculation was performed and the potential was
taken to be the j-weighted average of the d5~2 and d3/p
potentials, and this was used when integrating for wave
functions of all I of interest. The configuration was 4d 5s
for Pd and 4d' Ss for Ag. This potential, while not self-
consistent, is known to accurately represent bulk band
structures. In fact, the Chodorow potential is in better
agreement with photoemission data for these metals than
self-consistent local-density approximations.

In each case a "minimal basis" was chosen of 3d, 4s,
and 4p functions for the Cu and 4d, 5s, and 5p functions
for Pd and Ag. This leads to the diagonalization of 9X9
matrices. The g's were chosen according to Andersen's
criterion as given in Eq. (2). The energy parameter used

in evaluating the radial functions was set to —0.33 H (H
indicates hartree, which is equal to 27.2116 eV) close to
the d resonance in copper. The "internal summation" in
Eq. (15) was extended to l'=3. The structure constants

[Eq. (14)] were calculated by summing over five shells of
neighbors in the fcc lattice.

A. Copper

The results for copper are listed in Table I for the
points I, X, and l. in the Brillouin zone. The first column
gives the results of Burdick's APW calculation except '

that the eigenvalues were shifted to an absolute-energy
scale by adding the muffin-tin zero —0.470 H. To com-
pare with the AP% calculation which was not relativistic
the standard trick of setting c '=0 was used. The scalar
relativistic eigenvalues are given in the third column. The
errors in the LASTO eigenvalues generally increase as the
distance of the eigenvalue from the energy used to evalu-
ate radial functions ( —0.33 H). This is to be expected for
a linear method. The relativistic corrections are expected
to be about 10 mH based on Herman and Skillman's
tables. The d and s levels all have corrections which are
close to this value. The p levels are substantially larger,
but this is probably related to the fact that they are too
high in energy to be well described by e= —0.33 H. In
order to investigate the effect of the various parameters on
the calculation the expansion energy, the g's, the I conver-
gence, and the shell-by-shell convergence were studied for
copper. Changing the expansion energy e from —0.33 to
—0.40 H caused the s and d levels at I to shift by less
than 1 mH. This is consistent with similar results for this
potential using the linear APW method. The p level had
a much larger shift, 56 mH, which again reflects the high
energy of that state. The g values [Eq. (2b)] for the 3d
and 4s levels were 1.8755 and 1.5004, respectively. Vary-
ing the (3d from 1.6 to 2.1 produced shifts up to 0.6 mH
and varying g4, from 1.00 to 1.5 produced shifts of 0.2
mH. Changing the 1' sum in Eq. (15) to 2 instead of 3
caused changes of 0.1 mH in the s and d levels and 50—60
mH in the p level. Finally, including only the first shell of
neighbors in the structure constants caused shifts in the d
levels of 1—4 mH while for the more delocalized s level
the shift was 50 mH. This indicates that using nearest
neighbors only may be useful for model calculations. No-
tice that this approximation does include three center
terms which would be excluded in the more usual "tight-
binding" parametrizations. Increasing the sum from the
fifth to the eighth shell caused a shift in the d levels
which was less than 0.01 mH but for the s and p levels it
was -0.3 mH.

In order to compare with other calculations and with
experiment three characteristic eigenvalues at the X
point are plotted in Fig. 1. The energy zero is I ~, "the
bottom of the s band. " The values shown are usually la-
beled X4, X5, and X3. In the mse that the z axis is along
the X direction and using the minimal basis set, X4 is
pure p„X5 is d»„and X3 is pure d„». If spin-orbit cou-
pling is included X5 is split. X5 —X3 is a good measure of
the d-band width while X4 —I

&
is a measure of the s-band

width.
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TABLE I. LASTO method bulk band-structure calculations for fcc copper.

APW

0.711
—0.291
—0.320
—0.520

LASTO
(nonrelativistic)

0.866
—0.290
—0.316
—0.519

LASTO
(scalar relativistic)

0.849
—0.298
—0.324
—0.532

I 15

I i&

II

Px,y,z

x2 —2 z2

dxy, yz, zx

$

X 0.301
0.076

—0.118
—0.264
—0.270
—0.370
—0.388

0.311
0.058

-0.110
—0.262
—0.270
—0.363
—0.381

0.303
0.036

—0.117
—0.271
—0.279
—0.369
—0.388

X5
XI

X4
X5
X2

X3
Xi

PX,y
s,d 2

Pz

d
X

dry

s,d 2

0.596
—0.047
—0.215
—0.269
—0.321
—0.388

0.650
—0.020
—0.193
—0.269
—0.320
—0.380

0.638
—0.040
—0.200
—0.277
—0.327
—0.388

In the case of copper, where careful comparisons with

experiment have been made the Chodorow potential is
known to agree better than the best self-consistent local-

dens1ty calculat1ons. Th1s 1s 111ustI'ated 1n Flg. 1, wheI'e 1t

can be seen that the s- and d-band widths are about the
same in the two calculations but the d bands lie too high

by -40 mH=1 eV. This conclusion has of course been

reached before. 6

B. Palladium and silver
500—

The bands for Pd and Ag are shown in Figs. 2 and 3

and compared with other calculations at the X point

in Fig. 4. The results labeled SP for "standard potential"

are from Christensen who overlapped the atomic charge

density from atomic Dirac-Slater calculations and used

full Slater exchange. The calculations are not self-

consistent, but they do include spin-orbit coupling which

is why two levels are shown for X5.
The same general conclusions apply for these metals as

for copper. The d bands lie higher in the self-consistent

local density approximation (LDA) calculations than they

do in the non-self-consistent calculations, although in Pd

the scale of this discrepancy is less than it is in Cu or Ag.
The HFWS calculations are roughly in agreement with the
non-self-consistent Xa calculations of Christensen. Since
Christensen's bands have been found to roughly agree

with experiment ' the HFWS results may be presumed

to be in better agreement with experiment as well. In par-

ticular, for Ag the bandwidth is narrower by about 30 rnH

(-0.8 eV) while experimentally it is narrower by about 15

mH. This contrasts with copper where the bandwidths

are roughly correct. There has been one self-consistent

HFWS calculation (for nickel) in which it was found

that the d-band width narrowed relative to the non-self-

E

0"
C9
K
UJ~ 200—
UJ

I 00—

Expt AP'tI)j LAST0 LDA

FIG. 1. Comparison of band energies of copper at the X point
relative to I 1. Experimental points are from Ref. 36. APW is

from Burdick (Ref. 31). LASTO refers to the present results

both nonrelativistic and scalar relativistic. LDA is a self-

consistent local-density calculation of Jepsen et ul. (Ref. 37).
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-0.2—

I '
I
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I

t
I
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I

& I t
I

&
I

-0.2
Lp'

X4'- -4

Lp

—-0.3—

Lg
QJ

IJJ
-04—

LI

-0.5—

X,
—-6

X2

—-8 &
0)

EL
—-10 zLLI

LLI

Xg
XI —-12

—-14

-0.3

K
bJ Lp

-04

Lp

Ll
-0.5

X~ 10 w
Xp

Ld

—-12

Xg
Xl

—-14

I & I I I i t I & I I I I I I

FIG. 2. Calculated energy bands of palladium using HFWS
potential and atomic sphere approximation.

I I I I I I I I & I I I I

1.0 0.8 0.6 0.4 0.2 0 0,2 0.4 0.6 0.8 1.0
L' r X

FIG. 3. Calculated energy bands of silver using HFWS po-
tential and atomic sphere approximation.

consistent result (in contrast to the LDA where it
broadens on going to self-consistency). It would be in-
teresting to apply the self-consistent HFWS method to
Cu, Pd, and Ag as well.

V. CONCLUSION

The purpose of this paper was to explore the possibility
of using augmented Slater-type orbitals as basis functions
for electronic-structure calculations. It has been found

that the main requirement, the ability to expand an STO
centered on one site about another site can be accom-
plished straightforwardly. The calculated energy bands
are in reasonable agreement with previous results for the
Chodorow potential. The remaining discrepancies are
probably due to the use of the atomic sphere approxima-
tion, which can easily be improved upon in future work.
Calculations on Pd and Ag using a Chodorow-type poten-
tial (actually a Hartree-Fock-Wigner-Seitz or
renormalized-atom potential) further illustrate the use of

Pd

Ag

400—
{b)

400—
X4 I

x X4

—10

300—

300—

E

(3
K
UJ

~ 2OO-

Xg

C9
6 tz

LLI

IJJ

X
E

(3
LLIz 200—
UJ

X5

0)

6a
IX
UJz
UJ

100—
Xp

2

100—

x Xg

SP HF WS LDA SP HF WS LDA

FIG. 4. (a) Comparison of energy bands at X point for Pd. SP refers to the non-self-consistent RAP% calculation of Christensen
(Ref. 40) using the "standard potential. " LDA is the self-consistent local-density result of MacDonald et al. (Ref. 38). (b) Same for
silver except LDA is from Jepsen et al. (Ref. 37).



J, W. DAVENPORT

the method. As with previous non-self-consistent calcula-
tions the HFWS results are in better agreement with
photoemission experiments than fully self-consistent
local-density calculations.
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Collected here, for convenience, are results useful for re-
ciprocal space. They are all implicit in the work of Silver-
stone.

First the Fourier transform of an STO ls given by

y„,.(q)= I d're ""y„,-(".),
{q )=4~( i)'Y—I(q) 1 drjl{qr)r "+'exp( gr), —

imp a(a+ I)p(p+1) x'
ix, ,px —+ x+ +

jl(x) =x 1 d
X dX

smx
(A7)

Then the integral in Eq. (A.2) can be written
'n —1 I

8 l 1 d

Bg q dq

00

X — exp —r sin qr r
q 0

The integral is just 1/(q'+ g2) and
I

1 d 1 1 d q
q'+g' 0 d0 q'+4' '

y„, (q }=47r( l )'YI.{q—}c'.l{q)

(A6)
since either —(n —i)/2 or —(n —I —1)/2 is a negative in-
teger the series always terminates. An alternative repre-
sentation can be found by using the relation

I

where j is the usual spherical Bessel Function

jl(qr)=(vr/2qr)' Jl+l&2(qr) . (A3)

1 a q'

g Bg q2+g
(A10)

The integral is known:
' 1/2 I+ I/2

I {I+n+2)
gn+3 /21 ( I +2q 2(

f.l(q'4')
( 1 +q 2/g2 )n + 1

and f„l is a hypergeometric function given by

f„l(q /g )=F{ (n 1)/2, (n—I ——1)/2, —l+ —,
'—, q /g )—

(A5)

APPENDIX 8: ADDITION THEOREM

A derivation is given of the expression in Eq. (10) for
the expansion of a Slater-type orbital about another site.
Such expansions are generally called addition theorems:

Pnl ( r )=r " 'exp{ gr) YL (—r ),

I q eiq (r —R)y
(2m)'

The strategy is to expand the exponential and use the form
for P given in (A10) as follows:

(r —R)= g 4mi YL (r)YL (R} Jd qYI*(q—)YL-(q)YI(q)J'l (qrj)l (qR)4„l(q) .
LI Lll

7

The angular integral is the Gaunt integral I ( I., i.', I."). So comparing with Eq. (10) and using Eq. (A10)
n —l ' 'l

I

Vll l (r,R) = i ( —1)" — — I dq q j l (qrj)l»(qR) .

(83)

The integral in Eq. (84) can be evaluated as a contour integral. There are poles at q =+i(; hence one naturally obtains
modified spherical Bessel functions. The exact form is given in Eq. (12) (for R & r) The Vcoefficie. nts in Eq. (13) were
evaluated with the expansion

il (gr)= g . , [(—1)~exp(gr) —( —1) exp( gr)]-(&'+l)! I r 1

0 i!(I ' —i)! (2')'+'
and the corresponding expression for kl (gR). It is then a straightforward, although somewhat tedius matter, to ob-
tain the V's by repeated application of the differential operator
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n —l '

(86)

Explicitly,

1 I (i'+i+1)
l (i +1)J ( I ' i—+ 1)

x I ( i "+j+1) 1

0 1(j+1)1(&" j+—1) 2'+J+'
n k

&& [exp((r)+( —l)i +k k ' 'exp( gr)]—

X(—1) (gR)" ~ 'exp( —gR), (87)

wllel'e I ls tl1e GaII1111a fuIlctloll

l (n +1)=n!,
and Qk (p) 1s defined by

n I ' 'I

xI'exp(x) = g ak'(p)xk xI' " 'exp(x) .. (88)
dx x dx k=0

A computer program was written which performs these sums and collects terms with given powers of r and R along the
lines suggested by Jones and Weatherford. '" '

A few explicit examples of the Vii I -(n', n" ) are

1 1
Vooo(n', n" )=—2.

Vooo(n', n" )=—
2

24 24 12 4 1

—24 —24 —12 —4 0
12 12 6 0 0

—4 —4 0 0 0
1 0 0 00

(810)
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