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Many-body effects on the electron states of solid argon
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We consider many-body effects on the band structure of solid argon within the Coulomb-
hole —plus —screened-exchange approximation, and with the use of a basis set of orthogonalized

plane waves. The difficulties inherent to the nonlocal character of the self-energy operator are over-

come by expressing the crystal density matrix in terms of localized Gaussian functions. A major
advantage of this technique is that all the matrix elements necessary to perform the correlated
band-structure calculation can be computed analytically. Our results for the case of argon are com-

pared with experiments and with previous theoretical works.

I. INTRODUCTION

In recent years considerable effort has been devoted to-
ward efficient solutions of the Hartree-Fock (HF) equa-
tions in solids. ' The orthogonalized-plane-wave method
(OPW) has proved to be a valuable tool for HF calcula-
tions, ' and recent improvements have further clarified
the advantages of this versatile tool. Other methods
which have been fruitfully adopted for first-principles
band-structure calculations are the local-orbital and the
mixed-basis methods. '

The HF calculations are a necessary, though prelimi-
nary, step before considering many-body effects. In order
to limit computational difficulties, correlation effects have
been often treated in the literature according to specific
ad hoc models. This occurred in spite of the fact that
powerful approaches based on Green's-function tech-
niques have opened a major conceptual breakthrough in
the field of electronic state calculations. ' The simplest
many-body approach to include ab initio correlation ef-
fects in band-structure calculations is the one first pro-
posed by Hedin and known as the Coulomb-
hole —plus —screened-exchange approximation (COHSEX).
Within this theoretical framework, we find the pioneering
works of Brinkman and Goodman on Si, of Lipari and
Fowler on Ar, and the perturbative approach of Brener
on LiF.

In this paper we extend an efficient technique, previ-
ously proposed to treat exactly the integro-differential HF
equations in crystals, to the case where correlation effects
are included within the COHSEX approximation. Using
a basis set of OPW's and expressing the density matrix of
the crystal in terms of localized Gaussian-type orbitals
(GTO's) [we refer to this procedure as the Gaussian
orthogonalized-plane-wave method (GOPW)], we are able
to express analytically all the necessary matrix elements.
This leads to a drastic reduction in computational labor
and to a much increased numerical accuracy. As a specif-

ic example, we consider the case of argon, for which we

compare our results with experimental data and with oth-
er theoretical works.

II. GAUSSIAN OPW METHOD
FOR THE COHSEX SECULAR EQUATION

A. Introductory remarks

The GOPW method " has been successfully applied to
the solution of the HF equations for a crystal as has been
described elsewhere. The simplicity of the method is re-
lated to the combined use of GTO's for describing the
density matrix of the crystal and of OPW's for describing
valence and/or conduction states, and it has had success
in describing both the localized and the itinerant nature of
the electron states. The purpose of this paper is to apply
it to the solution of the integro-differential COHSEX
equations.

The single-particle-like excitations of a closed-shell
many-electron system are described by the effective-wave
equation:

[&(r)+V(r)]P(r)+ f r(r, r ',E)$(r ')dr '=Ep(r),

h(r)=—

where h(r) is the one-electron Harniltonian, V(r) is the
Hartree potential, X( r, r ',E) is the non-local energy-
dependent self-energy operator, and p(r, r ') is the spin-
independent one-electron density matrix of the system.

We consider the self-energy operator in the COHSEX
approximation and also assume that local-field effects'-"
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X(r, r ',E) ,'—p(—r,r ')8'(r r—')+Ect, 5(r r—'), (2)

where 8'(r —r ') is the statically screened Coulomb in-
teraction and the Coulomb-hole term Ec~ is

d q 4m'e

(2 )'

in the dielectric screening can be neglected, i.e., the nondi-
agonal elements of the dkelectr1c matrtx can be disregard-
ed. %ith these assumptions, one obtains

where e(q) is the static dielectric function of the crystal.
We now discuss the handling of Eq. (1) with a kernel of

type (2), within the GOPW scheme. The screened interac-
tion 8'{r —r ') can be approximated to any degree of ac-
curacy by a sum of Yukawa-type terms. We consider now
the evaluation of the bielectronic exchange integrals be-
tween two plane waves and two GTO's in the case where
the electron-electron interaction is of the simple Yukawa
type.

B. Analytic expression of the screened exchange bielectronic integrals

—ar2 eJ,(k;,a;A, ;p, k, )—= f dr1dr2e ' 'I'oo(r2)e
2—fjr& ik ~ r2

Foo{r1)e e,, r12 —=
~

1'1 —1'2
~

We consider first the case of two plane waves and two ls GTO's, since the general case of occupied states of arbitrary
angular momentum can be easily treated by differentiation techniques:

—A.r l 2

In order to calculate J„we first decouple the variables r,
and r2 by means of the standard relation:

—kr Ipe

We then take advantage of the fact that the Fourier
transform of a Gaussian function is still a Gaussian func-
tion» and we obtaIIl

]. —k;2/4a —k 2/4P
J~= e

g(ap)3/2

—«2i4r+ N q (6)'q'+~'
where the reduced exponent y and the reduced wave vec-

tor a. are defined as

Eq. (6) then becomes

7T —k 2/4a —k 2/4P
t J

—(ap)' i

x fQC 1 v~/4s + 1/y) —g~
ds .

(4~ + 1/y)'i'

Performing the change of variable,

~ /(4s + 1/y ) = t

one obtains

—k.'/4a —k'. /4P+A, 2/4~J
2a(aP) i

X « —A, 2/4«2

ap
Ka+P ' 2 a

k.
+ It is useful to introduce at this stage the complex function

).14, 15

With the representation -z2 2& '
«2 -z2w(z)=e ' 1+ e' dt =—e ' erfc( —iz) .

Using the following indefinite integral

e ' " + "dx = — e ' " +" " [w(blx+iax)+to( b/x+iax)]+ co—nst,
4a

and with some lengthy but trivial algebra, we finally arrive at the simple result

2(k; —kj) lk
Jg(k;, ai, ;P„k )J= exp — '

Imw trav y+-
4a(ap)' i' 4(a+ p) 2v'y

—Pr2 ik-. rJ (k;,a;A, ;P, kj)= g f dr1dr2e ' 'F1~(rq)rze

In the case where one must consider p-like occupied states, one also needs integrals of the type
—A,r 12—ar& e

They can be evaluated in terms of the J, integrals by means of the relationship:
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(12)
a2

Jz(k;, a;A, ;P, kj)=3 g J,(k;,a;A,;P, kj) .
v=x,y, z iv j v

The explicit evaluation of J~ is carried out by exploiting the recursion relations for the derivatives of the w (z) function'6

w'"+ '(z)+2zw'"+ "(z)+2(n + 1)w'"'(z) =0,

w (z) =w (z), w"'(z) = —2zw (z)+

The final result is

3 2

Jz(k;, a;A, ;P, kj)= exp-
16a(aP) i

(k; —kj)
4(a+ f3)

X ' +k; kj —A, Imw ivy+
K 2 y

K (k;+kj)
A, Rew aMy+ —2

K 2 y 77
J

cos( kK ) + Icp (13)

C. Dielectric screening in solid argon

For the purposes of the present paper, it is convenient
to approximate the static dielectric function of the crystal
by the following interpolation formula:

1 1 q q+ i 2 2+ 2 2 2~(q) ~, q'+A2i q'+A, ',
' (14)

where each term corresponds to an effective interaction in
real space of the Yukawa type. Equation (14) automati-
cally satisfies the requirement e(0)=e, =1.67. In order to
fix the other parameters, we first observe that the high-q
limiting behavior of e(q) must be

1/e(q) ~ 1 —c/q (15)

The presence in Eq. (15) of a term proportional to q
would in fact give rise to unphysical divergences in the
charge response to a point-charge perturbation. We then
assume that the response of the system to high-q distur-
bances is free-electron-like; i.e., c =16m.no/a~, where no is
the valence electron density, and az is the Bohr radius.
The above requirements still leave one free parameter,
which is determined in such a way that the Coulomb-hole
energy Ec~ obtained from the dielectric function (14)
equals the value of 2.39 eV calculated by Lipari' ' using a
model first proposed by Fry. ' A value of no correspond-
ing to eight valence electrons per unit cell and to a lattice

With the help of a standard computer routine for the
function w(z), ' the expressions (10) and (13) for the
screened exchange integrals can be easily evaluated. The
other matrix elements appearing in the GOPW method
are much more simple, as already discussed elsewhere.

parameter of 10.05 a.u. leads to the following values of the
parameters A and A, : A

&
——0.4072, A,

&

——0.4918,
32

———0.0060, A,2
——4.0411.

D. Hartree-Fock and correlated energy bands
of solid argon

The argon atom has the closed-shell structure E(2),
I.(8), 3s, 3p . The atomic data necessary for the
COHSEX-OPW calculation have been computed using
the same (lls/7p) GTO basis set previously adopted for
the HF calculation. ' In order to obtain core-level orbi-
tal energies and wave functions which are genuine eigen-
values and eigenvectors of Eq. (1), with the self-energy
operator given by Eq. (2), the atomic orbital energies and
expansion coefficients have been recalculated self-
consistently by screening the atomic self-energy operator
with the crystal dielectric function (14) according to Eq.
(2).

The crystal structure of solid argon is fcc with a lattice
parameter of 10.05 a.u. In the calculation of the band
structure we have used a maximum of 259 OPW's; at I,
this corresponds to consider the first 16 shells of
reciprocal-lattice vectors, up to waves of the type (442)
and (600). We have considered as core levels only the
genuine core shells K and L.

The COHSEX energy bands of argon are reported in
Table I and displayed in Fig. 1; the symmetry notations
are those of Koster et al. For comparison, we have also
reported the HF energy bands of Ref. 5 to which we refer
for an account of other HF calculations available in the
literature. A detailed account of other theoretical works
on the electron states of solid argon can be found in Ref.
22.



TABLE I. Energies (eV) of crystal states in solid argon at the points I, X, L, and 8' of the Brillouin
zone in the COHSEX approximation. The co11espondlng HF va1Ues ale reported iIl paIentheses for
comparison.

X
—33.24 I )+

(—34.77)
—13.71 I 4

(—14.73)

—32.75 Xl+

( —34.22)
—15.29 X;

( —16.45)
—14.17 Xg

l —15.32)

32 87 L)+
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—15.47 Lp
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—13.75 L3
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—14.74 JYg
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—14.27 8"4

(—15.22)

0.91 I"+

(3.20)
9.58 I 5+

(11.79)
12.67 I-;

(15.05)
13.18 I-+

(15.28)
15.60 I;

(17.97)

3.41 Xi+

(5.67)
5.51 X+

(7.71)
8.11 X2

(10.33)
12.76 X5

(15.04)
16.31 X+

(18.35)

4.03 I. )+

(6.28)
6.03 L2

(8.28)
8.92 L3+

{11.09)
12.09 L2

(14.45)
16.04 L3+

(18.14)

4.55 8'4
(6.83)
6.84 8,

(9.09)
9.19 8')

{11.48)
14.47 8'5

(16.78)
16.85 8')

(19.12)
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In agreement with previous theoretical investigations,
the correlated conduction energy bands shift almost rigid-
ly downward of the Eci, quantity with respect to the HF
results. This is a consequence of the short-range character
of the exchange operator and of the itinerant character of
the conduction wave functions in closed-shell systems.

The valence-correlated energy bands shift upward with a
negligible k dependence. This fact is essentially due to
the insensitivity of the hopping integrals to screening.
Thc I g -I ) cncrgy gap 1s therefore rcduccd from the HF
value of 17.93 eV to the COHSEX value of 14.62 eV
which compares well with the experimental value of 14.15
CV. Also the electron affinity and the photoemission
threshold calculated in the COHSEX approximation are
in much better agreement with the experimental results '

than thc HF valUcs. Thc minimum of thc conduction
band decreases from 3.20 to 0.91 eV, to be compared with
an experimental value of 0.4 eV. The photoemission
threshold changes from 14.73 to 13.71 eV, again with sub-
stantial agreement with the estimated experimental value
of 13.68 eV. The width of the 3p valence band, both in
the HP and in the COHSEX approximation, is in good
agreement with the observed value of 1.7 eV. We finally
note that a moderate change of the Coulomb-hole energy
E&I, to a value of 2.90 eV would bring the values of the
electron affinities and of the energy gap into perfect agree-
ment with experiments, without affecting sensibly the
photoemission threshold.

III. CONCI. USIONS
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FIG. 1. Energy bands of solid argon (eV) in the COHSEX

approximation (solid lines) and in the HF approximation
(dashed lines).

We have considered the correlation effects on the elec-
tronic states of solid argon, solving the integro-differential
equation for the one-electron Green's function within the
COHSEX approximation. The novelty and the accuracy
of this study are essentially due to the possibility of ex-
pressing in a closed analytic form the screened exchange
bielectronic integrals of interest in the CQHSEX-OP&
method. According to our results, one can safely state
that the COHSEX approximation goes a long way indeed
toward a quantitative account of many-body effects in
solids, and yet it can be managed with a reasonable nu-
merical labor.
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