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Universal high-temperature saturation in phonon and electron transport
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High-temperature electrical conductivity cr of metals and thermal conductivity a of insulators ex-

hibit very similar saturation effects when the mean free path l approaches the lattice constant a.
Band-mixing effects are shown to be an important factor in this regime. We predict that TlBr and
TlCl should exhibit saturation effects in ~, similar to those seen in CuCl.

High-T transport in the phonon or electron "gas" in a
solid has a very simple form. Boltzmann theory' gives an
inelastic collision rate 1/r scaling as (u ) ~ T where u is
the vibrational amplitude. The conductivity then scales as
T '. This is true both for electrical conductivity o in
metals (where the inelastic mechanism is electron-phonon
scattering) and for heat conductivity tc in insulators (where
the tnechanism is phonon-phonon scattering). Figure 1

shows the success of this picture for good conductors like
Cu and Si.' Also shown is the crossover to T
independent behavior ("minimum" conductivity) seen at
high T in strong-scattering materials like V3Si (Ref. 16)
and CuC1. The crossover occurs in all electrical conduc-
tors with cr &2)(10 0 'm ' and in thermal conductors

with a. (0.5—5.0 W/mK. The striking similarity of the
crossover in 0. and x has not previously been noticed. This
crossover cannot be described by Boltzmann theory since
(u ) ~T is inescapable. The crossover correlates with
short inelastic mean free paths l~a where a is a lattice
constant. In this regime, quasiparticles are not well de-

fined (i.e., Q is not a good quantum number; this is seen
directly in CuC1 by neutron scattering' ) and the gas anal-

ogy implicit in Boltzmann theory is invalid.
There is a large literature' on the problem of minimum

electronic conductivity at high T, and it is clear that a
quantitative theory does not yet exist. The corresponding
phonon problem has been discussed phenomenologically
by Slack, ' ' but no microscopic theory has been pro-
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FIG. 1. Conductivities vs temperature. All scales are logarithmic. Data for v are not shown above 800 K, where radiative heat
transfer begins to be noticeable. The sources of data are as follows: Cu, Ref. 2; Nb, Ref. 3; Ln, Ref. 4; Y3Si, Ref. 5; a-Fe~Ni4OP&4B6,
Ref. 6; Si, Ref. 7; A1203, Ref. 8; LiF and NaBr, Ref. 9; a-Si02, Ref. 10; BaO, Ref. 11; diabase rock, Ref. 12; vitreous Si02, Ref. 13;
CuCl, Ref. 14.
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where oB and IIB are the electrical and thermal conduc-
tivities predicted by Boltzmann theory. The minimum
conductivity formulas can be constructed from simple di-
mensional arguments. The intuitive picture of Kittel
and Ioffe and Regel, replaces the mean free path in the
gas-theory formula by a minimum sensible value (either
the wavelength or the lattice constant).

Observation 7. The dimensional argument cannot speci-
fy the sign of the effect in Eqs. (1) and (2). This is
dramatically demonstrated by the predicted behavior of o.

at T=O in dirty metals. As the mean free path is de-
creased by increased static disorder, an Anderson transi-
tion occurs to the localized regime where a=0. Most
theories and also recent experiments describe this as a
continuous transition, and GIotze has emphasized that
(except in a narrow critical region) the transition is well
described by Eq. (1) with a negatiue value of cr;„, rather
than the positive value needed at high T. The importance
of this observation is to dispel the notion that an elemen-
tary argument exists to justify Eqs. (1) Rnd (2). Dimen-
sional arguments correctly give the value of cr at which a
failure of gas theory occurs, but do not explain why the
high-T behavior is as simple as Eqs. (1) and (2).

Obseruation 2. The explanation of the high- T behavior
must apply to both o. and x and thus cannot rely on
features specific to electrons or to phonons. For example,
theories involving kBT/eB corrections ("Fermi smear-
ing") or exchange scattering can be ruled out because
there is no phonon analog. The phenomenon seems to be
a general property of waves propagating in a medium with
vibrational disorder, and does not depend on whether the
wave is itself vibrational or siinply coupled to the vibra-
tions.

Observation 3. It is not yet known whether the time
dependence of thermal disorder is a necessary or a peri-
pheral aspect. In Boltzmann transport the time depen-
dence is peripheral at high T. One can treat the disorder
Rs stRtlc, cRlculate 'tl1e corresponding elastic scatterIng I'Rte

from the adiabatically distorted lattice, and perform a
thermal ensemble average. The fact that the actual
scattering is inelastic (because of time dependence of u)
gives only a negligible correction if T ~ 8&. However, in
the case l-a, the possibility must be considered that the
instantaneous eigenstates of the adiabatically distorted lat-

posed. The lligll-T problem Is 111 1RI'ge part distinct fI'OIn

the question of minimum conductivity at low T, which
also has a large literature. The distinction is discussed
in detail 1ater in this paper. The main purpose of this pa-
per is to emphasize that the crossover and the regime of
minimum conduct1vlty arc s1IIlplc unlvcrsal and unex-
plained. The similarity of o. and x has some immediate
consequences which help clarify the problem in both
fields. The second purpose of this paper is to emphasize
that intcrband effects ' are numerically important and
have the right features to explain the effect.

Quite a satisfactory phenomenological model for the
crossover is provided by the "shunt-resistor" equations

. =2O=~B+Omin~ Omin=e

tice are localized. If these states are used as a basis for
constructing a transport theory, then time-dependent (in-
elastic) effects are crucial for allowing conduction to
occur. Two facts suggest that the instantaneous eigen-
states are not localized. First, no one has shown how the
temperature cancels out of the high-T problem if the role
of vibrational disorder is to cause hopping conduction in
instantaneously localized states. Second, in metals which
follow Eq. (1) at high T, it is usually surprisingly easy to
obtain o~o. ;„at 1=0 by alloying or radiation damage.
If instantaneous states are localized at high T, then they
should be localized at T=O in dirty samples with I corre-
spondingly small. Experimentally, ~ ~ o. ;„seems hard to
achieve, and o —+0 has neveI' been demonstrated. Thus it
seems probable that these metals are quite far from an
Anderson transition and obey Eq. (1) with a positive value
of IT;„even at T=O. Localization appears not to occur
for any physically realizable degree of disorder.

Observation 4. Interband effects are very important in
metals like V3Si, where the typical band separation he is
——, eV, and fi/r is as large as he at T-8D. It has been
shown ' that this gives rise to a new mechanism of elec-
tronic conduction distinct from either hopping or gaslike
quasiparticle drift. For weak scattering this process
occurs in parallel with quasiparticle drift, and provides a
natural picture of the parallel resistor of Eq. (1). The time
dependence of u is peripheral in this theory; the same ef-
fects occur at T=O if 1/r is caused by static disorder.
This explains the difficulty of achieving o & om;„at T=O.
We now show that interband effects of an exactly analo-
gous kind occur in phonon conduction.

The possibility of interband contributions to o arises be-

cause the electrical current operator j has interband ma-

trix elements —(e/m)(kn
~ p ~

kn'). Boltzmann theory
cons1dcls only thc d1agonal part —ev which dcscr1beske
quasiparticle drift. In the absence of collisions, the off-
diagonal part gives no in-phase current unless the E field
oscillates on resonance with an interband transition. The
heat-current operator S for an insulator was derived by
Hardy:"

S= —, g g(oI . +to .,)v,a-, ,a- +S2+S&, (3)kj kj' kjj' kj' kj

(v „,)„=—,
'

(ro cv„j,)
' (k,j ~

I)P(k)/Bk„~ k,j'),

where a and a are phonon creation and destruction

operators and the polarization vectors
~

k,j) are eigenvec-
2tors of the dynamical matrix P(k) with eigenvalue co- .
kj

From the Feynman theorem. it is clear that the diagonal

parts of v ., aI'c thc gI'oup vcloc1t1cs v =36) ./Bk.
k jj' kj kj

The off-diagonal velocities are not small. Results for v„
are shown in Fig. 2 for Ge phonons propagating in the

[100] direction. At k=(2Ir/a)(1, 0,0), we find the value
(TA~u„~TO)-4X10 m/s, which is larger than any
other matrix element of v„ in that direction except near

k =0 where (LA
~
u„~ LA) -5X 10 m/s is the LA sound

velocity. The term S2 is similar to the first term of (3) but
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wave vector k„(2m/a )

while the diagonal part Xki is as usual r0- U- .Bn-. /.kj kj kj
Bco-., plus a correction X"' due to interactions. Thesekj'
are further described in the Appendix.

The thermal conductivity a= —tr(pS )/V„T can now
be calculated from the solution of Eq. (6). For example,
in semiclassical approximation (R =Q =X' '=0) the for-
mal result is

FIG. 2. Matrix elements (v, )„ofv„ for Ge phonons in thekjj. X

[100] direction. All off-diagonal matrix elements vanish by
symmetry except for the 2X2 blocks of (TA

l
v„ l

TO). By a
unitary transformation these blocks are given the form of a con-

stant (shown as the dashed line) times the unit matrix. Solid
lines are the diagonal elements (U ..) which are identical to thex

phonon group velocities. Dynamical matrix chosen was Weber's

band change model (Ref. 32).

has operators a a and aa, while the term S3 contains tri-
linear operators a aa, etc., coming partly from the har-
rnonic Hamiltonian, and partly from anharmonic pertur-
bations. We have analyzed only the effects of the first
term of Eq. (3).

Following the procedure of Ref. 21, we define a general-
ized distribution function which is a 3vt&3v-dimensional
matrix in the branch index (jj'), where v is the number of
atoms per unit cell:

X-,=tr(pa- a-, )kjj' kj kj'

=(n +i' , )5~J +-g-, (1—5JJ') .
kj kj JJ kjj' JJ

Here P and g are the diagonal and off-diagonal parts of
the deviation from the equilibrium Bose function n

kj
Let us represent X-„, as a column vector X) with the

k jj'
diagonal parts in the uppermost 3' entries and the off-
diagonal elements in the remaining 3v(3v —1)N places,
where X is the number of k vectors in the Brillouin zone.
The linearized truncated equation of motion for X is

r

P R P
I
qT

I

x
R' Q —in (6)

The driving terms X, I' were found by the method of Ref.
33. The off-diagonal part is

which generalizes the Peierls-Boltzmann equation PP=
—

l
V T/T

l
X in the presence of a thermal gradient V'T.

We have derived an explicit form for the scattering opera-
tors P, Q, R in the case of third-order anharmonic interac-
tions. The operator P agrees with the usual theory. ' The
other parts are quite complicated and are given in the Ap-
pendix. As in Ref. 21, n is an "inertial" term which
suppresses interband fiuctuations,

y ~k kx (P )kk' k' k' (~3 /~ k')=1 —1

k, k'
(9)

where k is short for (k,j). In the relaxation-time approxi-
mation, (P '

)kk —— r6kk, —the standard formulas are
recovered. The next-order corrections to Eq. (9) are easily
found, and can be simply transcribed from the results of
Ref. 21. These correction terms differ from (9) in two
ways: (1) they have additional factors such as Rn
which is of order 1/coDr or a/I, and (2) all but one term
has one or both of the diagonal velocities v-. replaced bykj
U-„, with j'&j. When the first corrections are added to

k jj'
Eq. (9), the resulting theory has exactly the form and
magnitude of Eq. (2).

For optical branches, v . is small while v- ., haskj
terms of order v, -coDa/2~. This helps to explain an in-
teresting aspect of Slack's semiempirical formulas' for

For acoustic branches, the contribution to ~;„ is
just what one expects from kinetic theory with l-A, , and U

the sound velocity. For optical branches, however, he as-
signs a velocity -N&a/2a rather than the much smaller
group velocity. In a very successful shunt-resistor fit to
data for CuC1 at various pressures' it was found that the
three optical branches carry about half the heat in the sa-
turated limit. This is very surprising since the three
acoustic branches have much larger velocities. The inter-
band theory gives a detailed mechanism for this result.

Srivastava and others have earlier estimated the influ-
ence on a of off-diagonal parts of the heat-current opera-
tor S [Eq. (3)]. There is a close connection between these
approaches and ours, but an even more important differ-
ence. The contribution a„d found in Ref. 21 from nondi-

agonal parts of S is smaller than the diagonal part Kd by
two powers of the small parameter (coDr) ' or (a/I),
whereas our first correction is smaller by only one power.
Apparently these authors have omitted scattering process-
es which couple the diagonal and off-diagonal parts of the
nonequilibriurn distribution, or equivalently, have not ful-
ly exploited the matrix nature of the phonon self-energy

mz~(Q, co). An exactly similar discrepancy exists in the
electron problem between the phenomenological treatment
of Garik and Ashcroft and the microscopic treatment of
Ref. 21. A phenomenological method of obtaining first-
instead of second-order corrections in powers of (a/l) is
given in Ref. 36.

The present theory of interband effects is far from com-
plete. The basic defect is that, like the usual Boltzmann

theories, it is based on a representation in which k is a
good quantum number. In the regime a/l —1, additional
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nondiagonal parts N -, , of the distribution function
k j, k'j'

would be needed, and one would not expect the theory to
be manageable. The virtue of the present theory is that it
shows clearly the importance of the interband mechanism,
and should correctly describe the regime where the correc-
tion to Boltzmann theory is small.

The close analogy between electron and phonon trans-
port may provide insights and simplifications in future
work. For example, computer simulations of electrical
and heat ' currents have been made. Most of this work
involves only static disorder, but Payton et a/. included
anharmonic phonon scattering as an additional ingredient.
They found a regime where the anharmonic interactions
enhanced the heat current beyond what it would have been
for the statically disordered lattice. There is probably no
way to compare this result directly with experimental
thermal conductivity. However, electrical conductivity of
metals has the simplification that the conductivity of the
statically disordered lattice is to good approximation in-
dependent of T and measurable at T=O. The enhanced
currents found by Payton and Visscher probably corre-
spond to the Mooij correlation, i.e., the tendency for
highly resistive metallic alloys to have negative tempera-
ture coefficients of resistivity.

In the case of metals, it is relatively safe to predict that
whenever p at room temperature exceeds 80 pQcm, the
measured resistivity will be only weakly T dependent. For
insulators, it is harder to predict the behavior simply be-
cause Eq. (2) for a;„varies quite a lot between materials.
However, we wish to predict that TlBr and T1C1 should
exhibit saturation effects in a at 300 K and above. This
prediction is based on the neutron measurements of pho-
non frequencies ' which show strong T-dependent
broadening of the phonon lines. Except for some data on
mixed crystals and for T1Br in a limited range of tem-
perature there seem to be no measurements of a.(T) for
these materials. The value measured in Ref. 43 for TIBr
at 316 K is 0.59 W/mK, close to the value 0.3 W/mK es-
timated for a;„ from Eq. (2), or the value 0.49 W/mK
which we estimate from Slack's more sophisticated formu-
las."

Our main conclusions are that phonon and electron
minimum conductivities are very much alike. The effects
of band mixing are large when l-a and seem to us a
necessary ingredient in any complete model. Mechanisms
which are special to electrons or to phonons can be ruled
out.

where 4 is the deviation of the distribution function X
from equilibrium,

, =n 5~~ +@ (A2)

i.e., 4 is the column vector with elements (P,g) in Eq. (6).
The scattering operator is K, the driving term with
elements (X, Y) in Eq. (6) is denoted Z, and 0 will be de-
fined later.

The density matrix is written as

p=po+pj (A3)

where po is the equilibrium density matrix e and p~
corresponds to the first order (in

~

VT/T
~

) deviation
from equilibrium. We shall use an abbreviated notation
for the phonon quantum numbers such as 1 =(k,j),
1' = ( k,j'), and —1 = ( —k,j). Thus, for example, 4~ &—= tr(p~a&a~ ). The heat current, as given by Eqs. (3) and
(4), is

(A4)

iA P =—[A r, p]=0,
at

~T ~h +~g +~P ~

4 p
= g flCi))(Q )0 ) + 2 ),1

1

(A5)

(A7)

X(a2 —a 3)(a3 a 3) . (A8)

Here A p is the effective driving perturbation derived33'45
for a system under a constant thermal gradient, which is
assumed to reach local thermal equilibrium. Thus a
space-dependent inverse temperature p(x) is defined.

To first order in
~

P'p
~
/p our system is equivalent to a

lattice in a constant temperature 1/p with a perturbing
Hamiltonian4'

(A9)

J2 and J3 correspond to the S2 and S3 operators. As in
Refs. 21 and 33, we use Kohn and Luttinger's method of
writing the Liouville equation of the density matrix of a
steady-state system,
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APPENDIX

p2

f dx x g b, i(x —x;)
2m;

(A10)

This appendix contains derivations of Eqs. (6)—(9). It is
convenient to rewrite Eq. (6) in the form

(Al)

~here b, (x) is a 5 function broadened in space to the de-
gree necessary to define a local temperature. 3' The force
constants are denoted by p(i,j) and the lattice momentum
and coordinate P and Q are



2888 ASSA AUERBACH AND PHILIP B. ALLEN 29

P; =iN '~ g ( —,'Am;co-. )'~ e (i, kj)
k,j

ik x;X(a,+a, )ekj —kj (Al 1)

+11',22' +~1 ~1')~12~1'2' (A17)

The word inertial has less significance here than it has in
the electron problem. ' The significance of the inertial
term is that it suppresses interband fluctuations unless the
energy mismatch co1 —co1 is small. The driving term is

Q; =N '~'g(A'/2m;co„)'~ e (i, k, )

k,j
i k'x ~

&&(a —a )e'
kj kj (A12)

i tr(pa[a, a, , P p] )=-
T Z11' (A18)

Expanding Eq. (A5) in powers of
I

V T /T yields

i [A «, po]+i [A „po]=0, (A13)
&&[(~2+2')~(~2 ~2') ]v22'~2~2'

i[A «, p&] +i[A, «, p&]+i[A ~, po]=0. (A14)

Multiplying (A14) by a ~a &, taking the trace and using its
cyclic property we obtain

i tr(pr[a&a&, A «])+itr(p&[ata~, A,«])

+i tr(po[a &a), A p]) =0 . (A15)
der dn

dk dc'
(A20)

where the velocity v-, is defined in Eq. (4). As in Eq.
k jj'

(6), we now use X to denote the band-diagonal (or intra-
band) part of Z, and Y to denote the interband part:

The three terms represent the "inertial, " "scattering, " and
"driving" terms, respectively. The form of the inertial
term is

601+F01~ 11 1
—n 1~

2 C01 —N 1~

(A21)

i tr(pl[a)at, A «l)=i%'(co) —co) )4 ))

=i(04))), (A16)
The scattering term will yield the tetradic matrix K

which operates on 4. With the use of Eq. (A8),

+&~~22422 ——i tr(p&[a&a, ,A,«])
22'

g V(2, 3,4)tr(p~[a&a3a45& 2+a&a3a4$~ 2+ . ]),
2, 3,4

(A22)

where the ellipsis represents other unspecified trilinear
terms. Evaluating the traces of a trilinear term requires
another equation, which is given by multiplying Eq. (A14)
by the trilinear operator and taking the trace

tr(pi[a ia2a3, A «])+tr(pl[a &aza3, ,«])

+tr(po[aiaza3 ~p])=0. (A23)

The third term vanishes since po is diagonal in the number
representation. Using Eq. (A13), p& may be replaced by

p=po+p~ in the remaining two terms. But, in the first
term, the part involving po clearly vanishes. Working out
commutators, Eq. (A23) becomes

fl(co] +cop co3+i ri)tr(p&a &a 2a3 )

g V(a, b, c)tr(p[ &z, b~ia ~3—~ +—' ' ])
' a, b, c (A24)

where the ellipsis represents the following unspecified
terms: 16 other terms with two a~'s and two a' s, and oth-
er terms with atatata and aaaa". As usual, an infini-
tesimal i g is added to give the correct analytic properties.
This is most clearly understood when the temperature gra-
dient is oscillatory, e ' '. To simplify the formalism at
this point we neglect the last two kinds of terms, which
correspond to interband distribution functions, that lead

to additional channels carrying heat via S2 and S3 opera-
tors described in Eq. (3).

We now decouple the four operator averages of Eq.
(A24) into products of two operator averages, taking all
"contractions" as in Wick's theorem, to obtain a closed
equation. This decoupling is accurate to second order in
V. Thus, for instance,

tr(pa ~a & aqaq }—=tr(pa ~aq )tr(pa
& az)+tr(pa &a2)tr(pa & az )

512+ 1 @12'+~12'~ 1 c 1'&+ 81'2'& &'@12+51'&n I'C 1& +O((
I
~ T

I
~T)') (A25)

After contracting the averages we arrive at the form of the scattering operator E,
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i V(1,2, 3)V(3', 2', 1')
(E4))).————g — ' ' ' ' [(n2 +n3 )4)( +(n) n—s )4zz+(n( n—2 )433']—(1~1', ig —+ —iri)

A z s zi 3 co)~ —co2 —co3+tr/

2i V(1,2, 3)V(3', 2', 1')
[(nz n—3 )C ~~ +(n &

—n3 )4 22
—(n ~ +n2 + 1)4 33'] (1~1', iri~ i—ri) .

3 P 3 CO] +Q)2 C03+i g
(A26)

To get this in the form of Eq. (6) with interband and intraband parts separated, it is convenient to define the interband
projection operator,

( ~ }11'22' 811'822'

The elements of the matrix K in Eq. (6) are

P =ASCh,

R =bE(1—6},
Q=(l —b, )K(1—5) .

P is easily recognized as the usual Boltzmann scattering term for cubic anharmonicity'

(A27)

(A28)

(A29}

(A30)

(Pc')»= — X I
V(1»3) I'@~i—~2 ~3)[(n2+n3)41+(nl n3)(t2+(nl n2)03]

g ~

V(1,2, 3) 5(co~+coz —co3)[(nz n3)P~—+(n~ —n3)gz —(n~+nz+1)$3] .
& 2, 3

(A31)

The first correction to the Boltzmann result tea [Eq. (9)] is of order trit(bros) ', where bco is a typical interband frequen-

cy separation and Alr the average magnitude of the scattering operator K. Thus as in Refs. 21 and 33,

K=Kg +K(0) (A32)

gfia))u, [( P'RQ —'Y))+(P 'RA 'R 'P 'X) ] ——
QadiT, T 1, ]

uii (fl 'R tP 'X)ii . (A33)

By inspecting the magnitude of the correction tc' ', it is seen that Eq. (A32) has the form of the shunt-resistor formula,
Eq. (2).
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