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We present new results on the time-dependent correlation functions =„(t)=4(Sjj(t)St), g=x,y,
Rt zcI'0 tcIIlpcratUI'c of thc Qnc-dimensional 5 =

2 1sotroplc XXmodel (A =g =0) Rnd of thc tlans-

verse Ising (TI) model at the critical magnetic field (h =y= 1). 80th models are characterized by

special cases of the Hamiltonian H =—Jg, [(1+y)SI"Si'+I+(1 y)S—fr+I +hSI'] Wc. have dc-

I'1vcd exact Icsults on thc long-t1IIlc asymptotic cxpans10ns Qf thc RUtocorI'clatlon fUnct10ns 0(t)
and on the singularities of their frequency-dependent Fouricr transforms @P(co). Wc have also
determined the latter functions by high-precision numerical calculations. The functions 4P(co),
g'=x, y, have singularities at the infinite sequence of frequencies ei=mtoo, m=0, 1,2,3, . . . , where

uo ——J for the LF model and ceo ——2J for the TI model. In the TI case, the leading singularities in

po (co) al'c alternately oIlc-sided alld two sid-cd powcI'"1aw slllglllaI'Itlcs, tllc fll'st 'two of wlllch (at
M=o, 2J) Rrc divergent. Thc dominant slngU18I'1tlcs ln thc XI case 81c alternate Onc-sldcd pov&r

lMvs Rnd tv(0-sided power 18&s With logBrlthmic corrections, thc f11st t&0 of %"hlch (Rt 6)=0, J) Brc

divergent. The singularities at higher frequencies in both models are finite and become increasingly

weaker. %c p01nt QUt that thc nonanalyticitics Rt &+0 RI'c 1ntr1nslc fcaturcs of thc d1scI'ctc qURn-

tum ch81n Rnd have therefore not bccn found 1n thc context of R contlnuulTl analysis (LUtt1ngcr

model). At least the most prominent features of our ncm results should be observable in low-

tcIIlpcI'Bturc dynamical cxpcrllTlcnts on qURsl-onc-d1IIlcnslonal compounds such Rs thc XF-11kc sub-

stances CS2COC1 and PrC13 and the 5 =—Ising-hke substance CsCoC13 282O

I. INTRODUCTION

Exact results are available for the thermodynamic prop-
erties of many one-dimensional (1D) classical- and
quantum-spin systems. For most of these "exactly solv-
able" model systems, however, no rigorous results arc
known for dynamic correlation functions. This is the
case, for example, for the classical Heisenberg model,
whose partition funct1on has bccn calculated ln closed
form, ' and for the S = —,

' Heisenberg-Ising model, whose
free energy is amenable to exact Bethe-Ansatz calcula-
tions. Even thc 10~ S=

2 XF 1Tlodcl~ vfhosc thermo-
dynamic properties are those of a system of nonintcracting
fermions, ' has highly nontrivial dynamical properties.

The zero-temperature properties of quantum-spm
chains are of particular interest, because, at T =0, phase
transitions occur as a function of various parameters such
as an external magnetic field and exchange anisotropies,
which aI'e related by rigorous mappings to phase transi-
tions of certain classical models (e.g., Ising and vertex
models) as a function of temperature. '

FQ1 8 nuIIlber of 10 quantuIIl-splIl ITIQdcls such Rs thc
S =—,

' XYZ model, the energies of the ground state and of
soIYlc classes of lowv-lying excited states are explicitly
known. ' In gcIlcI al~ thcsc exRct cxcltatlon spectra have
been found to differ considerably from the "quasiparticle"
spcct18 obtained by many-body pcrtulbat1on tcchn]tqucs
which are standard 1n 20 and 30 magnctisn1, ~2 thus pm-
vldillg all illdlcatloll Rbout thc lilllltRtlolls of tllosc Rppl"ox-
imation tcchmqucs foI lD systcI11S. Note that these 10

excitation spectra consist of exact eigenstates of the full
Hamiltonian, which therefore have infinite lifetimes, as
opposed to the finite lifetimes of quasiparticles. Conse-
quently, they manifest themselves as real (i.e., undamped)
singularities in frequency-dependent correlation functions.

In this paper, we shall study the dynamics at T =0 of
tllc 1D, S =

g
tlRlls'vclsc Islllg (Tl) model Rt tllc critical

external magnetic field and of the 1D, S= —, isotropic XF
model in zero field, specified, respectively, by the Hamil-
ton1ans

Hxr = ~ g (St"St"+I +SfSt'+ I »

where P=(ktt T) '. We use the short-hand notation

:-„(t)=4(S](t)Sf), g=x,y, z . (1.4)

Valuable information on the excitation spectrum relevant

1n thc 111Tllt X~(x), With periodic bound81y cond1tlons
iHlposcd. %c RI'c lntcI'cstcd ln thc t%'o-spin corrclRt1on
functions,

Tr(e tlHe iHtS ye iHtSP )— —
(Sg(t)S„")=

&
",

)M, =x,y,z
Tr(e ~ )
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for the T=O dynamics is contained in the frequency-
dependent Fourier transforms,

e„~(~)=I dte'"'(Sg(t)S) ), (1.5)

and in the dynamic structure factor,

Sqq(q, co)= g e ''I"4"„"(co). (1.6)

Thus, in general, :-„(t)is a complex function, except at in-
finite temperature (P=O), where it is real. ' The Fourier-
transformed functions (1.5) and (1.6), on the other hand,
are real functions at any temperature. In fact, both quan-
tities (1.5) and (1.6) are important in the context of
dynamical experiments on magnetic compounds exhibit-
ing quasi-1D properties. ' Sz„(q,co) is directly measured
by inelastic neutron scattering, whereas 4"„"(to)at small c0,
in particular the autocorrelation function (ACF) 4g"(co),
1s related to thc spm-1attlce relaxatlon rate measured by
NMR experiments in situations where the relaxation of
the NMR probe is dominated by the local fluctuations of
the spin chain. '6

In Fourier space, the symmetry property (1.7b) mani-
fests itself as the well-known detailed balance condition,

4"„"( n))=e ~"—4"„"(co), S„„(q, co)=e ~"—S„„(q,a)} .

Hence, at T =0, both quantities (1.5) and (1.6) vanish
identically at negative frequencies. A further useful prop-
erty of S&&(q,co) is that it is a non-negative function. This
propcI'ty is most easily verified lf Spp(g, ci)) ls expressed 111

the spectral representation,

S„„(q,co) = — g e I
) (A,

~

S"(q)
~

A, ') [Z ~,v

y5(co EI, +El„)&—0,

The time-dependent correlation functions {lA} have the
following well-known general properties:

{1.7a)

(1.7b)

solution of X„(t)or F„(t) for (1.10) at arbitrary T has nev-
er been found. This can be understood as a result of the
fact that, after a Jordan-Wigner transformation from spin
operators to fermion operators, Z„(t) involves only a
product of four fermion operators, whereas X„(t) and
F„(t) involve an infinite number of such operators. The
latter are thus much more complicated objects and
represent (in the fermion language) not just two-particle
excitations, as is the case for Z„(t), but rather the excita-
tion of arbitrarily many particles. This fact was establish-
ed by McCoy, Barouch, and Abraham, " who found that
X„(t) and I'„(t) for (1.10) can be expressed as infinite
block Toeplitz determinants. A complete analysis of these
determinants has been given only for infinite tempera-
ture. ' We quote the well-known results for the
two models (1.1) and (1.2) at T = 00,

[X„(t)]TI——e ' ~ 5„O, [X„(t)]xi——c ' ~ 5„0,
where here and henceforth, the units are chosen such that
J= l. At T =0, the analysis of the Toeplitz determinants
was restricted ' to the leading term in the long-time
asymptotic expansion (LTAE) of X„(t) and Y„(t) until
very recently, when substantial progress was made.
The work of Ref. 34 forms the starting point for our
present analysis.

A brief report of some of our results was given in Ref.
35. In Sec. II we present a new, extended calculation of
the LTAE of the time-dependent ACF's Xo(t) and Yo(t)
for the TI and XY models, together with an analysis of
their general structural features and a comparison with
tllc ACF's Zo(t). Scctioil III contains a lllgll-plccisloll nll-
merical calculation of the frequency-dependent ACF's
No {co) and 4()~(co) for the TI and XF models. The singu-
larities of these functions are determined analytically from
Fourier transforms of the corresponding LTAE's. These
results are discussed in conjunction with similar ones for
the frequency-dependent ACF's C&o(co). We define a set
of "singularity indices" and comment on the connection
llctwccI1 tllc 1'clatlvc strcllgtlls of tllc siilglllarltlcs alld tlic
extent of spin fluctuations in the two models (at T =0).
An appendix contains some details of the calculations of
the singularities in the frequency-dependent ACF's.

where the sums run over all eigenstates
~

A, ) of H with en-

ergies EI„', Z= +le is the partition function. The
same property holds for the ACF (Ref. 17): 4z"(m) & 0.

The two Hamiltonians (1.1) and (1.2) are special cases
of the more general model,

0= —J g [(1+y)SI"SI",+(1 y)sfsf +As—l'],
/=]

(1.10)

The time-dependent correlation function [X„(t)]T, at
T=0, can be expressed in terms of a related function
o„(z) as

0„(it' )
[X„(t)]TI——[X„(0)]Tiexp —,' t + I dt'—

(2.1a)

thc static propert'les of which have bccn stuccoed extensive-
ly. ' A general formula for the time-dependent
correlation function Z„(t) for this model was first derived

by Niemeijer. ' Various authors have evaluated closed-
form expressions for Z„(t) and its Fourier transforms for
special cases of (1.10).' ' In contrast, a complete

where the static correlation function is given by

'!&!

[X„(0)j„=—
l=l
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and o„(z) satisfies the nonlinear ordinary differential
equation (ODE),

(zo„") +4(zo'„' cr„——n )[zrT„' —o„+(o„')]=0, (2.2)
(2.4)

with the initial condition that for z —+0, the solution can
bc represented by Olc series

~ (z) y u zzk+z2n+1 y b z2k

k=1 k=0

Here, all coeffr'cr'ents a„k and b„k can be calculated recur-
sively in terms of b„c, where

(2.5), [X.(r)hr .
dt

Further, one can compute the correlation functions
[X„(r)]xr [F„——(t)]xr of the isotropic XF model (1.2) via
the relation

Once [X„(t)]rr is known, one can calculate [F„(t))Tr by
means of the relation

t [X„&2(t/2)]Trj, n even

f X(n- r)yz(«»hrl X(.+ rrn («»hr ~
[X.(r)]xr=[l'. (&)]xr= '

(2.6)

Both (2.5) and (2.6) are valid for arbitrary temperature.
For Ref. 34, the ODE (2.2) was solved numerically for

n =0. From this numerical solution an analytic ansatz
for the LTAE of era(ir) was inferred and then verified
analytically. This LTAE was calculated for general ben
to 0(t ') and, with some further terms for the physical
value ben ——1/n. , was used to construct the resultant
LTAE of [X,(r)], to O(r "~').

Fo«ef. 35 the LTAE of [Xc(r)]Tr was extended to the
level at which the e " term (see below) first enters, viz. ,
O(t ' ~ ). The corresponding LTAE of [Fc(t)]Tr was
also calculated. From an analysis of the general structure
of these LTAE's, it was anticipated that terms with the
next-higher frequency of oscillation, e ", would first
enter at a much more highly suppressed level, namely
O(t ~ ). For the present work we have succeeded in

TABLE I. Values for the exponents a'"' and the coefficients a„'"' ' of the LTAE equation (2.7) of
[Xo(r)]ri which have been calculated.

I 027035
215

43 594695
218

260 700 970 635
225
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TABLE II. Values for the exponents a' ' and the coefficients a("™of the LTAE Eq. (2.7) of
[Fp(t) ]ri which have been calculated.

a (y)
9
2

(,m) 5
22

9
23

3
24

447
26

(,m) 117
25

39
25

315
24

42025
210

63
28

5463
26

2 144 637

(,m) 28 917
29

9765
213

59 373
27

136755
216

6 163425
211

8 162 775
212

1 2741 075
220

742 488 885
215

117223 335
223

16 504 104 375
2i7

[:-p(t)]Ti-~(tt) '" g Tp~
m=0

T' i) =(2m)™~ie '))"( 2it) ~ —a(&' )( —2it
(g) oo

n=0

(2.7a)

(2.7b)

calculating the LTAE's to this level, and, in accord with
our expectations, have obtained the leading e "terms.

We find that the LTAE's of [Xp(t)]&i and [Yp(t)]ri
have the following structure, as far as we have determined
it:

to this order of accuracy. It is feasible to calculate the
terms with lower oscillation frequencies to higher order;
as an example, the an'"' ' are listed up to order t in
Table III.

Some general features of the LTAE (2.7) are as follows.
(i) It consists of an infinite sum of terms TP~',

m =0, 1,2, . . . , each with a specific oscillatory t depen-
dence given by the phase factor e ' '. The fact that all
of the terms have frequencies of only one sign is a conse-

TABLE III. Values for the a„'"' ' for even n from n =10 to
20. (a„'"' '=0 for odd n. )

for g=x,y, where

A =2'~' exp[3('( —1)]=0.64500248. . . , (2.8)

(x,o)a io
7093 767 375

218

and —denotes an asymptotic expansion in standard nota-
tion. We have written the LTAE in a form which renders
the symmetry property p( —t) = p(t) iilanifest. The
coefficients a„'~' ' are rational numbers with a&~'+ i

——0 for
g=x,y, and all n in (2.7). (Our present notation for these
coefficients differs slightly from that used in Ref. 35. )
The exponents a'~' are positive integers or half-integers.
The values of a~~~™and ag' which have been calculated
so far are listed in Tables I and II for g=x and y, respec-
tively. The maximum order in t ' is taken to be t
for all a„'~' ', m =0, . . . 4, in accord with the fact that the
known term with the highest oscillation frequency enters
first at this level, and hence the expansion was calculated

(x,O)a12'

{x,O)a 14'

{x,O)a 16

(x,O)a18'

(x,O)a 20

11 538 377 839 125
222

13449 427 715059 875
225

170204 949 942 527 437 875
231

350982 198 204 787 691 206 875
234

1 829 524473 982 512079 025 439 375
238



quence of the condition of detailed balance [Eq. (1.8)],
which implies that at T =0, PP(co) =0 for co & 0.

(II) Eacll term Tp~ Is, Itself, a11 InfIIII'tc suIII of terms
with ascending powers of t . We thus denote it as a
"tower. " Each successive tower enters first at a progres-
sively higher level in the expansion; that is, the higher the
oscillation frequency, the more highly suppressed the
tower is in t. Our results in Table I strongly suggest that
the exponent a'"' governing the degree of this suppression,
is given by a"'=m /2. From (2.5), it follows that
a~/'=m /2 also, except for the nonoscillatory tower,
which Is suppressed by two units: Ao =2. This Is re-
flected in Table II.

(iii) The dominant term in [Xo(t)]TI for large t is
A(it) '~, which is nonoscillatory and reflects Lorentz in-

varlance In thc scalIQg 1IIIt glvcn thc Icsult that
[X„(0)]TI-An ' for large n. In contrast, the dominant
term in [Yo(t)]TI for large t is 2A(it) '~

( it) —'~ e
which is oscillatory in character and does not connect via
Wick rotation with the leading term of the static correla-
tion function for large n, [F„(0)]TI-(5A/16)n
Note, however, that the term (5A/16)(it) ~" does appear
in the LTAE of [Y'o(t)]TI and is the leading term of the
nonosclllatory tower, but Is not thc ovclall leading term IQ

this function.
By using (2.6), we have also calculated the LTAE of

[Xo(t)]»—[I'o(t)]» from (2.7) and have found the fol-
lowing result (i denotes x or y):

(2.9a)

J) 00T(») (2 )
—m/2e —imt( it) m y 1

(&,m)( It) a—
2

(2.9b)

The coefficients b„U' are positive rational numbers, with
b2"„'+, ——0 for all n in (2.9), and the exponents P' ' are pos-
Itivc Intcgcrs or half-integers. Table IV 11sts the values
which have been calculated. Evidently, the structure of
(2.9) is very similar to that of (2.7). In contrast to the TI
case, however, all non-negative integral frequencies, not
only the even ones, occur in the LTAE of [Xo(t)j». The
leading term in (2.9), (A ) 2'~ (it) ', can again be under-
stood as reflecting Lorentz invariance in a scaling limit,
given the result ts that [X„(0)]»-n '" fo-r large n As.

before, the higher-frequency towers enter at more highly
suppressed levels in t; in this case our results suggest that
the exlIonent in the prefactor for the mth tower is given

by P' = —,[(m +1)/2], where [v] denotes the integer
part, of v.

It is interesting to compare these new results for Xo(t)
and Fo(t) with the known results for Zo(t). In fact,
Niemeijer's expression ' for Z„(t) in the general model
(1.10) can be evaluated for the special cases (1.1) and (1.2)
at T =0, in terms of Bessel functions J„and Weber func-
tIons E„. Thc I'csults arc

TABLE IV. Values for the exponents P"' and the coefficients b„' ' ' of the LTAE equation (2.9) of [X~(t)]zr——[Fo(t)]rr which
have been calculated.

b&i, m)
0

g (l,m)
2

1

22
249
25

441
27

19710331
216

285 033
2I1

b (l,m)
7

7765 967 691
218
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[Z„(r)]TI=-,+[J2„(2r)+iE2„(2r)]2

—[J2„)(2t) +iE2„)(2t)]

X[J2„+I(2I)+iE2,+I(2&)]

[Z„(t)]xr [J„——(t)+ iE„(t)]

(2.10)

(2.11)

plane is the easy plane for spin fluctuations in the XI'
model. ""

The time-dependent correlation functions [X„(t}]xrand
[Z„(t)]xr were studied' in the framework of the Lut-
tinger model, an exactly solvable Fermi-field theory in
1+I dimensions. The Luttinger model is understood to
represent a continuum version of the 10, S=—,, XXZ
model which contains the XI"model (1.2) as a special case,
namdy that of free fermions. The following results have
been found for the ACF's of the Luttinger model in the
free-fermion limitrespectively. By using standard mathematical refer-

ences, ' one can calculate the LTAE's of Z„(t) to all or-
ders. We find that they have a structure which is similar
to (2.7) and (2.9) but contains only three towers. The re-
sults for n =0 are

2

[Zo(»]TI——,—g T".
,
"',

m=0
(2.12a)

with ao ——2, a(' ———,, az ——2, and rational coefficients
0 "m' and

[Zo«)]xr- g T.', (2.13a)

4z)T(&&) (ttt/2) 2 —it—ttt( i) +m ~ b(z, ttt)( r)
—n

Z, W

n=0

with po' ——2, p~)'= » p2' ——1, and rational coefficients
b„" '. The leading term of (2.12a) comes from the second
tower (m =1) and is

25/2 —3/2e 2it( 2 I)—3/2—

whereas the leading term of {2.13a) comes from the third
tower (tn =2) and is

—ie 2it( ir)
—1—

The fact that [Xo(t)]TI falls off less rapidly than both
[ I'o(~) lri and [Zo(t)]TI at large t reflects the property that
the x axis is the "easy" spin-fluctuation direction. More
specifically, for II &h, =l, there is a net magnetization
M„=—,[lim„„X„(0)]'/ in the TI model. As h in-
creases through h„ this long-range or'der disappears. At
the critical value h, =1, there are thus large Auctuations
in the order parameter M„. By the Lorentz invariance
correspondence noted above in the scaling limit, these
strong fluctuations in the static correlation function
[X„(0)]rifor large n are equivalent to strong fluctuations
governing [Xo(t)]TI at large I. By analogy, the fact that
[Zo(I)]xr falls off more rapidly than
[Xo(t)]xr [Fo(t)]xr reflects ——the property that the xy

[Xo(r)] „,—C, I I/2+-C, I

[Zo(&)li..t-c3I ', (2.14b)

Im[:-o(t =0)]=0, :-=X,I;Z (2.15)

(at arbitrary T), and this is evident in all of the plots. This
condition (1.7b), in conjunction with the fact that the
correlation functions are entire functions of t, implies
that

d
dt
—Re[:-o(r)]

~ t ()
——0, :-=X,I;Z (2.16)

wh««hc Ci depend on the cutoff parameters and scaling
variables. Comparison with the exact LTAE's (2.9) and
(2.13) of the XI' model makes it clear that a great deal of
information on the dynamics of the quantum-spin model
(1.2) is lost if the calculation is done in the continuum
limit. The Luttinger-model calculation reproduces the
correct exponents in the first two terms of the nonoscilla-
tory tower of [Xo(t))xr and in the first term of the nonos-
cillatory tower of [Zo(t)]xr, but gives no further nonoscil-
latory terms. It fails to produce any of the oscillatory
terms. Tllis ls particularly serious 111 thc case of
[Zo(t)]xr, where the oscillatory towers include the leading
and the next-leading term of the LTAE.

A final general feature of all of these correlation func-
tions concerns the effect of the spin-spin interaction
strength. The basic observation is that the correlation
functions are (for I)i= 1) dimensionless functions of J and
I, and therefore can only depend on these variables in the
single combination Jt (This is i.mplicit in our notation,
where J=1.) Hence, it follows, in agreement with one' s
intuition, that the larger J is, the more rapidly the spin-
spin correlations approach their asymptotic values.

In addition to determining the analytic long-time
asymptotic CxpaIISIOIIS Of [Xo(t}]ri, [Yo(r)]TI, Rnd
[Xo(&)]xr——[I'o(t)]xr, it is quite useful to calculate these
functions numerically for general t. For this purpose we
have solved the ODE (2.2) numerically and have deter-
mined [Xo(I)]TI Rccoi'dlIlg to (2.1). [Fo(r)]ri IS tllCII CRl-
culated by numerical differentiation according to (2.5),
and [Xo(t)]xr——[I'o(t)]xr is obtained from (2.6). The re-
sults are displayed in Figs. II and 2. For comparison, we
also show Zo{t) as given for the two models by (2.10) and
(2.11). The property (1.7b) implies that
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FIG. 1. Short-time behavior of time-de

latory term of the LTAE f ~X ( )j
resen rea and ima ina ae s. ' g' ry parts of the leading, nonoscil-

es e va oe 4/ asymptotically in the limit t~ ao.

(2.17)

and again, this is clear in all of the graphs. We also note

d—Im I [XO(r)]TiI = —2M, ,

where M, is the ma ngnetization of the TI model. At T =0,
t is is ' M, =l/n. . Similar comments a 1 forpp p the t1mc

The I o er 'sat t=O.
e most prominent features of th 10 e OQg-time asgmp-
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1.0 I.O

(b)

0.5
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I
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5
I I I

1 hy, e real and imaginary part of the ACF'
l o„of h LTAE f,X

a represent real and ima inar
0 t ~q. Solid and dashed lines d

'
es enote,

'maginary parts of the leading, nonoscil-

totic behavior discussed above can
imes. s is evident in Fig. 1(a) the
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where

X I —,
' [1—( —1) ]8(2m —co)

+2 '/8(co —2m)I,

g «) J(2 )
—m/22 —m2/2 (x, m)

corn"=2m, m =0, 1,2, . . . , has the following form:
~(TI)

[4 ( )]' '- —,'A'"'I ( —,——, )
f

—2

(3.2b)

X

3

C)e

2.0—

I.O-

p.p. = XX,YY
ZZ ————

and

I 32

X, Ptl (3.2c)

r

0 '~
I

0.5
I

1.0
I

l.5
I

2.0

f, ~"( c)o= &(SI')'& (3.3)

be finite. Parenthetically, the value v= —1 is approached
in the limit of infinite spin dimensionality S in the 1D,
isotropic Heisenberg (HB) model at T =0, where

~p
'= —1+2/'( S)+O(S ), g'=x,y,

The dominant singularities in [cI)p (co)]T1 are

co 4p"(co)T1', m =0
[~P (~)]TI (2m)2@ (~)( ) m~0

(3.4)

(3.5)

From Table I we can determine the amplitudes A~"' expli-
citly up to m =4. Our calculational method is described
in the Appendix. Note that the power-type singularities in
[4q (CO)]rl at CO=COm" are One Sided fOr eVen m and tWO

sided for odd m. Two of the singularities are divergent,
viz. , -co /8(co) at co=0 and —fco —2

f

'/ [8(2—co)
+2 ' 8(co —2)], at co=2. The "singularity exponents"
v„'m' measure the strength of the singularities. Since v„'m
is a monotonically increasing function of m, the singulari-
ties become progressively weaker for larger m. The max-
imum allowed strength of a singularity in a frequency-
dependent correlation function, i.e., the lower bound on a
general singularity exponent v is v& —1. This follows
from the physical requirement that the integral

FIG. 4. Frequency-dependent ACF's [4p (co)]x„= [4/&(co)]xr (solid line) and [4() (co)]&r (dashed line).

(TI) I 32

~y, = 2- —4+2&m, o. (3.6)

Thus, [Wg(co)]T, vanishes like -co 8(co) as co~0,
whereas [(Pp (co)]rl is divergent there. Physically, the
difference in the singularity at co=0 can be attributed to
the fact that x is the "easy" axis and y the "hard" axis for
spin fluctuations. It is interesting, however, that for
corn "&0, the singularity exponents are the same for both
[@p (co)]T( and [~o~(co)]T( v', "=v~ ' for m ) l.

By the same method as for the TI model and with
equally high precision, we have numerically determined

[@p (co)]xr= [~p'(co)]xr = [@()'(co)]xr .

Our result, which is plotted in Fig. 4, exhibits divergences
at co=0 and 1 and a cusp at re=2. The exact nature of
these singularities is again analyzed by use of the LTAE
of [Xp( 1)]xr~ wlllcll also lndlcRtes 'tllat [ Pp (co ) ]xr hRS

further nonanalyticities at all positive integer frequencies.
We find that the dominant singularities of [4t (co)]xr at
frequencies co' '=m, m =0, 1,2, . . . , have the following
orm:

—,8' 'I ( —,
' ——,'m )(co —m) '"8(co—m), even m

(&) ~(——,8, fco —m
f

™1nfco—m f, oddm
[—,(m —1)]!

(3.7a)

(3.7b)

where

g(&) (J)221/2(2 ) m/2b(l, m)— (3.7c)

(XY)
&l,m =

17l 1
m even

rn 1
ptl odd .

4

(3.7d)

(3.7e)
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The 8~' can be determined explicitly up to m =4 from the values of bp' ' given in Table IV. The singularities in

[4p (co))»r at cp are alternatingly one-sided power type (m even) and two-sided power type with logarithmic correc-
tions (m odd). In particular, the singularities shown in Fig. 4 are the two divergences -co '~ 8(co) at co=0 and
-in[co —1[ at co=1, and the cusp -(cp —2)'~ 8(co —2) at co=2. Note that each of the two divergent singularities in

[@p (co)]»z is weaker by —,
' of a unit in v than the respective singularity in [4o"(co)]T,.

Our numerical results show that in both the TI and XY models C&P(co), g=x,y, approach zero very rapidly as cp in-

creases beyond 2. Actually, the large-co behavior of these frequency-dependent ACF's is strongly constrained by the
property that the time-dependent ACF's are entire functions of t. As a result of this property, 4P(co), g=x,y, must
vanish at least as rapidly as -exp( —aco ) where a & 0, as co —+ 0D." '

For a Physical interPretation of [4p (co)]T( [ Vp (co)]T&, and [C&t (co)]»z, it is instructive to comPare these functions

with [4o (co)]T( and [@o(cp)]»„,both of which can be evaluated exactly in terms of elliptic integrals: '

[4o (co)]T(———[X(k)—E(k)]8(co)8(4—co)+ V(co)8(co)8(2 —co), (3.8a)

with

V(co)= —[F(y(,k) —F(yq, k) —E(y~, k)+E(yq, k)+tan(u) [cos u —(co/4) ]'~ —cot(u) [sin u —(cp/4) ]' I, (3.8b)

y&
——arcsin[sin(u)/k], y2 ——arcsin[cos(u)/k],

k =[1—(co/4) ]', sin(2u)=co/2,

(3.8c)

(3.8d)

[4o(co)]»r———F[arcsin([ z [1—(1 co )—'~ ]J'~ /k), [1—(co/2) ]'~ ]8(co)8(1—co)

+—It I [I—(co/2) ]' j 8(co —1)8(2—co) . (3.9)

(co/2m. )8(cp)

[~'o (co)]TTc (2/~)(2 co) 8(2 co),
—,(4—co)8(4—cp)

(3.10)

where [@o(cp))TI,c [@o(cp)]m —M, 5(co), and the dom-
inant singularities or [4o(co)]»~ at co=m, m =0, 1,2,
have, respectively, the following forms:

These functions are also plotted in Figs. 3 and 4. In
contrast to the behavior of 4q (co) and 4q~(co), which have
an infinite number of singularities, the functions C&o(cp)

have only three singularities corresponding to the presence
of only three towers in the LTAE's (2.12) and (2.13) of
Zp(t). Specifically, the dominant singularities of
[4p (co)]T( at co =2m, m =0, 1,2, are, respectively,

[~i(9)]T(=2cos, [ei(cl)]»r cosq——.
2

' (3.12)

Now, the spin operator SI', if applied to the ground state,
couples to the two-particle excitations only, whereas the
operators St" and Sf couple to m-particle excitations with
m arbitrarily large. Consequently, the two-particle spec-
trum exhausts all spectral weight in @o(co), whereas

4q (co) and 4g(co) include also contributions from m-

particle excitations with m & 2.

(2/m )co8(co)

4o (co)»™~'-' —2 rr '(1 —co)' 8(1—co) .
8(2—co)

(3.11)

Thus, the singularity exponents are v,' "=l,—,, l; and

v, ~ =1,—,,0 for m =0, 1,2, respectively. Note that none

of the singularities in Po (co) is divergent. ' A closely re-
lated difference in behavior is that the functions [pp (co)]T(
and [Pp (co)]»r are nonzero only for 0 & co & 4 and
0&co&2, respectively, whereas Pq (co) and Pg(co) have
spectral weight at arbitrarily high frequencies. This
difference in behavior can be understood in the framework
of the fermion representation of the models (1.1) and (1.2)
or the more general model (1.10); the ground state is
characterized by a half-filled band of noninteracting, spin-
less fermions with one-particle energies,

l I

27T 7T

[sw] [z~]
Dp ((u)

o[o]
0 0

[o] [o]

FIG. 5. Two-particle spectrum of TI model and XY model
consisting of two partly overlapping continua with upper boun-

daries eU(q) and eU(q), respectively, and the common lower

boundary eL, (q). Also shown is the density of two-particle states
D2(co). Labels in square brackets are for the XY model, those
without brackets are for the TI model.
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The two-particle excitations of both models (1.1) and
(1.2) form a two-parameter continuum consisting of two
partly overlapping sheets, as shown in Fig. 5. The ener-
gies of the two-particle excitations as a function of wave
number q and a parameter k (0 & k & n }are

[CU(q)]II——4 sin —,[eU(q)]xI ——2 sin
2

(3.15)

[cz(k,q}]TI——2 cos ——— +2 cos
k q k

J

[cU(q)]TI=4 cos, [c'U(q)]xI ——2 cos, (3.16)
2

Icspcctlvcly, Rnd a commoll loweI boundaty given by
1

[Cz(k, q)]xz ——cos k —— + cos k+—
2 2

[««)]TI=2 s'n [cL,(q)]»=
I
»nq

I
~

2
(3.17)

The two continua have upper boundaries given by

Thus, the functions 40(co) can be expressed in integrals
over q of functions S (q, co), which are nonzero only
within the boundaries of the two-particle spectra

[S (q, oI)]TI= 8(4
l
cos(q/4)

l

—co)8(a) —2
l
sin(q/2)

l )
[16cos (q/4) —coz]'~2

g cos (q/4)

+ z 8(4
l
sin(q/4)

l

—co)8(co—2
l sin(q/2)

l
)+4m. M, 5(q)5(co),

[16sin (q/4) —m ]'~
8 sin {q/4)

[S (q ~»xI =, , „,8(~—
I
sinq

I )8[21»n(q/»
I

—~] ~

2

[4sin (q/2) co ]-'
The (normalized) density of two-particle excitations, defined by

Dz(oI):—f dq f dk 5(co—cz(k, q)),
CRII also bc cxpl'csscd III tcITns of cllIptlc IIltcgI'Rls,

[Dz(co)]TI——SE[arcsinf( —,
'

I 1 —[1—(co/2) ]'~
I

)'~ /k], [1—{co/4) ]'~2]8(oI)8(2—ro)

+4E'I [1—(co/4) ]'~ I8(a)—2)8(4—co),

[Dz(~) lxI =2[D2(2~)]TI .

(3.20)

(3.21)

(3.22)

~+o(oI)xr=(4~) '[Dz(oI)lxr . (3.23)

The singularities in [@0 (co)GATI and [&g(co)]TI at ~ =0,2, 4
and the singularities in [%0 (co)]xr at co=0, 1,2 are likely
to be at least partly due to the two-particle excitations. By
analogy, ou1 1csUlts stlongly sUggcst thRt thc nonanalytlc1-
ties at higher integer frequencies can be attributed to con-
tIIIUR of NI-particle cxcltatlons with cIlc1'glcs,

e (kI - . k )= X l««t)l

This function, which is plotted in Fig. 5, has pronounced
van Hove singularities at co=0,2,4 for the TI model and
at oI=0, 1,2 for the XFmodel. This is precisely where the
ACF's 4g"(oI), p=x,y,z, also have singularities. Hence,
the singularities in [@c(co)]TI at co=0,2,4 given in (3.8)
are the combined effect of the van Hove singularities in
[Dz(to)]TI and the singular behavior of the matrix ele-
ments (G

l
S'(q)

l
A, ) at the boundaries of the continuum

of two-particle excitations. Here
l
G) is the ground state

[see Eq. (1.9)].
In the XF case, the matrix elements (G

l
S'(q)

l
A, ) are

constant, and therefore [4o(co)]xI is proportional to the
two-particle density of states

4()"(to)~ 0 (3.25)

on the intervals between the singularities of these func-
tions. Thus the ACF's are, a fortiori, convex functions on
these intervals of analyticity. A further consequence is
that the ACF's have no smooth maxima, i.e., all maxima
occur at points of nonanalyticity.

P1nally, 1t ls 1nstruct1vc to discuss avallablc appl ox1"
mate results for [4~ (to)]xr in view of the new exact re-
sults reported in this paper. The time-dependent ACP's
obtained by calculations in the continuum approxima-
tion ' (I.uttinger model) have already been discussed in
Sec. II. In frequency space, the t.uttinger model yields the
colrcct cxponcnts for thc lcadlng and next"lcad1ng s1ngU-
larities of [@z (co)]xr at co=0, but it fails to reproduce
any of ihe nonanalyticities at m~o. This demonstrates
that the divergences and finite nonanalyticities of the
ACF's at nonzero frequencies are intrinsic features of the

where the one-particle excitation energies cI(kt ) are given
in (3.12).

An interesting property which holds for all of the
~o"(oI), p=x,y,z in both the TI and the XF models at
T =0 ls that
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APPENDIX

FIG. 6. Comparison of approximate result for frequency-
dependent ACF [4~ (co)]xr from Ref. 47 (dashed line) with new

exact result (solid line).

discrete quantum-spin model which cannot bc accounted
for by a continuum analysis.

In Ref. 47 an analytic expression for [S (q, co)]x) was
conjectured on the basis of finite-chain calculations and
sum-rule arguments. By construction, that approach
neglects all spectral weight due to excitations lying outside
the continuum of two-particle excitations. The ACF
[@o (ro)]xi obtained from the results of Ref. 47 is plotted
in Fig. 6, together with the new exact result. Vfe note that
the overall qualitative agreement is fair for ro & 2. The ap-
proximate result yields the leading singularity with the
amphtude correct within a relative error of 10 . It
correctly predicts another divergence at ~= 1, but an over-

ly strong one, —
I

ro —1
I

'/, instead of logarithmic. At
to=2 it predicts a further weak divergence followed by a
cutoff instead of a square-root cusp.

In summary, we have analyzed the structure of the
zero-temperature ACF's (Sg(t)S„"), p=x,y for the 1D
S = —,', TI model at the critical field and the 1D S= —,',
isotropic XI'model at zero field. We have combined these
new analytic results governing the time dependence of the
ACF's to calculate by Fourier transform the frequency-
dependent ACF's. We have found-that the latter func-
tions have singularities at an infinite set of frequencies„
and we have determined the exact form of these singulari-
ties. Finally, the predictions of approximate calculations
are reappraised in the light of the new exact results. Our
new results bear strong relevance for low-temperature
dynamical experiments on quasi-10 compounds such as
the XX-like substances Cs2CoC14 and PI'C13 and the S = —,

Ising™likesubstance CsCoC13.3826.

Here we shall prove that the singularities in the fre-
quency dependent ACF's @P(co) are determined by the
long-time asymptotic behavior of the corresponding time-
dependent correlation functions =o(t), and we shall
present the detailed calculations of these singularities. We
first recall that, by the definition of an asymptotic expan-
sion of a bounded function [:-o(t)]1T~E, for any 5&0
thcrc cxlsts a tmI~ such that

(A1)

for t ~ t;„Itis .useful to define an auxiliary function,

I)PI( rot;„)= —,
' I dt =()(t)e'"'

00

+ f~of8
mlQ

(A2)

As will be shown, the singularities of this function do not
de end on t;„. Furthermore, for values of ro where

(o);t;„) is finite, a controllably small error is made in
approximating "o(t) by [:"o(t)]1TAE,' that is, for any @~0
with

I
q'P(~ t .) —[q'F(~,t;.)]LT/, E I «,

where [+P(ro, t;„)]LT/,E is obtained from (A2) by replac-
ing =o(t) by [:-o(t)]LT~E, there exists a 5 and a t;„such
that

for t ~ t;„. Hence it is evident that the singularities of
[VP(ro, t;„)]LTzE, to be determined below, can be identi-
fied as the singularities of the frequency-dependent ACF

Let us then approximate =o(t) by [:-o(t)]1TAE, and ac-
cordingly delete the interval ( t;„,t;„)from—the Fourier
transform (1.5). We consider first the calculation of
)Ilo (ro, t;„)(T".With the LTAE of g.'7), Eq. (A2) yields

[ipxx(~, t )](Ti) ( g g g (x Nl) lim [ (1)Nl +2ll —1(2m )Nf /2+le —3/4+{ m 2 tt [i (2m ro)+it ]t . )
m=o n=o

+(i)'/ (ro —2m) / +" /"I {~
——,

' m —n, [i(o)—2m)+u]tm;„)], (A6)

wllrc I (Q,z) 1s tllc incomplete I fuilc'tioil, a11d

As to~2m, m =0, 1,2, . . . , the function (A6) has singularities. Furthermore, the singular part of (A6) becomes in-
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dependent of tm, „. Therefore, the singularities of [4p (co)]Tt depend only on the LTAE of [Xp(t)]T&, because t;„can be
chosen arbitrarily large so that the LTAE is arbitrarily accurate. For the dominant singularity of (A6) we thus obtain
the form of (3.2a). It is straightforward to prove that this property holds for [4P(co)]r& with g=y and z as well as g=x.

The same method can be used to calculate the singularities of [4t (to)]zr at co=m, m =0,2,4, . . .. As before, they
depend only on the LTAE of (2.9) of [Xp(t)]~@=[I'p(t)]zy. The result for the dominant singularity at each frequency is
given in (3.7a).

For the singularities of [4p (to)]zr at to=m, m =1,3,5, . . . , the integral of (A2) with the LTAE of (2.9) leads to a
different expression.

B(im)(,;)ttn'™'
II (X1) 1

[+p (to't
m=p n=p Pn

r

l, m)

( — ')t n l, m)

X lim e '" g (k —1)![i(ro —m+iu)] " (t;„)
Q~0 4=1

i (m —co+iu) t—[i(t m—+iu)] " Ei[i(to m+—iu)t;„]+e

n ttILm)
(k —1)![i(m —to+iu)] " (t;„)

k=1

[i (m—to+iu—)] Ei[i ( m to+ iu )—t;„] (A8)

where Ei(z) is the exponential integral ' and

B( ' )=(g) 21/Z(2n) m b (A9)

(A10)

As co~m, m =1,3,5, . . . , the Ei function diverges log-

arithrnically. Except for the cast m =1,n =0, this loga-
rithmic singularity is multiplied by power of co —m. All
other terms in (A8) are nonsingular. Again, the singulari-
ties depend only on the LTAE (as do those of [4p (co)]zr).
The dominant singularity thus obtained for each frequen-
cy is given in (3.7b).
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